Серия "Математика"

Выпуск 17, 2010

УДК 517.54

И. С. Ефремова

ПЕРЕСЕЧЕНИЕ МНОЖЕСТВА ЭКСТРЕМАЛЬНЫХ ФУНКЦИЙ ДЛЯ ДВУХ ФУНКЦИОНАЛОВ

В работе исследована экстремальная задача для линейного функционала в классе U'_{α} . В частности, получен вид экстремальной функции.

Понятие линейно-инвариантного семейства было введено X. Поммеренке в 1964 г. в работе [1].

Пусть $\Delta = \{z : |z| < 1\}$ — единичный круг. Обозначим через $\mathfrak L$ множество всех конформных автоморфизмов единичного круга Δ :

$$\varphi = e^{i\theta} \frac{z+a}{1+z\bar{a}}, \ a \in \Delta, \ \theta \in \mathbb{R}.$$

Определение 1. Множество \mathfrak{M} аналитических в круге Δ функций $f(z) = z + a_2 z^2 + ...$ называется линейно-инвариантным семейством (л.-и. с.), если для любой функции $f(z) \in \mathfrak{M}$ выполнены условия:

- 1) $f'(z) \neq 0$, для каждого $z \in \Delta$ (локальная однолистность);
- 2) для любого $\varphi \in \mathfrak{L}$ функция

$$\Lambda_{\varphi}[f(z)] = \frac{f(\varphi(z)) - f(\varphi(0))}{f'(\varphi(0))\varphi'(0)} = z + \dots$$

принадлежит классу Т.

Важной характеристикой является порядок линейно-инвариантного семейства.

Определение 2. Порядком л.-и. с. \mathfrak{M} называется число:

$$\operatorname{ord}\mathfrak{M} = \sup_{f \in \mathfrak{M}} |a_2(f)|.$$

[©] И. С. Ефремова, 2010

Понятие порядка функции было введено Кемпбелом в работе [2]. Пусть $f(z)=z+\dots$ локально однолистна и аналитична в Δ .

Определение 3. Порядком функции f(z) называется число:

$$\operatorname{ord} f = \operatorname{ord} \mathfrak{M}[f],$$

где $\mathfrak{M}[f]=\{\Lambda_{\varphi}[f(z)]:\ \varphi\in\mathfrak{L}\}$ — л.-и. с., порожденное функцией f.

Определение 4. Универсальным линейно-инвариантным семейством U_{α} порядка α называется объединение всех л.-и. с. \mathfrak{M} , порядок которых не превосходит α :

$$U_{\alpha} = \bigcup \{\mathfrak{M} : \operatorname{ord} \mathfrak{M} \leq \alpha\}.$$

ПРИМЕРЫ линейно-инвариантных семейств.

- 1) Семейство LS всех аналитических и локально однолистных в Δ функций $f(z)=z+\ldots$
- 2) Семейство $S \subset LS$ однолистных в Δ функций; ord S=2 [4].
- 3) Семейство $K\subset S$ выпуклых функций (функций из S, для которых $f(\Delta)-$ выпуклая область); ord K=1 [8].
- 4) Ниже определенное семейство U_{α} является линейно-инвариантным [6, 7]; ord $U_{\alpha}=\alpha$ [6, 7].

 I_{α} класс всех комплекснозначных функций $\mu(t)$ ограниченной вариации на $[0,2\pi)$, удовлетворяющих условию:

$$\left| \int_{0}^{2\pi} d\mu(t) - 1 \right| + \int_{0}^{2\pi} |d\mu(t)| \le \alpha.$$

 U_{α}' класс функций g(z), представимых в виде

$$g(z) = \int_{0}^{z} \exp\left[-2\int_{0}^{2\pi} \log(1 - se^{-it}) d\mu(t)\right] ds,$$
 (1)

где $\mu(t) \in I_{\alpha}$ (ветвь логарифма главная).

