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GENERALIZED QUADRATIC SPECTRUM
APPROXIMATION

IN BOUNDED AND UNBOUNDED CASES

Abstract. The goal of this paper is to generalize concepts in spec-
tral theory in order to define the quadratic spectrum associated
to three bounded linear operators. This concept was initially de-
fined for three matrices. Moreover, we construct a new method
of spectral approximation to avoid the problem of spectral pollu-
tion. This problem is resolved with the obtention of property U un-
der the norm convergence or the collectively compact convergence.
Also, we make numerical tests on the quadratic pencil associated to
Schrödinger’s operator in order to validate our theoretical results
and to show the efficiency of our method.
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1. Introduction. Spectral pollution is a common phenomenon in
the field of applied mathematics. It is a major problem that appears in
the resolution of eigenvalue problems, which is occur in many models of
quantum mechanics, solid state physics and elasticity theory (see Boulton
et al [5]).

The spectral pollution makes finite elements, finite differences, and
direct projection methods meaningless when we apply them to eigenvalue
problems of an unbounded operator.

This phenomenon is represented by the appearance of eigenvalues that
do not converge to the exact values or the absence of a relationship be-
tween the approximate values and the true values. Also, we can illustrate
this problem in the non-correlation of the eigenvalues of the approximated
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operator with the spectral properties of the initial operator, like the nega-
tive eigenvalues which appear for an unbounded positive definite operator
(see Llobet et al in [15], [5], Davies et al in [7] and Rappaz et al [16]).

In recent papers of Guebbai, Khellaf et al [8], [11], [12], [13] and in
the book of Ahues et al [1], the authors have tried to limit the problem
of spectral pollution in different types of spectral problems. The standard
spectral problem is defined as follows: Find scalars 𝜆 ∈ C and non zero
vectors 𝑥 ∈ 𝒳 satisfying

𝐴𝑥 = 𝜆𝑥,

where, 𝒳 is a Banach space and 𝐴 : 𝒳 → 𝒳 is a bounded operator.
This problem has been treated in the context of classical spectral the-

ory which is presented in the details by Ahues et al in [1]. In [1], the
authors build a finite-rank approximation of 𝐴, which transforms the ini-
tial problem 𝐴𝑥 = 𝜆𝑥 to an eigenvalue matrix problem. Then, they show
that the various types of convergence achieve the property U which allows
them to avoid spectral pollution. Among the types of convergence pro-
posed by Ahues et al [1], we are interested in the norm convergence and
the collectively compact convergence.

In another context, the authors in [8], [11], [12], [13] dealt with the
problem of spectral pollution that appears for unbounded operators. To
obtain this, they show that the spectrum of one unbounded operator is
equal to the generalized spectrum of two bounded operators of the follow-
ing form:

sp(𝐴) = sp(𝑇, 𝑆),

where 𝐴 is an unbounded operator and 𝑇 , 𝑆 are two bounded operators.
In the articles [8], [11], [13], they re-study the results of the property

U obtained in the results obtained by Ahues et al in [1], in order to study
the generalized spectral problem 𝑇𝑥 = 𝜆𝑆𝑥 in the case of the norm con-
vergence studied in [8] and the collectively compact convergence presented
in [11], [13].

Recently, the quadratic spectral problems have attracted a lot of at-
tention in various fields of mathematical modeling, such as the dynamic
analysis of mechanical systems in acoustics, linear flow stability in fluid
mechanics, and the generalization to the infinite dimension of the transis-
tor problem (see Huang et al [10], Tisseur et al [19]).

In this work, we study the quadratic spectral problem of three bounded
operators that can be formed as follows: find scalars 𝜆 ∈ C and nonzero
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vectors 𝑥 ∈ 𝒳 satisfying

𝜆2𝐴𝑥 + 𝜆𝐵𝑥 + 𝐶𝑥 = 0,

where 𝐴, 𝐵 and 𝐶 : 𝒳 → 𝒳 are bounded operators. This type of problems
is known as the quadratic eigenvalues problem. The case of matrices has
been well studied by Chen et al [6], Huang et al [10], Tisseur et al [19].

Our aim in this paper is to push the generalization effected by [8],
[11], [13] to give an analytical sense for the generalization of the quadratic
spectrum of three bounded linear operators, and we show some proper-
ties and characteristics of the generalized quadratic spectrum. Also, we
build a new spectral approximation method in order to approximate the
generalized quadratic spectrum and prove its convergence.

Finally, the numerical tests are applied on the quadratic pencil of
Schrödinger’s operator. This can be seen as an illustration of unbounded
quadratic spectral problem. It has been studied by Bairamov et al [4], [14].
From this quadratic spectral problem of an unbounded operator, we con-
struct an equivalent problem with three bounded operators, which makes
our numerical method applicable.

Numerical tests show that our vision allows us to solve the spectral
pollution problem for the quadratic eigenvalue problem of an unbounded
operator.

2. Generalized quadratic spectrum. Let (𝒳 , ‖ · ‖𝒳 ) be a Banach
space, BL(𝒳 ) be the Banach space of all linear bounded operators defined
on 𝒳 to itself. Its norm is described as follows:

∀𝐴 ∈ BL(𝒳 ) : ‖𝐴‖ = sup
‖𝑥‖𝒳=1

‖𝐴𝑥‖𝒳 .

For 𝐴, 𝐵, and 𝐶 in BL(𝒳 ), we define the generalized quadratic spectral
problem as follows: find 𝜆 ∈ C and 𝑥 ∈ 𝒳 −{0}, such that

𝑄(𝜆)𝑥 := 𝜆2𝐴𝑥 + 𝜆𝐵𝑥 + 𝐶𝑥 = 0.

