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Abstract. In this work, we give some properties of the 𝑞-Chebyshev
polynomials through the Stieltjes function associated with their
regular forms (linear functional). Some connection formulas are
highlighted. The integral representation of those forms are given.
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1. Introduction. In this contribution, we introduce the monic or-
thogonal polynomial sequence (MOPS) of 𝑞-Chebyshev polynomials
{𝑇𝑛(𝑥, 𝑞)}𝑛>0 of the first kind and {�̂�𝑛(𝑥, 𝑞)}𝑛>0 of the second kind, which
are orthogonal with respect to the forms (linear functionals) 𝒯𝑞, 𝒰𝑞, respec-
tively, through a 𝑞-difference functional equation similar to that satisfied
by the classical Chebyshev forms 𝒯 and 𝒰 of the first/second kind, respec-
tively [15]. In addition, we preserve the connection property 𝒯 (1)

𝑞 = 𝒰𝑞,
where 𝒯 (1)

𝑞 is the first associated form of 𝒯𝑞. Note that many authors have
been interested in the 𝑞-extension of the Chebyshev polynomials and their
properties [1], [4], [8]. The normalized sequences associated with those
introduced in [1], [4], [8] are equal to {𝑇𝑛(𝑥, 𝑞)}𝑛>0 and {�̂�𝑛(𝑥, 𝑞)}𝑛>0,
respectively, up to a dilation. Furthermore, those polynomials are a par-
ticular cases of big 𝑞-Jacobi polynomials [1], [9]. Our main aim is to
study in detail these polynomials through their 𝑞-classical character. The
second section is devoted to the preliminaries, some fundamental results
useful in the sequel, to the introduction of the MOPSs {𝑇𝑛(𝑥, 𝑞)}𝑛>0 and
{�̂�𝑛(𝑥, 𝑞)}𝑛>0. In the third section, we obtain a connection formula bet-
ween 𝒯𝑞 and the shifted form 𝒰𝑞, which is a 𝑞-extension of the formula
given in [10]. As a consequence, we highlight certain formulas connecting
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the polynomials 𝑇𝑛(𝑥,𝑞) and �̂�𝑛(𝑥, 𝑞) for 𝑛 > 0, which are 𝑞-extensions of
the classical case [3], [16], [17]. In the fourth section, we give the integral
representation of the form 𝒯𝑞 using the connection formula given above.
This has not been done previously in literature. In the last section, we
give explicitly the Stieltjes functions of the 𝑞-Chebyshev form of the first
and second kind.

2. Preliminaries and fundamental results. Let 𝒫 be the vector
space of polynomials with coefficients in C, and let 𝒫 ′ be its dual. We
denote by ⟨𝑤, 𝑓⟩ the effect of 𝑤 ∈ 𝒫 ′ on 𝑓 ∈ 𝒫 . In particular, we denote
by (𝑤)𝑛 : = ⟨𝑤, 𝑥𝑛⟩, 𝑛 > 0 the moments of 𝑤. Let us introduce some
useful operations in 𝒫 ′. For any linear form 𝑤, any polynomial 𝑔 and any
𝑎 ∈ C−{0}, 𝑐 ∈ C, let 𝑔𝑤, 𝑤′, ℎ𝑎𝑤, (𝑥− 𝑐)−1𝑤, 𝛿𝑐, and 𝐻𝑞𝑤 be the forms
(linear functionals) defined by duality

⟨𝑔𝑤, 𝑓⟩ = ⟨𝑤, 𝑔𝑓⟩, ⟨𝑤′, 𝑓⟩ = −⟨𝑤, 𝑓 ′⟩, ⟨ℎ𝑎𝑤, 𝑓⟩ := ⟨𝑤, ℎ𝑎𝑓⟩,
⟨(𝑥− 𝑐)−1𝑤, 𝑓⟩ := ⟨𝑤, 𝜃𝑐𝑓⟩, ⟨𝛿𝑐, 𝑓⟩ := 𝑓(𝑐), ⟨𝐻𝑞𝑤, 𝑓⟩ = −⟨𝑤,𝐻𝑞𝑓⟩, 𝑓 ∈ 𝒫 ,

where

(𝜃𝑐𝑓)(𝑥) =
𝑓(𝑥) − 𝑓(𝑐)

𝑥− 𝑐
, (ℎ𝑎𝑓)(𝑥) = 𝑓(𝑎𝑥),

𝐻𝑞(𝑓)(𝑥) =
𝑓(𝑞𝑥) − 𝑓(𝑥)

(𝑞 − 1)𝑥
, 𝑥 ̸= 0, 𝑞 ∈ C−

(︁
{0} ∪

⨆︁
𝑛>0

{𝑧 ∈ C, 𝑧𝑛 = 1}
)︁
,

𝐻𝑞(𝑓)(0) = 𝑓 ′(0).