X и Y — два нормированных пространства и F — отображение, действующее из X и Y. Если отображение F в точке φ допускает разложение

$$F(\varphi + h) = F(\varphi) + L_{\varphi}(h) + o(||h||),$$

то оно называется дифферинцируемым по Фреше в точке $\varphi \in O$.

Рассмотрим следующие функционалы:

$$\max_{f \in U'_{\alpha}} \operatorname{Re} \left\{ \frac{f''(z_1)}{f'(z_1)} \right\}, \tag{2}$$

$$\max_{f \in U'_{\alpha}} \operatorname{Re} \left\{ \frac{f''(z_2)}{f'(z_2)} \right\}, \tag{3}$$

где z_1, z_2 — фиксированные точки из Δ .

Обозначим: $z_1 = r_1 e^{i\theta_1}$, arg $z_1 = \theta_1$, $z_2 = r_2 e^{i\theta_2}$, arg $z_2 = \theta_2$. В [6] (см. также [7]) доказано, что максимум в (2) достигается на функциях $l_1(z) \in U'_{\alpha}$ таких, что:

$$l_1'(z) = \exp\left[-2\int_0^{2\pi} \log(1 - ze^{i(\theta_1 - t)}) \frac{(e^{it} - r_1)^2 d\beta_1(t)}{|e^{it} - r_1|^2 e^{it}}\right],$$

где $\beta_1(t)$ — любая вещественная неубывающая на $[0,2\pi]$ функция, с полной вариацией α , удовлетворяющая условию:

$$\int_{0}^{2\pi} \frac{(e^{it} - r_1)^2 d\beta_1(t)}{|e^{it} - r_1|^2 e^{it}} = 1.$$
 (4)

Обозначим \mathfrak{A}_1 множество всех таких производных $l'_1(z)$ экстремальных функций в задаче (2), которым в их интегральном представлении соответствуют ступенчатые функции $\beta_1(t)$.

Аналогично максимум в (3) достигается на функциях $l_2 \in U_{\alpha}',$ таких, что:

$$l_2'(z) = \exp\left[-2\int_0^{2\pi} \log(1 - ze^{i(\theta_2 - t)}) \frac{(e^{it} - r_2)^2 d\beta_2(t)}{|e^{it} - r_2|^2 e^{it}}\right],$$

где $\beta_2(t)$ — любая вещественная неубывающая на $[0,2\pi]$ функция, с полной вариацией α , удовлетворяющая условию:

$$\int_{0}^{2\pi} \frac{(e^{it} - r_2)^2 d\beta_2(t)}{|e^{it} - r_2|^2 e^{it}} = 1.$$
 (5)

Обозначим \mathfrak{A}_2 — множество всех таких производных $l_2'(z)$ экстремальных функций, которым в их интегральном представлении соответствуют ступенчатые функции $\beta_2(t)$.

Отметим, что требование ступенчатости функций $\beta_1(t)$ и $\beta_2(t)$ в определении классов \mathfrak{A}_1 и \mathfrak{A}_2 при рассмотрении поставленной задачи вполне естественно, поскольку, как доказано в [6], множество функций (1), которым в их интегральном представлении соответствуют ступенчатые функции $\mu(t)$, всюду плотно в U'_{α} в топологии равномерной сходимости внутри Δ .

Обозначим $l_0 = \mathfrak{A}_1 \cap \mathfrak{A}_2$. Если $l_0 \neq \emptyset$, то функция $q(z) \in l_0$ будет экстремальной в задаче о нахождении:

$$\max_{f \in U'_{\alpha}} \operatorname{Re} \left\{ \frac{f''(z_1)}{f'(z_1)} \gamma + \frac{f''(z_2)}{f'(z_2)} \right\}$$
 (6)

для $\gamma > 0$. И мы сможем легко найти максимум в (6).

Из вышесказанного вытекает естественность постановки следующих двух задач.

- 1) Найти вид экстремальной функции в задаче (6) для произвольного $\gamma \in \mathcal{C}$.
- 2) Описать множество l_0 .