In the case when 𝐴,𝐵, and 𝐶 are matrices, this type of problems is known
as the quadratic eigenvalue problem. It was treated by Tisseur et al,
Huang al, Chen et al in [6], [10], [19].

Our aim is to generalize the different results obtained in [8], [11], [13]
and the studies of the matrix problem in [6], [10], [19].
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For that, we define:
∙ The generalized quadratic resolvent set by

re(𝐴,𝐵,𝐶) = {𝜆 ∈ C : 𝑄(𝜆) is invertible and bounded}

∙ The generalized quadratic point spectrum set by

sp𝑝(𝐴,𝐵,𝐶) = {𝜆 ∈ C , ∃ 𝑥 ∈ 𝒳 ∖{0} : 𝑄(𝜆)𝑥 = 0}

∙ The generalized quadratic essential spectrum set by

sp𝑒𝑠𝑠(𝐴,𝐵,𝐶) = {𝜆 ∈ C : 𝑄(𝜆) is injective, not surjective}

∙ The generalized quadratic spectrum set by

sp(𝐴,𝐵,𝐶) = sp𝑝(𝐴,𝐵,𝐶) ∪ sp𝑒𝑠𝑠(𝐴,𝐵,𝐶) = C ∖ re(𝐴,𝐵,𝐶).

Also, we define the generalized quadratic resolvent operator associated
to 𝐴, 𝐵, and 𝐶 by the following function:

RQ(·) : re(𝐴,𝐵,𝐶) ⊂ C → BL(𝒳 ),

𝑧 ↦→ RQ(𝑧) = 𝑄−1(𝑧) =
(︀
𝑧2𝐴 + 𝑧𝐵 + 𝐶

)︀−1
.

And, we define the radius 𝜅(𝜆) as follows: For all 𝜆 ∈ re(𝐴,𝐵,𝐶)

𝜅(𝜆) =

√︁
(‖RQ(𝜆)‖(2|𝜆|‖𝐴‖ + ‖𝐵‖))2 + 4‖RQ(𝜆)‖‖𝐴‖

2‖RQ(𝜆)‖‖𝐴‖
−

− ‖RQ(𝜆)‖(2|𝜆|‖𝐴‖ + ‖𝐵‖)

2‖RQ(𝜆)‖‖𝐴‖
.

Theorem 1. If 𝜆 ∈ re(𝐴,𝐵,𝐶) and 𝜆0 ∈ C, such that |𝜆− 𝜆0| < 𝜅(𝜆),
then 𝜆0 ∈ re(𝐴,𝐵,𝐶) .

Proof. We show that 𝑄−1(𝜆0) exists and is bounded; we have

𝜆2
0𝐴 + 𝜆0𝐵 + 𝐶 =

(︀
𝜆2𝐴 + 𝜆𝐵 + 𝐶

)︀
−

[︀
(𝜆2 − 𝜆2

0)𝐴 + (𝜆− 𝜆0)𝐵
]︀

=

=
(︀
𝜆2𝐴 + 𝜆𝐵 + 𝐶

)︀ [︀
𝐼 − RQ(𝜆)

(︀
𝜆2 − 𝜆2

0)𝐴 + (𝜆− 𝜆0)𝐵
)︀]︀

.

Using the condition |𝜆− 𝜆0| < 𝜅(𝜆), we obtain

‖RQ(𝜆)
(︀
(𝜆2 − 𝜆2

0)𝐴 + (𝜆− 𝜆0)𝐵
)︀
‖ < 1.
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By Neumann’s theorem (see [1]) [𝐼 − RQ(𝜆) ((𝜆2 − 𝜆2
0)𝐴 + (𝜆− 𝜆0)𝐵)]

−1

exists and it is bounded, i. e.,

‖
[︀
𝐼 − RQ(𝜆)

(︀
(𝜆2 − 𝜆2

0)𝐴 + (𝜆− 𝜆0)𝐵
)︀]︀−1 ‖ 6

6
(︀
1 − ‖RQ(𝜆)

(︀
(𝜆2 − 𝜆2

0)𝐴 + (𝜆− 𝜆0)𝐵
)︀
‖
)︀−1

.

This gives

RQ(𝜆0) =
[︀
𝐼 − RQ(𝜆)

(︀
(𝜆2 − 𝜆2

0)𝐴 + (𝜆− 𝜆0)𝐵
)︀]︀−1

RQ(𝜆),

and

‖RQ(𝜆0)‖ 6
(︀
1 − ‖RQ(𝜆)

(︀
(𝜆2 − 𝜆2

0)𝐴 + (𝜆− 𝜆0)𝐵
)︀
‖
)︀−1 ‖RQ(𝜆)‖.

�

Corollary. sp(𝐴,𝐵,𝐶) is closed in C.

Proof. Using the fact that re(𝐴,𝐵,𝐶) is the complementary of sp(𝐴,𝐵,𝐶)
in C, and according to the previous theorem, we see that re(𝐴,𝐵,𝐶) is
open in C . �

Theorem 2. RQ(·) is analytic in re(𝐴,𝐵,𝐶) and for all 𝜆 ∈ re(𝐴,𝐵,𝐶)
we have

𝑑RQ

𝑑𝜆
(𝜆) = −RQ(𝜆)(2𝜆𝐴 + 𝐵) RQ(𝜆).

Proof. For all 𝜆,𝜆0 ∈ re(𝐴,𝐵,𝐶) such that |𝜆− 𝜆0| < 𝜅(𝜆0), we have

RQ(𝜆) − RQ(𝜆0) =
(︀
𝜆2𝐴 + 𝜆𝐵 + 𝐶

)︀−1 −
(︀
𝜆2
0𝐴 + 𝜆0𝐵 + 𝐶

)︀−1
=

= RQ(𝜆)
(︀
(𝜆2

0 − 𝜆2)𝐴 + (𝜆0 − 𝜆)𝐵
)︀

RQ(𝜆0).