We also define the right-multiplication of a form by a polynomial as

(𝑤𝑓)(𝑥) :=
⟨
𝑤,
𝑥𝑓(𝑥) − 𝜉𝑓(𝜉)

𝑥− 𝜉

⟩
, 𝑤 ∈ 𝒫 ′, 𝑓 ∈ 𝒫 .

The Stieltjes function of 𝑤 ∈ 𝒫 ′ is defined by

𝑆(𝑧, 𝑤) = −
∑︁
𝑛>0

(𝑤)𝑛
𝑧𝑛+1

.

A monic polynomial sequence (MPS) {𝑃𝑛}𝑛>0 is a sequence of monic poly-
nomials 𝑃𝑛, 𝑛 > 0, with deg𝑃𝑛 = 𝑛. Let {𝑤𝑛}𝑛>0 be its dual sequence,
defined by ⟨𝑤𝑛, 𝑃𝑚⟩ = 𝛿𝑛,𝑚, 𝑛,𝑚 > 0. The MPS {𝑃𝑛}𝑛>0 is orthogo-
nal (MOPS) with respect to 𝑤 ∈ 𝒫 ′ if the following conditions hold:
⟨𝑤,𝑃𝑚𝑃𝑛⟩ = 𝑟𝑛𝛿𝑛,𝑚, 𝑛,𝑚 > 0, 𝑟𝑛 ̸= 0, 𝑛 > 0. In this case, the form 𝑤
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is said to be regular. The form 𝑤 is called normalized if (𝑤)0 = 1. In
this paper, we suppose that all forms are normalized. Thus, 𝑤 = 𝑤0 and
{𝑃𝑛}𝑛>0 satisfies the standard recurrence relation{︃

𝑃0(𝑥) = 1 , 𝑃1(𝑥) = 𝑥− 𝛽0,

𝑃𝑛+2(𝑥) = (𝑥− 𝛽𝑛+1)𝑃𝑛+1(𝑥) − 𝛾𝑛+1𝑃𝑛(𝑥), 𝛾𝑛+1 ̸= 0, 𝑛 > 0.
(1)

The regular form 𝑤0 is said to be symmetric if (𝑤0)2𝑛+1 = 0, 𝑛 > 0 or,
equivalently, 𝛽𝑛 = 0, 𝑛 > 0 in (1) [3], [11].

Let {𝑃𝑛}𝑛>0 be the sequence defined by 𝑃𝑛(𝑥) = 𝑎−𝑛𝑃𝑛(𝑎𝑥), 𝑛 > 0,
𝑎 ̸= 0. It is a MOPS with respect to �̂�0 = ℎ𝑎−1𝑤0 fulfilling (1) with [10]

𝛽𝑛 =
𝛽𝑛
𝑎
, 𝛾𝑛+1 =

𝛾𝑛+1

𝑎2
, 𝑛 > 0.

Given a regular form 𝑤 and the corresponding MOPS {𝑃𝑛}𝑛>0 satisfying
(1), we define the first associated sequence {𝑃 (1)

𝑛 }𝑛>0 by [11]

𝑃 (1)
𝑛 (𝑥) =

⟨
𝑤,
𝑃𝑛+1(𝑥) − 𝑃𝑛+1(𝜉)

𝑥− 𝜉

⟩
= (𝑤𝜃0𝑃𝑛+1)(𝑥).

{𝑃 (1)
𝑛 }𝑛>0 is a MOPS with respect to 𝑤(1) satisfying (1) with [3], [11]

𝛽(1)
𝑛 = 𝛽𝑛+1, 𝛾

(1)
𝑛+1 = 𝛾𝑛+2, 𝑛 > 0.

The Chebyshev MOPS of the first kind (respectively, of the second kind),
orthogonal with respect to 𝒯 (respectively, 𝒰) are defined by [3], [11], [12]{︃

𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥,

𝑇𝑛+2(𝑥) = 𝑥𝑇𝑛+1(𝑥) − 𝛾𝒯𝑛+1𝑇𝑛(𝑥), 𝑛 > 0,

((𝑥2 − 1)𝒯 )′ − 𝑥𝒯 = 0,

𝛾𝒯1 =
1

2
, 𝛾𝒯𝑛+1 =

1

4
, 𝑛 > 1,

⟨𝒯 , 𝑓⟩ =
1

𝜋

+1∫︁
−1

1√
1 − 𝑥2

𝑓(𝑥)𝑑𝑥, 𝑓 ∈ 𝒫 .