Решению этих задач посвящены нижеприведенные теоремы 1 и 2 соответственно.

В дальнейшем нам понадобятся следующие факты. Рассмотрим класс функций G_{α} :

$$\varphi(z) = \int_{0}^{2\pi} g(z,t) \, d\mu(t), \mu \in I_{\alpha},$$

g(z,t) регулярна в Δ по z, 2π -периодична и непрерывно дифференцируема по t. Класс G_{α} компактен в топологии равномерной сходимости внутри Δ (см. [7]). Пусть \mathfrak{F} — дифференцируемый по Фреше функционал. В [7] рассматривалась следующая экстремальная задача:

$$\max_{\varphi \in G_{\alpha}} Re\{\mathfrak{F}(\varphi)\}, \quad \alpha \in [1, \infty). \tag{7}$$

Обозначим

$$\varphi_0(z) = \int_0^{2\pi} g(z,t) \, d\mu_0(t)$$

экстремальную функцию в этой задаче (она может быть не единственной). Пусть $I_{\alpha}(n) \in I_{\alpha}$ класс n-ступенчатых функций (подкласс I_{α} кусочно-постоянных функций, имеющих не более n разрывов на промежутке $[0,2\pi)$).

$$G_{\alpha}(n) = \{ \varphi \in G_{\alpha} : \varphi(z) = \int_{0}^{2\pi} g(z,t) \, d\mu(t), \mu \in I_{\alpha}(n) \}.$$

Класс функций $G_{\alpha}(n)$ также как и G_{α} компактен в топологии равномерной сходмости внутри Δ (см. [7]). Наряду с задачей (7) рассматривалась также экстремальная задача

$$\max_{\varphi \in G_{\alpha}(n)} Re\{\mathfrak{F}(\varphi)\}, \quad \alpha \in [1, \infty), \tag{8}$$

где n — фиксированное натуральное число.

Пусть максимум в (8) достигается на функции

$$\varphi_n(z) = \int_0^{2\pi} g(z,t) \, d\mu_n(t).$$

Из последовательности $\varphi_n(z)$ можно выбрать подпоследовательность, равномерно сходящуюся внутри Δ к $\varphi^0(z) \in G_\alpha$, причем $\varphi_0(z)$ дает решение экстремальной задачи (7) (см. [7]).

В работе [7] было получено, что если $t_j,\ j=1,...,k\geq 3$ — точки разрыва функции $\mu_n(t)$ и этим точкам соответствуют $\theta_j=\arg d\mu_n(t_j),$ $2\pi+\theta_k>\theta_1>\theta_2>...>\theta_k\geq 0,$ то точки разрыва функции $\mu_n(t)$ удовлетворяют уравнениям:

$$\begin{cases} |L_{\varphi_n}[g(z,t_j)] - c_n|^2 = |L_{\varphi_n}[g(z,t_k)] - c_n|^2 \\ (|L_{\varphi_n}[g(z,t)] - c_n|^2)'_t|_{t=t_j} = 0 \text{ для всех j,} \end{cases}$$
(9)

где L_{φ_n} — дифференциал \mathfrak{F} в точке φ_n .

Теорема 1. Максимум функционала:

$$Re\left\{\gamma \frac{z_1 f''(z_1)}{f'(z_1)} + \frac{z_2 f''(z_2)}{f'(z_2)}\right\}, \ f(z) \in U'_{\alpha},$$
 (10)

где $\gamma \in \mathcal{C}$ фиксированное, достигается на функции $f_0(z)$, для которой

$$f_0'(z) = \prod_{k=1}^3 (1 - ze^{-i\tau_k})^{-2a_k},$$

где τ_k — действительные числа, $|a_1|+|a_2|+|a_3|=\alpha$ и $|a_1+a_2+a_3|=1$. Доказательство. Так как $f(z)\in U'_{\alpha}$, то по формуле (1):

$$\frac{z_1 f''(z_1)}{f'(z_1)} = \int_0^{2\pi} \frac{2e^{-it}d\mu(t)}{1 - z_1 e^{-it}}, \quad \frac{z_2 f''(z_2)}{f'(z_2)} = \int_0^{2\pi} \frac{2e^{-it}d\mu(t)}{1 - z_2 e^{-it}}.$$