Our goal is to show that

lim
𝜆→𝜆0

⃦⃦⃦⃦
RQ(𝜆) − RQ(𝜆0)

𝜆− 𝜆0

+ RQ(𝜆)(2𝜆𝐴 + 𝐵) RQ(𝜆)

⃦⃦⃦⃦
= 0.

We have⃦⃦⃦RQ(𝜆) − RQ(𝜆0)

𝜆−𝜆0

+ RQ(𝜆)(2𝜆𝐴 + 𝐵) RQ(𝜆)
⃦⃦⃦

=

=
⃦⃦⃦RQ(𝜆)(𝜆2

0−𝜆2)𝐴+(𝜆0−𝜆)𝐵) RQ(𝜆0)

𝜆−𝜆0

+ RQ(𝜆)(2𝜆𝐴+𝐵) RQ(𝜆)
⃦⃦⃦

=
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= ‖−RQ(𝜆) ((𝜆0 + 𝜆)𝐴 + 𝐵) RQ(𝜆0) + RQ(𝜆)(2𝜆𝐴 + 𝐵) RQ(𝜆)‖ 6

6 |𝜆0 + 𝜆| ‖RQ(𝜆)𝐴‖ ‖RQ(𝜆)−RQ(𝜆0)‖ + ‖RQ(𝜆)𝐵‖ ‖RQ(𝜆)!RQ(𝜆0)‖+

+ |𝜆− 𝜆0|‖RQ(𝜆)𝐴RQ(𝜆)‖.

Using Neumann’s theorem, we obtain

‖RQ(𝜆) − RQ(𝜆0)‖ =

=
⃦⃦⃦

RQ(𝜆) −
∑︁
𝑛>0

RQ(𝜆)𝑛
(︀
(𝜆2 − 𝜆2

0)𝐴 + (𝜆− 𝜆0)𝐵
)︀𝑛

RQ(𝜆)
⃦⃦⃦

=

=
⃦⃦⃦
−

∑︁
𝑛>1

RQ(𝜆)𝑛
(︀
(𝜆2 − 𝜆2

0)𝐴 + (𝜆− 𝜆0)𝐵
)︀𝑛

RQ(𝜆)
⃦⃦⃦

=

=
⃦⃦⃦
−

∑︁
𝑛>1

RQ(𝜆)𝑛(𝜆− 𝜆0)
𝑛 ((𝜆 + 𝜆0)𝐴 + 𝐵)𝑛 RQ(𝜆)

⃦⃦⃦
6

6
∑︁
𝑛>1

‖RQ(𝜆)(𝜆− 𝜆0) ((𝜆 + 𝜆0)𝐴 + 𝐵)‖𝑛 ‖RQ(𝜆)‖ 6

6
‖RQ(𝜆)‖ |(𝜆− 𝜆0)| ‖((𝜆 + 𝜆0)𝐴 + 𝐵)‖ ‖RQ(𝜆)‖

1 − |(𝜆− 𝜆0)| ‖((𝜆 + 𝜆0)𝐴 + 𝐵)‖ ‖RQ(𝜆)‖
.

Then
lim
𝜆→𝜆0

‖RQ(𝜆) − RQ(𝜆0)‖ = 0.

We conclude that

lim
𝜆→𝜆0

⃦⃦⃦RQ(𝜆) − RQ(𝜆0)

𝜆− 𝜆0

+ RQ(𝜆)(2𝜆𝐴 + 𝐵) RQ(𝜆)
⃦⃦⃦

= 0.

�

3. Generalized quadratic spectrum approximation. In this
section, we show that the spectral pollution does not appear when we
use the generalized quadratic spectrum approximation in our problem. In
previous works, Ahues et al in [1] used the 𝜈-convergence of {𝐴𝑛}𝑛∈N to
𝐴, i. e.,

• sup ‖𝐴𝑛‖ < +∞,
• lim

𝑛→∞
‖(𝐴− 𝐴𝑛)𝐴‖ = lim

𝑛→∞
‖(𝐴− 𝐴𝑛)𝐴𝑛‖ = 0.

To get rid of the spectral pollution problem, we prove the property U,
which means:
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If {𝐴𝑛}𝑛∈N converges to 𝐴 in 𝜈 − convergence sense, 𝜆𝑛 ∈ sp(𝐴𝑛) and
𝜆𝑛 → 𝜆, then 𝜆 ∈ sp(𝐴), we use the collectively compact convergence,
i. e., for all 𝑥 ∈ 𝒳 , lim

𝑛→∞
‖(𝐴− 𝐴𝑛)𝑥‖𝒳 = 0, and for some positive integer

𝑛0, the set ⋃︁
𝑛>𝑛0

{𝐴𝑛𝑥− 𝐴𝑥 : 𝑥 ∈ 𝒳 , ‖𝑥‖𝒳 = 1}

is a relatively compact subset of 𝒳 . Or, the norm convergence, which
means lim

𝑛→∞
‖𝐴− 𝐴𝑛‖ = 0.

We must take into consideration that the collectively compact convergence
and the norm convergence imply the 𝜈 − convergence but not vice versa:
this was proved by Ahues et al in [1].

Also, Guebbai in [8] shows the convergence of the generalized spectrum
in the property U sense, when the sequence of operators 𝑇𝑛, 𝑆𝑛 converges
in norm to 𝑇, 𝑆, respectively, and if 𝜆𝑛 ∈ sp(𝑇𝑛, 𝑆𝑛) and 𝜆𝑛 → 𝜆 then
𝜆 ∈ sp(𝑇, 𝑆). Therefore, Khellaf et al [11], [13] treated the same problem
presented in [8] in the sense of property U using the collectively compact
convergence of 𝑇𝑛 and 𝑆𝑛.