{︃
�̂�0(𝑥) = 1, �̂�1(𝑥) = 𝑥,

�̂�𝑛+2(𝑥) = 𝑥�̂�𝑛+1(𝑥) − 𝛾𝒰𝑛+1�̂�𝑛(𝑥), 𝑛 > 0,
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𝛾𝒰𝑛+1 =
1

4
, 𝑛 > 0,

((𝑥2 − 1)𝒰)′ − 3𝑥𝒰 = 0,

⟨𝒰 , 𝑓⟩ =
2

𝜋

+1∫︁
−1

√
1 − 𝑥2𝑓(𝑥)𝑑𝑥 𝑓 ∈ 𝒫 . (2)

Let us recall some results:

Lemma 1. [7], [11] Let 𝑤 ∈ 𝒫 ′, 𝑓 ∈ 𝒫 , 𝑎 ∈ C − {0}. The following
formulas hold:

𝐻𝑞(𝑓𝑤) = (ℎ𝑞−1𝑓)𝐻𝑞(𝑤) + 𝑞−1(𝐻𝑞−1𝑓)𝑤, (3)

𝑆(𝑧, 𝑓𝑤) = 𝑓(𝑧)𝑆(𝑧, 𝑤) + (𝑤𝜃0𝑓)(𝑧), (4)

ℎ𝑎(𝑓𝑤) = (ℎ𝑎−1𝑓)(ℎ𝑎𝑤). (5)

Definition 1. [7] A form 𝑤 is called 𝐻𝑞-semiclassical, if it is regular
and if there exist two polynomials 𝜑 and 𝜓 (𝜑 is monic), deg 𝜑 = 𝑡 > 0,
deg𝜓 = 𝑝 > 1, such that

𝐻𝑞(𝜑𝑤) + 𝜓𝑤 = 0, (6)

the corresponding orthogonal sequence {𝑃𝑛}𝑛>0 is called 𝐻𝑞-semiclassical.

Remark. When deg 𝜑 6 2, deg𝜓 = 1, 𝑤 is called 𝐻𝑞-classical form [6].

Lemma 2. [7] If 𝑤 is 𝐻𝑞-semiclassical, fulfilling the equation (6), the
form �̃� = ℎ𝑎−1𝑤, 𝑎 ∈ C− {0} is 𝐻𝑞-semiclassical and satisfies

𝐻𝑞(𝜑�̃�) + 𝜓�̃� = 0,

with 𝜑(𝑥) = 𝑎− deg 𝜑𝜑(𝑎𝑥), 𝜓(𝑥) = 𝑎1−deg 𝜑𝜓(𝑎𝑥).

The 𝐻𝑞-semiclassical character of a regular form can be described via
the formal Stieltjes function, as follows.

Theorem 1. [7] Let 𝑤 be a regular form. The following statements are
equivalent:

(a) 𝑤 is 𝐻𝑞-semiclassical form satisfying (6).
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(b) The Stieltjes function 𝑆(·, 𝑤) satisfies the 𝑞-Riccati equation

(ℎ𝑞−1𝜑)(𝑧)𝐻𝑞−1(𝑆(𝑧, 𝑤)) = 𝐶(𝑧)𝑆(𝑧, 𝑤) +𝐷(𝑧),

where
𝐶 = −(𝐻𝑞−1𝜑) − 𝑞𝜓,

𝐷 = −
{︁

(𝐻𝑞−1(𝑤𝜃0𝜑) + 𝑞(𝑤𝜃0𝜓)
}︁
.

We are going to use the following notations and results [5]:

(𝑎, 𝑞)𝑛 :=

⎧⎨⎩
1, 𝑛 = 0,
𝑛−1∏︀
𝜈=0

(1 − 𝑎𝑞𝜈), 𝑛 > 1, 𝑎 ∈ C.

lim
𝑞→1

(𝑞𝑎𝑧, 𝑞)∞
(𝑧, 𝑞)∞

= (1 − 𝑧)−𝑎, |𝑧| < 1, 𝑎 ∈ R. (7)

Let {𝑃𝑛(𝛼)}𝑛>0 be the symmetric MOPS introduced in the situation (3.25)
in [15] with 𝑞 is replaced by 𝑞2⎧⎪⎪⎨⎪⎪⎩

𝛾𝑛+1(𝛼) =
(𝑞𝑛+1 − 1)(𝑞𝑛+1+2𝛼 − 1)

(𝑞2𝑛+2𝛼+1 − 1)(𝑞2𝑛+2𝛼+3 − 1)
𝑞𝑛+2𝛼+2, 𝑛 > 0,

𝐻𝑞((𝑥
2 − 1)𝑢(𝛼)) +

1 − 𝑞−2𝛼−2

1 − 𝑞
𝑥𝑢(𝛼) = 0.

