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Abstract. Using the method of amplitude and phase transforma-
tions, we obtain sharp inequalities for the derivatives of real-valued
trigonometric polynomials. The inequalities are sharp, as there are
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1. Introduction. For a positive integer 𝑛, set

𝑇𝑛(𝑡) =
𝑛∑︁

𝑘=0

𝜏𝑘(𝑡), 𝜏𝑘(𝑡) := 𝑎𝑘 cos 𝑘𝑡 + 𝑏𝑘 sin 𝑘𝑡, 𝑡, 𝑎𝑘, 𝑏𝑘 ∈ R. (1)

An amplitude and phase transformations (AFT) of order at most 𝑛 is the
sum

𝐻(𝑇𝑛, {𝑋𝑗}, {𝜆𝑗}; 𝑡) :=
𝑛∑︁

𝑗=1

𝑋𝑗𝑇𝑛 (𝑡− 𝜆𝑗) ,

where 𝜆𝑗, 𝑋𝑗 are free real parameters (some 𝑋𝑗 may be zero). The order
of an AFT is equal to the number of summands in 𝐻(𝑇𝑛, {𝑋𝑗}, {𝜆𝑗}; 𝑡)
with pairwise-distinct exp(𝑖𝜆𝑗) and 𝑋𝑗 ̸= 0. The AFTs were introduced
and used in the papers [7], [18], [19] for obtaining Fejer-type estimates for
harmonics and coefficients of trigonometric polynomials. Estimates of this
type are well-known in extremal problems for nonnegative trigonometric
polynomials (see, e.g., [1], [3], [8], [10], [14], [16]). Algebraic analogues of
the AFTs, the so-called amplitude and frequency operators, were used for
the Padè interpolation in [5].
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Denote by 𝑤 a set of real weights 𝑤 := {𝜎1, 𝜎2, . . . , 𝜎𝑛}, 𝜎𝑙 ∈ R, and
determine the sums of weighted harmonics of the form

𝒯 (𝑇𝑛, 𝑤; 𝑡) :=
∑︁
𝜎𝑙∈𝑤

𝜎𝑙𝜏𝑙(𝑡).

Let us consider the problem of representing the weighted sums in the form
of AFTs:

𝜔 𝑎0 + 𝒯 (𝑇𝑛, 𝑤; 𝑡) = 𝐻(𝑇𝑛, {𝑋𝑗}, {𝜆𝑗}; 𝑡), (2)

where 𝑋𝑗, 𝜆𝑗, 𝜔 are the required real parameters and 𝑎0 = 𝑎0(𝑇𝑛) is the
constant term of the polynomial 𝑇𝑛. In this case, the equality
𝜔 =

∑︀𝑛
𝑗=1𝑋𝑗 must naturally hold. It is easy to show that the problem (2)

is equivalent to the following discrete moments problem:

𝑋1𝑧
𝑙
1 + . . . + 𝑋𝑛𝑧

𝑙
𝑛 = 𝜎𝑙, 𝑙 = 1, 𝑛, 𝑧𝑗 = 𝑒−𝑖𝜆𝑗 , (3)

with real unknowns 𝑋𝑗 and 𝜆𝑗, where some 𝑋𝑗 may take zero values,
and 𝑧𝑗 = 𝑒−𝑖𝜆𝑗 are distinct. Indeed, given a real-valued 𝑇𝑛, we have
𝜏𝑘(𝑡) = 2 · Re

(︀
𝛼𝑘𝑒

𝑖𝑘𝑡
)︀
, where 2𝛼𝑘 = 𝑎𝑘 − 𝑖𝑏𝑘 and, therefore,

𝐻(𝑇𝑛, {𝑋𝑗}, {𝜆𝑗}; 𝑡) = 𝑎0𝜔 + 2Re
(︁ 𝑛∑︁

𝑘=1

(︁ 𝑛∑︁
𝑗=1

𝑋𝑗𝑧
𝑘
𝑗

)︁
𝛼𝑘𝑒

𝑖𝑘𝑡
)︁

=

= 𝑎0𝜔 +
𝑛∑︁

𝑘=1

𝑠𝑘𝜏𝑘(𝑡), (4)

where

𝜔 :=
𝑛∑︁

𝑗=1

𝑋𝑗, 𝑠𝑘 :=
𝑛∑︁

𝑗=1

𝑋𝑗𝑧
𝑘
𝑗 , 𝑠𝑘 ∈ R.