Our interest to those two convergence forms results from numerical
methods developed to approximate integral operators, such as the projec-
tion method, which generally converges in the norm sense for compact op-
erators, and the collectively compact convergence is obtained for Nystöm
(see Atkinson et al [3], Ahues et al [1]).

We rewrite the property U for our problem as follows:
If 𝐴𝑛, 𝐵𝑛 and 𝐶𝑛 converge to 𝐴,𝐵, and 𝐶, respectively, in a given sense,
𝜆𝑛 ∈ sp(𝐴𝑛, 𝐵𝑛, 𝐶𝑛), and 𝜆𝑛 → 𝜆, then 𝜆 ∈ sp(𝐴,𝐵,𝐶).

Let 𝐴,𝐴,𝐵, �̃�, 𝐶 and 𝐶 be in BL(𝒳 ); define �̃�(𝜆) as follows:

�̃�(𝜆) = 𝜆2𝐴 + 𝜆�̃� + 𝐶.

Theorem 3. Let 𝜆 ∈ re(𝐴,𝐵,𝐶) be such that⃦⃦⃦[︁
𝑄(𝜆) − �̃�(𝜆)

]︁
RQ(𝜆)

⃦⃦⃦
< 1 or

⃦⃦⃦⃦[︁(︁
𝑄(𝜆) − �̃�(𝜆)

)︁
RQ(𝜆)

]︁2 ⃦⃦⃦⃦
< 1.

Then 𝜆 ∈ re(𝐴, �̃�, 𝐶), and

‖RQ̃(𝜆)‖ 6 ‖RQ(𝜆)‖

1 −
⃦⃦⃦(︁

𝑄(𝜆) − �̃�(𝜆)
)︁

RQ(𝜆)
⃦⃦⃦ ,



60 S. Kamouche, H. Guebbai, M. Ghiat, S. Segni

‖RQ̃(𝜆)‖ 6
‖RQ(𝜆)‖

[︂
1 +

⃦⃦⃦ [︁(︁
𝑄(𝜆) − �̃�(𝜆)

)︁
RQ(𝜆)

]︁2 ⃦⃦⃦]︂
1 −

⃦⃦⃦ [︁(︁
𝑄(𝜆) − �̃�(𝜆)

)︁
RQ(𝜆)

]︁2 ⃦⃦⃦ ,

respectively.

Proof. We can write

�̃�(𝜆) = �̃�(𝜆) −𝑄(𝜆) + 𝑄(𝜆) =

= 𝑄(𝜆)
[︁
𝐼 −

(︁
𝑄(𝜆) − �̃�(𝜆)

)︁
RQ(𝜆)

]︁
.

Using Neumann’s theorem under the first condition in Theorem 3, we see

that
[︁
𝐼 −

(︁
𝑄(𝜆) − �̃�(𝜆)

)︁
RQ(𝜆)

]︁−1

exists and is bounded, i. e.,⃦⃦⃦ [︁
𝐼 −

(︁
𝑄(𝜆) − �̃�(𝜆)

)︁
RQ(𝜆)

]︁−1 ⃦⃦⃦
6

(︁
1 −

⃦⃦⃦ (︁
𝑄(𝜆) − �̃�(𝜆)

)︁
RQ(𝜆)

⃦⃦⃦)︁−1

.

It follows that

RQ̃(𝜆) =
[︁
𝐼 −

(︁
𝑄(𝜆) − �̃�(𝜆)

)︁
RQ(𝜆)

]︁−1

RQ(𝜆),

‖RQ̃(𝜆)‖ 6 ‖RQ(𝜆)‖

1 −
⃦⃦⃦ (︁

𝑄(𝜆) − �̃�(𝜆)
)︁

RQ(𝜆)
⃦⃦⃦ .

On the other hand, we have

RQ̃(𝜆) = RQ(𝜆)
∞∑︁
𝑘=0

[︁(︁
𝑄(𝜆) − �̃�(𝜆)

)︁
RQ(𝜆)

]︁2𝑘
+

+ RQ(𝜆)
∞∑︁
𝑘=0

[︁(︁
𝑄(𝜆) − �̃�(𝜆)

)︁
RQ(𝜆)

]︁2𝑘+1

=

= RQ(𝜆)
[︁
𝐼 +

(︁
𝑄(𝜆) − �̃�(𝜆)

)︁
RQ(𝜆)

]︁ ∞∑︁
𝑘=0

[︂(︁(︁
𝑄(𝜆) − �̃�(𝜆)

)︁
RQ(𝜆)

)︁2
]︂𝑘

.

This gives

‖RQ̃(𝜆)‖ 6
‖RQ(𝜆)‖

[︂
1 +

⃦⃦⃦ [︁(︁
𝑄(𝜆) − �̃�(𝜆)

)︁
RQ(𝜆)

]︁2 ⃦⃦⃦]︂
1 −

⃦⃦⃦ [︁(︁
𝑄(𝜆) − �̃�(𝜆)

)︁
RQ(𝜆)

]︁2 ⃦⃦⃦ .
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The proof of Theorem 3 is complete. �

Lemma 1. Let {𝑁𝑛}𝑛∈N , {𝑀𝑛}𝑛∈N ⊂ BL(𝒳 ), and 𝑁,𝑀,𝐾 ∈ BL(𝒳 ).
If 𝑁𝑛 and 𝑀𝑛 converge to 𝑁 and 𝑀 , respectively, in the collectively com-
pact sense; then

lim
𝑛→∞

‖(𝑁 −𝑁𝑛)𝐾(𝑀 −𝑀𝑛)‖ = lim
𝑛→∞

‖(𝑀 −𝑀𝑛)𝐾(𝑁 −𝑁𝑛)‖ = 0.