Тогда функционал (10) примет вид:

$$\operatorname{Re}\left\{\gamma\int\limits_{0}^{2\pi}\frac{2z_{1}e^{-it}d\mu(t)}{1-z_{1}e^{-it}}+\int\limits_{0}^{2\pi}\frac{2z_{2}e^{-it}d\mu(t)}{1-z_{2}e^{-it}}\right\}.$$

Следовательно, максимум функционала (10) в U_{α} равен:

$$\max_{f \in U_{\alpha}'} \left[Re \left\{ 2 \int_{0}^{2\pi} \left(\frac{z_1 \gamma}{e^{it} - z_1} + \frac{z_2}{e^{it} - z_2} \right) d\mu(t) \right\} : \mu(t) \in I_{\alpha} \right]. \tag{11}$$

Обозначим

$$g(t) = 2\left(\frac{z_1\gamma}{e^{it} - z_1} + \frac{z_2}{e^{it} - z_2}\right).$$

Для решения экстремальной задачи (11) рассмотрим промежуточную экстремальную задачу:

$$\max_{\nu_n(t)\in I_{\alpha}} Re\left\{\mathfrak{F}\left(\int_0^{2\pi} g(t) \, d\nu_n(t)\right)\right\} =$$

$$= \max\left[Re\{\mathfrak{F}(\varphi)\}: \ \varphi = \int_0^{2\pi} g(t) \, d\nu_n(t)\right]. \tag{12}$$

Роль дифференцируемого по Фреше функционала $\mathfrak F$ в нашем случае играет $\mathfrak F(\varphi)=\varphi$. Значит, дифференциал Фреше рассматриваемого функционала равен $L_{\varphi_n}(g(t))=g(t)$. Таким образом, для нашего случая имеем:

$$L_{\varphi_n}(g(t_j)) = \frac{2z_1\gamma}{e^{it_j} - z_1} + \frac{2z_2}{e^{it_j} - z_2}.$$

Запишем систему (9) для дифференциала $L_{\varphi_n}(g(t_j))$:

$$\begin{cases}
\left| \frac{2z_1\gamma}{e^{it_j} - z_1} + \frac{2z_2}{e^{it_j} - z_2} - c_n \right|^2 = \left| \frac{2z_1\gamma}{e^{it_k} - z_1} + \frac{2z_2}{e^{it_k} - z_2} - c_n \right|^2 \\
\left(\left| \frac{2z_1\gamma}{e^{it} - z_1} + \frac{2z_2}{e^{it} - z_2} - c_n \right|^2 \right)_t' \Big|_{t=t_j} = 0.
\end{cases}$$
(13)

Перепишем второе уравнение системы в виде:

$$\left(\left(\frac{2z_1\gamma}{e^{it} - z_1} + \frac{2z_2}{e^{it} - z_2} - c_n \right) \left(\frac{2\gamma \overline{z_1}}{e^{-it} - \overline{z_1}} + \frac{2\overline{z_2}}{e^{-it} - \overline{z_2}} - \overline{c_n} \right) \right)_t' = 0,$$

что равносильно уравнению

$$\frac{(C_3e^{3it} + C_2e^{2it} + C_1e^{it} + C_0 + D_1e^{-it})(e^{-it} - \overline{z_1})(e^{-it} - \overline{z_2})}{|e^{it} - z_1|^2|e^{it} - z_2|^2} + \frac{(E_3e^{-3it} + E_2e^{-2it} + E_1e^{-it} + E_0 + G_1e^{it}) - (e^{it} - 1)(e^{it} - z_2)}{|e^{it} - z_1|^2|e^{it} - z_2|^2} = 0,$$