Hence, when (3) holds, (4) gives (2). The converse is also true: from the
equalities (2) and (4) we obtain (3) (for more details, see [7]).

According to the classical Carathèodory theorem (see, e. g., [2], [11],
[13]), the system (3) always has a (unique) solution, such that 𝑋𝑗 > 0,
𝑧𝑗 = 𝑒𝑖𝜆𝑘 , 𝜆𝑗 ∈ R (for arbitrary fixed right-hand sides 𝜎𝑙 ∈ C). It follows
from the uniqueness of solution, in particular, that in the case under
consideration, where the right-hand sides 𝜎𝑙 are real, the roots 𝑧𝑗 lie on
the unit circle symmetrically with respect to R.

An important role during the analysis of systems (3) is played by the
Toeplitz matrix 𝐺𝑛+1(𝑤;𝜔) = {𝑔𝑖,𝑗} of order 𝑛 + 1 with the following
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structure: the main diagonal contains the parameter 𝜔 =
∑︀𝑛

𝑗=1 𝑋𝑗, and
the weights 𝜎𝑙 are symmetrically located on the parallel diagonals, and
𝑔𝑖,𝑗 = 𝜎𝑙 for |𝑖− 𝑗| = 𝑙, 𝑙 = 1, . . . ,𝑛 (see, e. g., [19]).

It is known (see, e. g., [2], [11], [13]) that for the solution to the
Carathèodory problem (i.e., the problem (3) for 𝑋𝑗 > 0 and real {𝜆𝑗}),
the value of parameter 𝜔 =

∑︀𝑛
𝑗=1𝑋𝑗 is equal to the largest root 𝜔+

𝑤

(𝜔+
𝑤 = 𝜔+

𝑤 (𝑛) > 0) of the polynomial det𝐺𝑛+1(𝑤;𝜔), the determinant
of the Toeplitz matrix. It obviously implies that for the solution of the
problem (3) with non-positive {𝑋𝑗} and real {𝜆𝑗}, the value 𝜔 =

∑︀𝑛
𝑗=1𝑋𝑗

is equal to the smallest root 𝜔−
𝑤 (𝜔−

𝑤 = 𝜔−
𝑤 (𝑛) < 0) of the same Toeplitz

matrix determinant 𝐺𝑛+1(𝑤;𝜔) (it is sufficient to consider the problem (3)
with 𝑋𝑗 replaced by 𝑋 ′

𝑗 = −𝑋𝑗 and 𝜎𝑙 by 𝜎′
𝑙 = −𝜎𝑙).

Consequently, the equalities (2) are valid for 𝜔 = 𝜔+
𝑤 > 0 (and then all

𝑋𝑗 > 0) and for 𝜔 = 𝜔−
𝑤 < 0 (and then all 𝑋𝑗 6 0). The representation

(2) in each of these cases we call regular if the order of the corresponding
AFT is exactly 𝑛 (then all 𝑋𝑗 ̸= 0).

If 𝜔 = 𝜔±
𝑤 are known, the Prony polynomial 𝑃𝑛(𝑧;𝑤, 𝜔±

𝑤 ) is used to
determine the unknowns 𝑧𝑗 = 𝑒−𝑖𝜆𝑗 ; it is the determinant obtained from
the above-mentioned Toeplitz determinant by replacing its first row with
a row (𝑧𝑛, 𝑧𝑛−1, . . . , 1) (see the examples below).

In a regular case, all roots 𝑧𝑗 = 𝑒−𝑖𝜆𝑗 , 𝑗 = 1, . . . , 𝑛, of the polynomial
𝑃𝑛(𝑧;𝑤, 𝜔±

𝑤 ) are distinct and lie on the unit circle symmetrically with
respect to R. Their arguments give the required values 𝜆𝑗 in (2) and (3).
In this case, the unknowns 𝑋𝑗 are found from the system (3), linear with
respect to 𝑋𝑗 with a nonzero Vandermonde determinant (for more details,
see, e. g., [7], [18], [19]).

In an irregular case, when the order of AFT in (2) is less than 𝑛, the
Prony polynomial is identically zero, 𝑃𝑛(𝑧;𝑤, 𝜔±

𝑤 ) ≡ 0. For this case, sev-
eral methods have been developed to regularize the problem (3) by certain
variations of the right-hand sides {𝜎𝑘} ( [18], [19]). For the regularized sys-
tem (3), the corresponding Prony polynomial is nonzero and its nonzero
roots are the desired solution to the system (3) 𝑧𝑗 = 𝑒−𝑖𝜆𝑗 , 𝑗 = 1, . . . ,𝑚,
𝑚 < 𝑛.