Proof. Using the collectively compact convergence of {𝑁𝑛}𝑛∈N , {𝑀𝑛}𝑛∈N,
we have

For all 𝑥 ∈ 𝒳 , lim
𝑛→∞

‖(𝑁 − 𝑁𝑛)𝑥‖𝒳 = 0 and there is an integer 𝑛1 ∈ N
such that

𝑆1 =
⋃︁
𝑛>𝑛1

{𝑁𝑛𝑥−𝑁𝑥 : 𝑥 ∈ 𝒳 , ‖𝑥‖𝒳 = 1}

is relatively compact.
For all 𝑥 ∈ 𝒳 , lim

𝑛→∞
‖(𝑀 −𝑀𝑛)𝑥‖𝒳 = 0 and there is an integer 𝑛2 ∈ N

such that

𝑆2 =
⋃︁
𝑛>𝑛2

{𝑀𝑛𝑥−𝑀𝑥 : 𝑥 ∈ 𝑋, ‖𝑥‖𝒳 = 1}

has a compact closure in 𝑋.

Also, 𝐾(𝑆1) and 𝐾(𝑆2) are relatively compact; therefore, we obtain

‖(𝑁 −𝑁𝑛)𝐾(𝑀 −𝑀𝑛)‖ = sup
‖𝑥‖𝒳=1

‖(𝑁 −𝑁𝑛)𝐾(𝑀 −𝑀𝑛)𝑥‖𝒳 =

= sup
‖𝑥‖𝒳=1

‖(𝑁 −𝑁𝑛)𝐾(𝑀𝑥−𝑀𝑛𝑥)‖𝒳 =

= sup
𝑦∈𝐾(𝑆2)

‖(𝑁 −𝑁𝑛)𝑦‖𝒳 → 0.

�

Let {𝐴𝑛}𝑛∈N , {𝐵𝑛}𝑛∈N , and {𝐶𝑛}𝑛∈N ⊂ BL(𝒳 ). We define the fol-
lowing hypothesis

(H1) 𝐴𝑛, 𝐵𝑛, and 𝐶𝑛 converge to 𝐴, 𝐵, and 𝐶, respectively, in the norm
sense.

(H2) 𝐴𝑛, 𝐵𝑛, and 𝐶𝑛 converge in the collectively compact sense to 𝐴, 𝐵,
and 𝐶, respectively.
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Theorem 4. Under the assumptions (𝐻1) or (𝐻2) and for all 𝑛 ∈ N, if
𝜆𝑛 ∈ sp(𝐴𝑛, 𝐵𝑛, 𝐶𝑛) and 𝜆𝑛 → 𝜆 then 𝜆 ∈ sp(𝐴,𝐵,𝐶).

Proof. In the first part, we suppose that 𝜆 ∈ re(𝐴,𝐵,𝐶) and {𝐴𝑛}𝑛∈N ,
{𝐵𝑛}𝑛∈N and {𝐶𝑛}𝑛∈N satisfy (𝐻1). We know that re(𝐴,𝐵,𝐶) is an open
set in C, i. e., there is 𝛿 > 0 such that

Ω := {𝜆0 ∈ C : |𝜆0 − 𝜆| 6 𝛿} ⊂ re(𝐴,𝐵,𝐶).

But, RQ(·) is analytic on re(𝐴,𝐵,𝐶); so, we can define 𝛽 as follows:

𝛽 := sup{‖𝑅𝑄(𝜆0)‖ : 𝜆0 ∈ Ω} < ∞.

For all 𝜆0 ∈ Ω, there are 𝑛1, 𝑛2 and 𝑛3, such that

‖𝐴− 𝐴𝑛‖ 6
1

6𝛽(𝛿 + |𝜆|)2
, 𝑛 > 𝑛1,

‖𝐵 −𝐵𝑛‖ 6
1

6𝛽(𝛿 + |𝜆|)
, 𝑛 > 𝑛2,

‖𝐶 − 𝐶𝑛‖ 6
1

6𝛽
, 𝑛 > 𝑛3;

then, for all 𝑛 > max(𝑛1, 𝑛2, 𝑛3), we obtain

‖[𝑄(𝜆0) −𝑄𝑛(𝜆0)] RQ(𝜆0)‖ =

=
⃦⃦[︀
𝜆2
0(𝐴− 𝐴𝑛) + 𝜆0(𝐵 −𝐵𝑛) + (𝐶 − 𝐶𝑛)

]︀
RQ(𝜆0)

⃦⃦
6

6
(︀
|𝜆0|2‖𝐴− 𝐴𝑛‖ + |𝜆0|‖𝐵 −𝐵𝑛‖ + ‖𝐶 − 𝐶𝑛‖

)︀
𝛽 6

6
1

6
+

1

6
+

1

6
=

1

2
,

using Theorem 3 with the first condition. So, 𝑅𝑄𝑛(𝜆0) exists and it is
bounded; therefore, Ω ⊂ re(𝐴𝑛, 𝐵𝑛, 𝐶𝑛) for all 𝑛 large enough. As though
𝜆𝑛 → 𝜆, we have 𝜆𝑛 ∈ Ω ⊂ re(𝐴𝑛, 𝐵𝑛, 𝐶𝑛) for all 𝑛; this contradicts to the
assumption that 𝜆𝑛 ∈ sp(𝐴𝑛, 𝐵𝑛, 𝐶𝑛) for each 𝑛. Therefore, 𝜆 must be in
sp(𝐴,𝐵,𝐶).