где C_i , E_i , i=0,1,2,3 и D_1 , G_1 — некоторые комплексные числа, не зависящие от t. Отсюда получаем:

$$ae^{3it} + be^{2it} + ce^{it} + de^{-3it} + le^{-2it} + ve^{-it} + m = 0.$$

где a,b,c,d,l,v,m — также некоторые комплексные числа. Умножим обе части уравнения на e^{3it} , получим следующее алгебраическое уравнение относительно e^{it} :

$$ae^{6it} + be^{5it} + ce^{4it} + me^{3it} + ve^{2it} + le^{it} + d = 0.$$

Следовательно, решений t_j такого уравнения может быть не более 6. А значит, точек разрыва t_j у функции $\nu_n(t)$ не более 6. Рассмотрим функцию

$$w(t) = \left| \frac{2z_1 \gamma}{e^{it_j} - z_1} + \frac{z_2}{e^{it_j} - z_2} - c_n \right|^2.$$

Выберем две соседние точки t_j и t_{j+1} , которые удовлетворяют второму условию из системы (13). В этих точках значения функции совпадают. Тогда, по теореме Ролля, существует точка $t_* \in (t_j, t_{j+1})$ такая, что $w'(t_*) = 0$. Поэтому второе уравнение системы может иметь не более трех решений. То есть число точек разрыва у функции $\nu_n(t)$ не более 3.

Получаем следующий вид экстремальной функции в поставленной задаче:

$$f_0'(z) = \prod_{k=1}^3 (1 - ze^{-i\tau_k})^{-2a_k},$$

где a_1, a_2, a_3 — скачки функции $\mu_n(t),$ а τ_k — ее точки разрыва. Теорема доказана.

Возвращаемся к исследованию l_0 . Пусть $q(z) \in l_0$. Тогда $q = l_1' \in \mathfrak{A}_1$ и $q = l_2' \in \mathfrak{A}_2$.

Обозначим: $\{t_k\}$ — точки разрыва $\beta_1(t)$, а $\{a_k\}$ — ее скачки, тогда

$$\sum_{k} a_k = \alpha, \ a_k > 0.$$

Тогда для соответствующего интеграла Стилтьеса получим:

$$\begin{split} &\int\limits_{0}^{2\pi} \log(1-ze^{i(\theta_{1}-t)}) \, \frac{(e^{it}-r_{1})^{2}d\beta_{1}(t)}{|e^{it}-r_{1}|^{2}e^{it}} = \\ &= \sum_{k} \log(1-ze^{i(\theta_{1}-t_{k})}) \frac{(e^{it_{k}}-r_{1})^{2}a_{k}}{|e^{it_{k}}-r_{1}|^{2}e^{it_{k}}}. \end{split}$$

По аналогии обозначим $\{\tau_k\}$ — точки разрыва $\beta_2(t),$ а $\{b_k\}$ — ее скачки. Тогда

$$\sum_{k} b_k = \alpha, \ b_k > 0$$

И

$$\begin{split} & \int\limits_{0}^{2\pi} \log(1-ze^{i(\theta_{2}-t)}) \, \frac{(e^{it}-r_{2})^{2}d\beta_{2}(t)}{|e^{it}-r_{2}|^{2}e^{it}} = \\ & = \sum_{k} \log(1-ze^{i(\theta_{2}-\tau_{k})}) \frac{(e^{i\tau_{k}}-r_{2})^{2}b_{k}}{|e^{i\tau_{k}}-r_{2}|^{2}e^{i\tau_{k}}}, \end{split}$$

причем здесь мощность множества $\{k\}$, вообще говоря, не совпадает с мощностью множества точек разрыва функции β_1 . Тогда

$$\begin{split} q(z) &= l_1'(z) = \\ &= \exp\left[-2\left(\sum_k \log(1-ze^{i(\theta_1-t_k)})\frac{(e^{it_k}-r_1)^2a_k}{|e^{it_k}-r_1|^2e^{it_k}}\right)\right] = \\ &= l_2'(z) = \exp\left[-2\left(\sum_k \log(1-ze^{i(\theta_2-\tau_k)})\frac{(e^{i\tau_k}-r_2)^2b_k}{|e^{i\tau_k}-r_2|^2e^{i\tau_k}}\right)\right]. \end{split}$$