2. Extremal polynomials in the representation (2). Let us
briefly describe a method of construction extremal nonnegative polynomi-
als 𝑆± for which the following equalities hold (for more details, see [18],
[19]):

𝜔±
𝑤 𝑎0(𝑆±) + 𝒯 (𝑆±, 𝑤; 0) = 0, 𝑤 := {𝜎1, . . . , 𝜎𝑛}. (5)
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Let the representation (2) (regular or irregular) be obtained, for a given set
of real weights 𝑤 := {𝜎1, . . . , 𝜎𝑛}, in each of the cases 𝜔 = 𝜔±

𝑤 , where the
AFT has order 𝑚± 6 𝑛. Using the obtained solutions 𝜆±

𝑗 , 𝑗 = 1, . . . ,𝑚±,
we define the following even non-negative polynomials of order 𝑚±:

𝑆±(𝑡) = 𝑆±(𝜔±
𝑤 ; 𝑡) :=

𝑚±∏︁
𝑗=1

sin2
(︁𝑡 + 𝜆±

𝑗

2

)︁
. (6)

Note that polynomials of the form (6) have already been used in [6],
[12], [19]. Since 𝑆±(−𝜆±

𝑗 ) = 0 for all 𝑗 = 1, . . . ,𝑚±, we have equality
𝐻(𝑆±, {𝑋±

𝑗 }, {𝜆±
𝑗 }; 0) = 0 and, therefore, we obtain (5) from (2).

This equality will be used below to prove the sharpness of Bernstein-
type inequalities. Note that the parity of polynomials 𝑆𝑚±(𝜔±

𝑤 ; 𝑡) obvi-
ously follows from the symmetry of roots 𝑧±𝑗 = 𝑒−𝑖𝜆±

𝑗 in (3) with respect
to R.

3. The application of AFT for trigonometric Bernstein-type
inequalities. Let us take a set of weights 𝑤 = 𝑤(𝑛, 2𝑚) for positive
integer 𝑛 and 𝑚: 𝑤(𝑛, 2𝑚) := {12𝑚, 22𝑚, . . . , 𝑛2𝑚}. For the derivative of
order 2𝑚 of the polynomial (1), we have

(−1)𝑚𝑇 (2𝑚)
𝑛 (𝑡) =

𝑛∑︁
𝑘=1

𝑘2𝑚𝜏𝑘(𝑡) = 𝒯 (𝑇𝑛, 𝑤; 𝑡).

Therefore, for the largest and smallest roots 𝜔±
𝑤 = 𝜔±

𝑤(𝑛,2𝑚) of the Toeplitz
determinant det𝐺𝑛+1(𝑤;𝜔) from (2), we get

𝜔±
𝑤 𝑎0 + (−1)𝑚𝑇 (2𝑚)

𝑛 (𝑡) = 𝜔±
𝑤 𝑎0 + 𝒯 (𝑇𝑛, 𝑤; 𝑡) =

𝑛∑︁
𝑗=1

𝑋±
𝑗 𝑇𝑛(𝑡− 𝜆±

𝑗 ),

𝑛∑︁
𝑗=1

𝑋±
𝑗 = 𝜔±

𝑤 , (7)

where 𝜔+
𝑤 > 0, 𝜔−

𝑤 < 0, all 𝑋+
𝑗 > 0, 𝑋−

𝑗 6 0, 𝜆±
𝑗 ∈ R.

Theorem 1. For positive integer 𝑛,𝑚, weights 𝑤 = 𝑤(𝑛, 2𝑚) := {12𝑚,
22𝑚, . . . , 𝑛2𝑚}, 𝑎0 = 𝑎0(𝑇𝑛), and all 𝑡 ∈ R, the following two-sided inequal-
ities hold:

𝜔+
𝑤 (min

𝑥
𝑇𝑛(𝑥) − 𝑎0) 6 (−1)𝑚𝑇 (2𝑚)

𝑛 (𝑡) 6 𝜔+
𝑤 (max

𝑥
𝑇𝑛(𝑥) − 𝑎0), (8)
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𝜔−
𝑤 (max

𝑥
𝑇𝑛(𝑥) − 𝑎0) 6 (−1)𝑚𝑇 (2𝑚)

𝑛 (𝑡) 6 𝜔−
𝑤 (min

𝑥
𝑇𝑛(𝑥) − 𝑎0). (9)

In particular, if 𝑇𝑛 is a positive-valued polynomial, then the first inequal-
ity in (8) and the second inequality in (9) imply

−𝜔+
𝑤 𝑎0 6 (−1)𝑚𝑇 (2𝑚)

𝑛 (𝑡) 6 −𝜔−
𝑤 𝑎0, 𝑎0 > 0.