In the second part, we suppose that {𝐴𝑛}𝑛∈N , {𝐵𝑛}𝑛∈N and {𝐶𝑛}𝑛∈N
satisfy (H 2). We follow the same reasoning as in the previous part. For
all 𝜆0 ∈ Ω, there are 𝑛1, 𝑛2, 𝑛3, 𝑛4,𝑛5, 𝑛6, 𝑛7, 𝑛8, and 𝑛9, such that

‖(𝐴− 𝐴𝑛) RQ(𝜆0)(𝐴− 𝐴𝑛)‖ 6 1

18𝛽(𝛿 + |𝜆|4)
, 𝑛 > 𝑛1,
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‖(𝐵 −𝐵𝑛) RQ(𝜆0)(𝐴− 𝐴𝑛)‖ 6 1

18𝛽(𝛿 + |𝜆|3)
, 𝑛 > 𝑛2,

‖(𝐴− 𝐴𝑛) RQ(𝜆0)(𝐵 −𝐵𝑛)‖ 6 1

18𝛽(𝛿 + |𝜆|3)
, 𝑛 > 𝑛3,

‖(𝐵 −𝐵𝑛) RQ(𝜆0)(𝐵 −𝐵𝑛)‖ 6 1

18𝛽(𝛿 + |𝜆|2)
, 𝑛 > 𝑛4,

‖(𝐴− 𝐴𝑛) RQ(𝜆0)(𝐶 − 𝐶𝑛)‖ 6 1

18𝛽(𝛿 + |𝜆|2)
, 𝑛 > 𝑛5,

‖(𝐶 − 𝐶𝑛) RQ(𝜆0)(𝐴− 𝐴𝑛)‖ 6 1

18𝛽(𝛿 + |𝜆|2)
, 𝑛 > 𝑛6,

‖(𝐵 −𝐵𝑛) RQ(𝜆0)(𝐶 − 𝐶𝑛)‖ 6 1

18𝛽(𝛿 + |𝜆|)
, 𝑛 > 𝑛7,

‖(𝐶 − 𝐶𝑛) RQ(𝜆0)(𝐵 −𝐵𝑛)‖ 6 1

18𝛽(𝛿 + |𝜆|)
, 𝑛 > 𝑛8,

‖(𝐶 − 𝐶𝑛) RQ(𝜆0)(𝐶 − 𝐶𝑛)‖ 6 1

18𝛽
, 𝑛 > 𝑛9.

Then, for all 𝑛 > 𝑚𝑎𝑥(𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6, 𝑛7, 𝑛8, 𝑛9), we obtain

⃦⃦
[(𝑄(𝜆0) −𝑄𝑛(𝜆0))𝑅𝑄(𝜆0)]

2
⃦⃦
6 𝛽(‖(𝐶 − 𝐶𝑛) RQ(𝜆0)(𝐶 − 𝐶𝑛)‖+

+ |𝜆0|4‖(𝐴− 𝐴𝑛) RQ(𝜆0)(𝐴− 𝐴𝑛)‖ + |𝜆0|3‖(𝐵 −𝐵𝑛) RQ(𝜆0)(𝐴− 𝐴𝑛)‖+

+ |𝜆0|3‖(𝐴−𝐴𝑛) RQ(𝜆0)(𝐵 −𝐵𝑛)‖ + |𝜆0|2‖(𝐵 −𝐵𝑛) RQ(𝜆0)(𝐵 −𝐵𝑛)‖+

+ |𝜆0|2‖(𝐴− 𝐴𝑛) RQ(𝜆0)(𝐶 − 𝐶𝑛)‖ + |𝜆0|2‖(𝐶 − 𝐶𝑛) RQ(𝜆0)(𝐴− 𝐴𝑛)‖+

+ |𝜆0|‖(𝐵 −𝐵𝑛) RQ(𝜆0)(𝐶 − 𝐶𝑛)‖ + |𝜆0|‖(𝐶 − 𝐶𝑛) RQ(𝜆0)(𝐵 −𝐵𝑛)‖) 6

6
1

18
+

1

18
+

1

18
+

1

18
+

1

18
+

1

18
+

1

18
+

1

18
+

1

18
=

1

2
.

Using the second condition in Theorem 3, we have 𝜆𝑛 ∈ re(𝐴𝑛,𝐵𝑛,𝐶𝑛) for
all 𝑛: this contradicts to the assumption that 𝜆𝑛 ∈ sp(𝐴𝑛, 𝐵𝑛, 𝐶𝑛) for each
𝑛. Therefore, 𝜆 must be in sp(𝐴,𝐵,𝐶). �

4. Numerical tests. In this section, we introduce a numerical exam-
ple to validate our theoretical results.

Example construction. In order to construct numerical tests, we
choose to study the quadratic pencil of Schrödinger’s operator presented
by Bairamov et al [4], Krall et al [14]. This problem is basically defined
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in 𝐿2([0, + ∞[) as follows:

(𝑃 )

{︃
−𝑦′′ + (𝑉 (𝑥) + 2𝜆𝑈(𝑥) − 𝜆2)𝑦 = 0, 𝑥 ∈ [0, + ∞[,

𝑦(0) = 0,

where, 𝑉, 𝑈 are complex functions. The authors in [4], [14] used analytical
technics to obtain a localization of the spectrum.

In our example, we choose 𝑉 (𝑥) = 𝑥2 and 𝑈(𝑥) = −1

2
, to obtain the

similar problem to (𝑃 ), as follows:

(𝑃 ′)

{︃
−𝑦′′ + (𝑥2 − 𝜆 + 𝜆2)𝑦 = 0,

𝑦(0) = 0.