Следовательно,

$$\sum_{k} \log(1 - ze^{i(\theta_1 - t_k)}) \frac{(e^{it_k} - r_1)^2 a_k}{|e^{it_k} - r_1|^2 e^{it_k}} =$$

$$= \sum_{k} \log(1 - ze^{i(\theta_2 - \tau_k)}) \frac{(e^{i\tau_k} - r_2)^2 b_k}{|e^{i\tau_k} - r_2|^2 e^{i\tau_k}}.$$
(14)

Пусть $z \to e^{-i(\theta_1-t_k)}$ при фиксированном k. Тогда из (14) вытекает, что k в правой и левой частях этого равенства пробегает одно и то же множество значений, причем для любого k справедливо равенство $\theta_1-t_k=\theta_2-\tau_k$ и

$$\frac{(e^{it_k}-r_1)^2a_k}{|e^{it_k}-r_1|^2e^{it_k}} = \frac{(e^{i\tau_k}-r_2)^2b_k}{|e^{i\tau_k}-r_2|^2e^{i\tau_k}}.$$

Следовательно, для любого $k,\,a_k=b_k,\;\theta_1-t_k=\theta_2-\tau_k$ и

$$\frac{(e^{it_k} - r_1)^2}{|e^{it_k} - r_1|^2 e^{it_k}} = \frac{(e^{i\tau_k} - r_2)^2}{|e^{i\tau_k} - r_2|^2 e^{i\tau_k}}.$$
(15)

Формулы (4) и (5) примут вид:

$$\sum_{k} \frac{(e^{it_k} - r_1)^2 a_k}{|e^{it_k} - r_1|^2 e^{it_k}} = 1, \ \sum_{k} \frac{(e^{i\tau_k} - r_2)^2 b_k}{|e^{i\tau_k} - r_2|^2 e^{i\tau_k}} = 1.$$

Из (15), в частности, следует, что

$$\arg \frac{e^{it_k}}{(e^{it_k} - r_1)^2} = \arg \frac{e^{i\tau_k}}{(e^{i\tau_k} - r_2)^2}.$$

Под $\arg \zeta$ понимаем главное значение аргумента в промежутке $(-\pi,\pi]$. При фиксированном k обозначим: $\theta=\theta_2-\theta_1,\ \tau_k=\tau,\ t_k=t$. Тогда из (12) вытекает: $\tau=t+\theta$ и

$$\arg \frac{e^{it}}{(e^{it} - r_1)^2} = \arg \frac{e^{i(t+\theta)}}{(e^{i(t+\theta)} - r_2)^2}.$$

Можно считать, что $(\theta_2-\theta_1)\in (-\pi,\pi]$. Тогда $\arg\frac{(e^{i(t+\theta)}-r_2)^2}{(e^{it}-r_1)^2}=\theta$ и

$$\frac{\theta}{2} = \arg\left(\frac{e^{i(t+\theta)} - r_2}{e^{it} - r_1}\right), \quad t \in [0, 2\pi].$$
 (16)

Обозначим:

$$\varphi(t) = \arg\left(\frac{e^{i(t+\theta)} - r_2}{e^{it} - r_1}\right) = \operatorname{Im} \ln\left(\frac{e^{i(t+\theta)} - r_2}{e^{it} - r_1}\right).$$

Эта функция 2π -периодична. Вычислим ее производную:

$$\varphi'(t) = \operatorname{Re}\left\{\frac{r_2 e^{it} - e^{i(t+\theta)} r_1}{(e^{i(t+\theta)} - r_2)(e^{it} - r_1)}\right\}.$$

Найдем критические точки функции $\varphi(t)$:

$$\varphi'(t) = \text{Re}\left[\frac{r_2 e^{it} - e^{i(t+\theta)} r_1}{(e^{i(t+\theta)} - r_2)(e^{it} - r_1)}\right] = 0$$
(17)