The latter two-sided inequality is sharp, as there are extremal nonnegative
polynomials 𝑆±(𝑡), deg𝑆± 6 𝑛, for which the following equalities hold:

𝜔±
𝑤 𝑎±0 (𝑆±) + (−1)𝑚𝑆

(2𝑚)
± (0) = 0, 𝑎±0 (𝑆±) > 0. (10)

Proof. The upper estimate in (8) is obtained from (7) taking into account
that all 𝑋+

𝑗 > 0 and 𝜔+
𝑤 =

∑︀𝑛
𝑗=1𝑋

+
𝑗 > 0:

𝜔+
𝑤 𝑎0 + (−1)𝑚𝑇 (2𝑚)

𝑛 (𝑡) =
𝑛∑︁

𝑗=1

𝑋+
𝑗 𝑇𝑛(𝑡− 𝜆+

𝑗 ) 6 𝜔+
𝑤 max

𝑥
𝑇𝑛(𝑥);

similarly, we obtain the lower estimate in (8). The lower estimate (9) is ob-
tained from (7) taking into account that all 𝑋−

𝑗 6 0 and
𝜔−
𝑤 =

∑︀𝑛
𝑗=1𝑋

−
𝑗 < 0:

−𝜔−
𝑤 𝑎0 + (−1)𝑚+1𝑇 (2𝑚)

𝑛 (𝑡) =
𝑛∑︁

𝑗=1

(−𝑋−
𝑗 )𝑇𝑛(𝑡− 𝜆−

𝑗 ) 6 −𝜔−
𝑤 max

𝑥
𝑇𝑛(𝑥);

similarly, we obtain the upper estimate in (9). The statement (10) follows
from (5). �

Examples. Let us give examples of constructing several extremal poly-
nomials in (10) for the second derivative.

For 𝑛 = 2, 𝑚 = 1 and weights 𝑤 = 𝑤(2, 2) = {12, 22} we have

𝐺3(𝑤, 𝜔) =

⎡⎢⎢⎣
𝜔 1 4

1 𝜔 1

4 1 𝜔

⎤⎥⎥⎦ , 𝑃2(𝑧;𝑤, 𝜔) =

⎡⎢⎢⎣
𝑧2 𝑧 1

1 𝜔 1

4 1 𝜔

⎤⎥⎥⎦ ,

where det𝐺3(𝑤, 𝜔) = (𝜔 − 4) (𝜔2 + 4𝜔 − 2), and for the second deriva-
tives the representations (7) and the inequalities (8), (9) are obtained with
the parameters 𝜔+

𝑤 = 4, 𝜔−
𝑤 = −2−

√
6 ≈ −4.449 . . . (here and everywhere

below, numerical values are displayed with three decimal places).
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Thus, we get the two regular cases 𝜔 = 𝜔±; the Prony polynomials
𝑃2(𝑧;𝑤, 𝜔±

𝑤 ) have the pairs of roots ±1 and −0.224 ± 0.974𝑖 with the
arguments {0, 𝜋} and {1.797,−1.797}. Hence, according to the formula
(6), we find an extremal nonnegative polynomials, for which the equalities
(10) hold for the second derivative:

𝑆+(𝑡) ≈ 0.125 − 0.125 cos (2 𝑡) , 𝜔+
𝑤 = 4;

𝑆−(𝑡) ≈ 0.137 + 0.125 cos (2 𝑡) + 0.112 cos (𝑡) , 𝜔−
𝑤 ≈ −4.449.