To study the generalized quadratic spectrum better, we introduce the
unbounded operator 𝑆 of the form:

𝑆𝑦 = −𝑦′′ + 𝑥2𝑦, 𝑥 ∈ [0, + ∞[,

where 𝑆 is the harmonic oscillator, which is defined as

𝒟(𝑆) = 𝐻2([0,+∞[) ∩
{︁
𝜙 ∈ 𝐿2([0, + ∞[) :

+∞∫︁
0

𝑥2|𝜙(𝑥)|2𝑑𝑥 < +∞
}︁

into 𝐿2([0, + ∞[). We define the Laplacian operator denoted by 𝐿𝑝 as
follows:

𝐿𝑝 : 𝒟(𝐿𝑝) → 𝐿2(0, 𝑎),

𝑦 ↦→ 𝐿𝑝𝑦 = −𝑦′′.

Here 𝒟(𝐿𝑝) = {𝑦 ∈ 𝐻2(0, 𝑎), 𝑦(0) = 𝑦(𝑎) = 0}. In addition, we define its
inverse denoted 𝐴𝑎 as:

𝐴𝑎𝑦(𝑥) =

𝑎∫︁
0

𝐾𝑎(𝑥,𝑡)𝑦(𝑡)𝑑𝑡,

which is bounded and linear in 𝐿2(0, 𝑎), and for all 𝑦 ∈ 𝐿2(0, 𝑎)

𝐵𝑎𝑦(𝑥) = −
𝑎∫︁

0

𝐾𝑎(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡,
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𝐶𝑎𝑦(𝑥) = 𝑦(𝑥) +

𝑎∫︁
0

𝐾𝑎(𝑥, 𝑡)𝑡
2𝑦(𝑡)𝑑𝑡,

where 𝐾𝑎 is the Green kernel (see Roach [18]), by

𝐾𝑎(𝑥, 𝑡) =

⎧⎪⎨⎪⎩
𝑥(𝑎− 𝑡)

𝑎
if 0 6 𝑥 6 𝑡 6 𝑎,

𝑡(𝑎− 𝑥)

𝑎
if 0 6 𝑡 6 𝑥 6 𝑎.

For all 𝜇 ∈ C and all 𝑦 ∈ 𝒟(𝑆) − {0}, we present the eigenvalue problem
corresponding to 𝑆 by:

𝑆𝑦 = 𝜇𝑦,

which can be presented as follows:

(𝑃 ′′)

{︃
−𝑦′′ + 𝑥2𝑦 = 𝜇𝑦,

𝑦(0) = 0.

We see that (𝑃 ′′) is equivalent to (𝑃 ′) with 𝜇 = (𝜆 − 𝜆2); the eigenval-
ues of the operator 𝑆 are {4𝑛 − 1, 𝑛 ∈ N*}. As a result, we find that

𝜆 =
1

2
± 𝑖

√
16𝑛− 5

2
, 𝑛 ∈ N* in (𝑃 ′).

We define the operator 𝑆𝑎 for all 𝑎 > 0 by

𝑆𝑎𝑦 = −𝑦′′ + 𝑥2𝑦, 𝑦 ∈ 𝒟(𝑆𝑎) = 𝐻2(0, 𝑎).

The eigenvalue problem 𝑆𝑎𝑦 = 𝜇𝑦 is equivalent to: Find 𝜇 ∈ C and
𝑦 ∈ 𝒟(𝑆𝑎) − {0} satisfying

(𝑃 ′
𝑎)

{︃
−𝑦′′ + 𝑥2𝑦 = 𝜇𝑦,

𝑦(0) = 𝑦(𝑎) = 0.

The authors in [9], [11] proved that for all 𝑎 > 0, sp(𝑆𝑎) ⊂ sp(𝑆) and
sp(𝑆) =

⋃︀
𝑎>0

sp(𝑆𝑎).

Theorem 5. The eigenvalue problem (𝑃 ′
𝑎) is equivalent to the following

associated quadratic eigenvalue problem (𝑄𝑎), i. e., 𝜆 is a quadratic eigen-
value of 𝑆𝑎 if and only if 𝜆 is a generalized quadratic eigenvalue of three
bounded operators (𝐴𝑎, 𝐵𝑎, 𝐶𝑎). Here

(𝑄𝑎) : 𝑄𝑎(𝜆)𝑦 := 𝜆2𝐴𝑎𝑦 + 𝜆𝐵𝑎𝑦 + 𝐶𝑎𝑦 = 0.
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Proof. Let 𝜆 be a quadratic eigenvalue of 𝑆𝑎, and 𝑦 ∈ 𝒟(𝑆𝑎) be the
associated eigenvector, i. e.,

𝑆𝑎𝑦 = (𝜆− 𝜆2)𝑦.

We have
𝐿𝑝𝑦 + 𝑥2𝑦 − 𝜆𝑦 + 𝜆2𝑦 = 0.

Applying 𝐴𝑎, we obtain

𝜆2𝐴𝑎𝑦 + 𝜆𝐵𝑎𝑦 + 𝐶𝑎𝑦 = 0.

As a result, 𝜆 is a generalized quadratic eigenvalue of (𝐴𝑎, 𝐵𝑎, 𝐶𝑎). Con-
versely, let 𝜆 be a generalized quadratic eigenvalue of (𝐴𝑎, 𝐵𝑎, 𝐶𝑎), and
𝑦 ∈ 𝐿2(0,𝑎) − {0} be the eigenvector associate to 𝜆, i. e.,

𝜆2𝐴𝑎𝑦 + 𝜆𝐵𝑎𝑦 + 𝐶𝑎𝑦 = 0.

Then we have
𝑦 = 𝐴𝑎(𝜆𝑦 − 𝜆2𝑦 − 𝑥2𝑦).