тогда и только тогда, когда

$$Re\{(r_2 - r_1e^{i\theta})(e^{-it}e^{-i\theta} - (r_2 + r_1e^{-i\theta}) + r_1r_2e^{it})\} = 0,$$

что равносильно равенству:

$$\left\{ (r_2 - r_1 e^{i\theta}) (e^{-it} e^{-i\theta} - r_2 - r_1 e^{-i\theta} + r_1 r_2 e^{it}) \right\} +$$

$$+ \left\{ (r_2 - r_1 e^{-i\theta}) (e^{it} e^{i\theta} - r_2 - r_1 e^{i\theta} + r_1 r_2 e^{-it}) \right\} = 0,$$

или

$$e^{2it}(r_2^2r_1 - r_1^2r_2e^{i\theta} + r_2e^{i\theta} - r_1) + e^{it}(2r_1^2 - 2r_2^2) + (r_2e^{-i\theta} - r_1 + r_1r_2^2 - r_1^2e^{-i\theta}r_2) = 0.$$

Получили квадратное уравнение относительно e^{it} . Следовательно, уравнение (17) имеет не более двух корней. А поскольку гладкая 2π -периодическая функция $\varphi(t)$, отличная от тождественной константы, имеет на $[0,2\pi)$ максимум и минимум, то (17) имеет единственный максимум и единственный минимум. Поэтому (16) может иметь не более двух корней. Обозначим их t' и t''. Поскольку в этих рассуждениях t_k , τ_k пробегают все точки разрывов функций $\beta_1(t)$ и $\beta_2(t)$, то t_k может принимать значения или t', или t'', так как решений только два. Таким образом, функции l_0 в ее интегральном представлении может соответствовать ступенчатая функция $\beta_1(t)$ (или $\beta_2(t)$), имеющая только две точки разрыва.

Таким образом, доказана следующая теорема.

Теорема 2. Функциям $q \in l_0$ в их интегральном представлении

$$q'(z) = \exp[-2\int_{0}^{2\pi} \log(1 - ze^{-it}) d\mu(t)]$$

могут соответствовать только ступенчатые функции $\mu(t)$ с двумя точ-ками разрыва.

Résumé

Research extremal problem for linear functional in U'_{α} is studied. In particular, a form of extremal function is got.

Список литературы

- Pommerenke Ch. Linear-invariante Familien analuyischer Functionen // Math. Ann. 1964. Hf. 155. P. 108–154.
- [2] Campbell D. M. Locally univalent functions with locally univalent derivatives // Trans. Amer. Math. Soc. 1971. V. 162.
- [3] Годуля Я. Линейно-инвариантные семейства // Труды ПетрГУ. 1998. Вып. 5. С. 3–96.
- [4] Bieberbach L. Uber die Koeffizienten derjenigen Potenzreihen welche eine schlichte Abbildung des Einheitskreises vermitteln, sitzungsber // Preuss. Akad. Wiss. Phys. Math. Kl. 1916. V. 138. P. 940–955.
- [5] Голузин Г. М. Геометрическая теория функций комплексного переменного. М.: Наука, 1996. 628 с.
- [6] Старков В. В. О некоторых подклассах линейно-инвариантных семейств, имеющих интегральное представление // Рукопись деп. в ВИНИТИ, є 3341–81.
- [7] Старков В. В. *О некоторых подклассах линейно-инвариантных семейств, имеющих интегральное представление* // Известия вузов. Серия Математика. 1983. № 5. С. 82–85.

- [8] Александров И. А. Методы геометрической теории аналитических функций. Томск: Изд-во Томского государственного университета, 2001.
- [9] Колмогоров А. П., Фомин С. В. Элементы теории функций и функционального анализа. М.: Наука, 1968.

Петрозаводский государственный университет, математический факультет, 185910, Петрозаводск, пр. Ленина, 33 E-mail: irish a@inbox.ru