When 𝑛 = 3 and 𝑤 = 𝑤(3, 2) = {12, 22, 32}, according to the same
scheme, we have

𝐺4(𝑤, 𝜔) =

⎛⎜⎜⎜⎜⎝
𝜔 1 4 9

1 𝜔 1 4

4 1 𝜔 1

9 4 1 𝜔

⎞⎟⎟⎟⎟⎠ , 𝑃3(𝑧;𝑤, 𝜔) =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑧3 𝑧2 𝑧 1

1 𝜔 1 4

4 1 𝜔 1

9 4 1 𝜔

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒ ,

therefore, det𝐺4(𝑤, 𝜔) = 𝜔 (𝜔 − 10) (𝜔2 + 10𝜔 − 16) and 𝜔+
𝑤 = 10,

𝜔−
𝑤 = −5 −

√
41 ≈ −11.403. This implies representations (7) and in-

equalities (8), (9). Here, for 𝜔 = 𝜔±, regular cases are obtained and
the Prony polynomials 𝑃3(𝑧;𝑤, 𝜔±

𝑤 ) have three different roots with unit
moduli:

{1, − 0.666 − 0.745𝑖, − 0.666 + 0.745𝑖} ,

{−1, 0.259 − 0.965𝑖, 0.259 + 0.965𝑖} .

Calculating their arguments 𝜆±
𝑗 , by the formula (6), we find extremal non-

negative polynomials, for which the equalities (10) hold for 𝑚 = 1:

𝑆+(𝑡) ≈ 0.034 − 0.031 cos (3𝑡) − 0.020 cos (2𝑡) + 0.017 cos (𝑡) ;

𝑆−(𝑡) ≈ 0.038 + 0.031 cos (3𝑡) + 0.030 cos (2𝑡) + 0.037 cos (𝑡) ;

𝜔+
𝑤 = 10, 𝜔−

𝑤 ≈ −11.403.

Remark 1. One can see from Theorem 1 that the main role is played by
the module estimates 𝜔±

𝑤(𝑛,2𝑚) for the derivative estimates based on (7).
They can be estimated using the well-known Hadamard theorem about the
non-degeneracy of matrices with strictly dominant diagonal (see, e. g., [9]).
Namely, if the modulus of the diagonal element |𝜔| in each row of the
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matrix 𝐺𝑛+1(𝑤;𝜔) is greater than the sum of remaining elements moduli
of the same row, then det𝐺𝑛+1(𝑤;𝜔) ̸= 0. This implies the estimate

|𝜔±
𝑤(𝑛,2𝑚)| < Ω(𝑛,2𝑚) :=

𝑛∑︁
𝑘=1

𝑘2𝑚.

For example, for the second derivative (𝑚 = 1) we have

|𝜔±
𝑤(𝑛,2)| < Ω(𝑛, 2) =

1

6
𝑛 (𝑛 + 1) (2𝑛 + 1) ,

while the calculations for 𝑛 = 10 give

0.571 · Ω(10, 2) ≈ 𝜔+
𝑤(10,2) < |𝜔−

𝑤(10,2)| ≈ 0.666 · Ω(10, 2).

As it can be easily checked, the growth order of Ω(𝑛, 2𝑚) for 𝑛 → ∞ and
each fixed 𝑚 has the form

Ω(𝑛, 2𝑚) ≍ 1

2𝑚 + 1
𝑛2𝑚+1, 𝑛 → ∞.

The calculations up to 𝑛 = 30 show that this growth order is rather
precise for |𝜔±

𝑤 (𝑛, 2𝑚)|. In particular, this is a distinctive property of the
inequalities considered in Theorem 1 compared to the (sharp) classical
inequalities ‖𝑇 (2𝑚)

𝑛 ‖ 6 𝑛2𝑚‖𝑇𝑛‖ (S. N. Bernstein, M. Riesz [4], [15]).

4. The application of AFT for estimating the derivative of
conjugate polynomials. The polynomial (1) with real coefficients can
be represented as

𝑇𝑛(𝑡) = 𝑎0 +
𝑛∑︁

𝑘=1

𝜏𝑘(𝑡) = 𝑎0 + Re
𝑛∑︁

𝑘=1

(𝑎𝑘 − 𝑖𝑏𝑘)𝑒𝑖𝑡 𝑘,

𝜏𝑘(𝑡) := 𝑎𝑘 cos 𝑘𝑡 + 𝑏𝑘 sin 𝑘𝑡.