It is clear that (𝜆𝑦−𝜆2𝑦− 𝑥2𝑦) ∈ 𝐿2(0, 𝑎); then 𝑦 ∈ 𝒟(𝐿𝑝). Applying 𝐿𝑝,
we have

𝐿𝑝𝑦 = 𝜆𝑦 − 𝜆2𝑦 − 𝑥2𝑦,

𝑎∫︁
0

𝑥2|𝑦(𝑥)|𝑑𝑥 6 |𝜆|2‖𝑦‖𝐿2(0,𝑎) + |𝜆|‖𝑦‖𝐿2(0,𝑎) + ‖𝐿𝑝𝑦‖𝐿2(0,𝑎) < +∞,

we conclude that 𝑦 ∈ 𝒟(𝑆𝑎) − {0}, and

𝑆𝑎𝑦 = (𝜆− 𝜆2)𝑦,

finally, 𝜆 is a quadratic eigenvalue of 𝑆𝑎 . �

Numerical processing. In this section, we build a Nyström method
to approximate the operators 𝐴𝑎, 𝐵𝑎, and 𝐶𝑎. Atkinson in [3] showed that
this method converges in collectively compact sense for our case.

We define a subdivision of [0, 𝑎] as follows: for all 𝑛 > 1,

ℎ =
𝑎

𝑛
, 𝑡𝑖 = (𝑖− 1)ℎ, 1 6 𝑖 6 𝑛 + 1.
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We define the sequences of operators {𝐴𝑛}𝑛∈N* , {𝐵𝑛}𝑛∈N* and {𝐶𝑛}𝑛∈N*

by: ∀𝑦 ∈ 𝒟(𝑆𝑎)

𝐴𝑛𝑦(𝑥) =
𝑛+1∑︁
𝑖=1

𝜔𝑖𝐾𝑎(𝑥, 𝑡𝑖)𝑦(𝑡𝑖),

𝐵𝑛𝑦(𝑥) = −
𝑛+1∑︁
𝑖=1

𝜔𝑖𝐾𝑎(𝑥, 𝑡𝑖)𝑦(𝑡𝑖),

𝐶𝑛𝑦(𝑥) = 𝑦(𝑥) +
𝑛+1∑︁
𝑖=1

𝜔𝑖𝐾𝑎(𝑥, 𝑡𝑖)𝑡
2
𝑖 𝑦(𝑡𝑖).

Here 𝜔1 = 𝜔𝑛+1 = ℎ
2
and 𝜔𝑖 = ℎ for 2 6 𝑖 6 𝑛; this is known as the trape-

zoidal rule. It is one of the quadrature approximation methods presented
by Argyros, Regmi in [2] and [17].

Therefore, when we replace 𝑥 by 𝑡𝑗 for 1 6 𝑗 6 𝑛 + 1, we get the
following quadratic eigenvalue matrix problem:

𝜆2
𝑛𝑀𝐴𝑎𝑣 + 𝜆𝑛𝑀𝐵𝑎𝑣 + 𝑀𝐶𝑎𝑣 = 0,

where
𝑀𝐴𝑎(𝑖, 𝑗) = 𝜔𝑖𝐾𝑎(𝑡𝑗, 𝑡𝑖),

𝑀𝐵𝑎(𝑖, 𝑗) = −𝜔𝑖𝐾𝑎(𝑡𝑗, 𝑡𝑖),

𝑀𝐶𝑎(𝑖, 𝑗) = 𝐼𝑛+1(𝑖, 𝑗) + 𝜔𝑖𝐾𝑎(𝑡𝑗, 𝑡𝑖)𝑡
2
𝑖 ,

𝐼𝑛+1 is the identity matrix of order 𝑛+1 and 𝑣 is the quadratic eigenvector.
To present our numerical results, we introduce this definition:

𝜆𝑛 is said to be 𝜀−acceptable eigenvalue if dist(𝜆𝑛, sp(𝑆𝑎)) < 𝜀.

Also, we set:

• 𝑉 𝑃𝑎𝑝𝑝(𝑛) is the number of approximate eigenvalues obtained for
𝑛 > 1;

• 𝑉 𝑃𝑎𝑐𝑐(𝑛) is the number of 𝜀 − acceptable eigenvalues obtained for
𝑛 > 1;

• 𝑃% = 𝑉 𝑃𝑎𝑐𝑐(𝑛)/𝑉 𝑃𝑎𝑝𝑝(𝑛)%.

Numerical tests are made for different values of 𝑛 with fixed 𝜀 and 𝑎.
In the first case, we fixe 𝜀 = 10−2 and 𝑎 = 1. The numerical results

are presented in Table 1.
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5. Conclusion. The main aim of our studies in this paper has been to
build an approximate method for solving the spectral pollution problem
and to show the convergence of the generalized quadratic spectrum in the
property U-sense under the norm convergence and the collectively compact
convergence. We proved the equivalence between the quadratic pencil
of the Schrödinger’s operator (unbounded operator) and the quadratic
spectral problem in the case of three bounded operators.

Our numerical tests showed the effectiveness of the generalized quadra-
tic spectrum approximation method basing in the Nyström method. Per-
centage increase of the 𝜀-acceptable eigenvalues showed that the spectral
pollution is avoided by our method.

In the second case, we choose 𝜀 = 10−3 and 𝑎 = 1. The numerical
results are presented in Table 2.

n VPapp VPacc 𝑃%
100 198 166 83%
200 398 374 93%
300 598 570 95%
400 798 764 95%
500 998 974 97%

Table 1: Percentage of the 10−2 − acceptable eigenvalues.

n VPapp VPacc 𝑃%
100 198 20 10%
200 398 106 26%
300 598 232 38%
400 798 400 50%
500 998 632 63%
600 1198 860 71%
700 1398 1074 76%
800 1598 1276 79%
900 1798 1466 81%
1000 1998 1682 84%
1200 2398 2074 86%
1400 2798 2458 87%
2000 3998 3678 92%
2500 4998 4688 93.8%

Table 2: Percentage of the 10−3 − acceptable eigenvalues.
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