The polynomial

𝑇𝑛(𝑡) =
𝑛∑︁

𝑘=1

𝑎𝑘 sin 𝑘𝑡− 𝑏𝑘 cos 𝑘𝑡 = Im
𝑛∑︁

𝑘=1

(𝑎𝑘 − 𝑖𝑏𝑘)𝑒𝑖𝑡 𝑘

is called conjugate to the polynomial (1). It can be easily checked that
𝑇𝑛(𝑡)′ =

∑︀𝑛
𝑘=1 𝑘𝜏𝑘(𝑡). Thus, for weights 𝑤 = 𝑤(𝑛, 1) = {1, . . . , 𝑛} we have

from (2):

𝜔±
𝑤 𝑎0 + 𝑇𝑛(𝑡)′ = 𝜔±

𝑤 𝑎0 + 𝒯 (𝑇𝑛,𝑤; 𝑡) =
𝑛∑︁

𝑗=1

𝑋±
𝑗 𝑇𝑛(𝑡− 𝜆±

𝑗 ), (11)



38 V. I. Danchenko, D. G. Chkalova

where 𝜔±
𝑤 are the largest and smallest roots of the Toeplitz determinant

det𝐺𝑛+1(𝑤(𝑛, 1);𝜔), with
∑︀𝑛

𝑗=1 𝑋
±
𝑗 = 𝜔±

𝑤 (𝜔+
𝑤 > 0, 𝜔−

𝑤 < 0).
Similarly to Theorem 1, from the representation (11) we obtain

Theorem 2. For positive integer 𝑛, weights 𝑤(𝑛, 1) := {1, 2, . . . , 𝑛},
𝑎0 = 𝑎0(𝑇𝑛) and all 𝑡 ∈ R, the following two-sided inequalities hold:

𝜔+
𝑤 (min

𝑥
𝑇𝑛(𝑥) − 𝑎0) 6 𝑇𝑛(𝑡)′ 6 𝜔+

𝑤 (max
𝑥

𝑇𝑛(𝑥) − 𝑎0), (12)

𝜔−
𝑤 (max

𝑥
𝑇𝑛(𝑥) − 𝑎0) 6 𝑇𝑛(𝑡)′ 6 𝜔−

𝑤 (min
𝑥

𝑇𝑛(𝑥) − 𝑎0). (13)

In particular, if 𝑇𝑛 is a positive-valued polynomial, then the first inequali-
ty in (12) and the second inequality in (13) imply

−𝜔+
𝑤 𝑎0 6 𝑇𝑛(𝑡)′ 6 −𝜔−

𝑤 𝑎0, 𝑎0 > 0.

These inequalities are sharp, as there are extremal nonnegative polynomi-
als 𝑆±(𝑡) of order 6 𝑛 with the constant term 𝑎0(𝑆±) > 0, for which the
equalities hold:

𝜔±
𝑤 𝑎0(𝑆±) + 𝑆 ′

±(0) = 0. (14)

Examples. Extremal polynomials are constructed as in the previous sec-
tion, so we do not dwell on the details. For example, let 𝑛 = 2 and weights
𝑤 = {1, 2}; according to the formula (6), the following polynomials, for
which the equalities (14) hold, are obtained:

𝑆+(𝑡) ≈ 0.125 − 0.125 cos (2𝑡) , 𝜔+
𝑤 = 2;

𝑆−(𝑡) ≈ 0.158 + 0.125 cos (2𝑡) + 0.183 cos (𝑡) , 𝜔−
𝑤 ≈ −2.732.

For 𝑛 = 3 and 𝑤 = {1, 2, 3} we have

𝑆+(𝑡) ≈ 0.036 − 0.031 cos (3𝑡) − 0.025 cos (2𝑡) + 0.020 cos (𝑡) ;

𝑆−(𝑡) ≈ 0.047 + 0.031 cos (3𝑡) + 0.045 cos (2𝑡) + 0.061 cos (𝑡) ;

𝜔+
𝑤 ≈ 3.414, 𝜔−

𝑤 ≈ −5.162.

Remark 2. The estimate for 𝜔±
𝑤(𝑛,1) by the above-mentioned Hadamard

theorem gives:

|𝜔±
𝑤(𝑛,1)| <

𝑛∑︁
𝑘=1

𝑘 =
1

2
𝑛(𝑛 + 1).
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The calculations up to 𝑛 = 30 show that this growth order is rather
precise. In particular, this is a distinctive property of the inequalities
(12), (13) considered in Theorem 2 compared to the (sharp) classical Szegö
inequalities ‖𝑇 ′

𝑛‖ 6 𝑛‖𝑇𝑛‖, see [17].
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