(8)

If 𝛼 = −1
2
, we denote 𝒯𝑞 := 𝑢(−1

2
), 𝛾𝒯𝑞𝑛+1 := 𝛾𝑛+1(−1

2
), 𝑛 > 0; then⎧⎨⎩ 𝛾

𝒯𝑞
1 =

𝑞

𝑞 + 1
, 𝛾

𝒯𝑞
𝑛+1 =

𝑞𝑛+1

(𝑞𝑛 + 1)(𝑞𝑛+1 + 1)
, 𝑛 > 1,

𝐻𝑞((𝑥
2 − 1)𝒯𝑞) − 𝑞−1𝑥𝒯𝑞 = 0.

(9)

Note that if 𝑞 → 1, we obtain the form 𝒯 [3], [12]; then the form 𝒯𝑞 is its
𝑞-extension (we say that 𝒯𝑞 is the 𝑞-Chebyshev form of the first kind). In
the following, {𝑇𝑛(𝑥, 𝑞)}𝑛>0 is the MOPS with respect to 𝒯𝑞.

Denote by 𝒰𝑞 : = ℎ
𝑞−

1
2
𝑢(1

2
), 𝛾𝒰𝑞

𝑛+1 : = 𝑞−1𝛾𝑛+1(
1
2
), 𝑛 > 0 and obtain,

due to (8) and Lemma 2:⎧⎪⎪⎨⎪⎪⎩
𝛾
𝒰𝑞

𝑛+1 =
𝑞𝑛+2

(𝑞𝑛+1 + 1)(𝑞𝑛+2 + 1)
, 𝑛 > 0,

𝐻𝑞((𝑥
2 − 𝑞−1) 𝒰𝑞) +

1 − 𝑞−3

1 − 𝑞
𝑥 𝒰𝑞 = 0.

(10)
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If 𝑞 → 1, we get the form 𝒰 [3], [12]; then 𝒰𝑞 is the 𝑞-extension of the form
𝒰 (it is the 𝑞-Chebyshev form of the second kind). Denote by {�̂�𝑛(𝑥, 𝑞)}𝑛>0
the MOPS with respect to 𝒰𝑞.

Remark. We see that, due to (9) and (10), we have

𝒯 (1)
𝑞 = 𝒰𝑞.

This is a 𝑞-extension of the classical case [10].

3. Connection formulas.

Lemma 3. [14] Let (𝑏𝑛)𝑛>0 with 𝑏𝑛 ̸= 0, 𝑛 > 0, (𝑐𝑛)𝑛>0 be two sequences
of complex numbers and (𝑥𝑛)𝑛>0 be a sequence satisfying the following
recurrence relation

𝑥𝑛+1 = 𝑏𝑛𝑥𝑛 + 𝑐𝑛, 𝑛 > 0, 𝑥0 = 𝑎 ∈ C− {0}.

We have 𝑥𝑛+1 =
(︁ 𝑛∏︀

𝑘=0

𝑏𝑘

)︁{︁
𝑎+

𝑛∑︀
𝑘=0

(︁ 𝑘∏︀
𝜇=0

𝑏𝜇

)︁−1

𝑐𝑘

}︁
, 𝑛 > 0.

Lemma 4. The following equation holds:

(𝑥2 − 1)𝒯𝑞 = − 1

𝑞 + 1
ℎ
𝑞−

1
2
𝒰𝑞. (11)

Proof. Let 𝑤𝑞 be the normalized form defined by

(𝑥2 − 1)𝒯𝑞 = − 1

𝑞 + 1
𝑤𝑞. (12)

Then𝐻𝑞((𝑥
2−1)𝒯𝑞) = − 1

𝑞+1
𝐻𝑞(𝑤𝑞), and from (9) we get 𝑥𝒯𝑞 = − 𝑞

𝑞+1
𝐻𝑞(𝑤𝑞).

Multiplying both sides by 𝑥2 − 1 and using (12), we deduce that
(𝑥2 − 1)𝐻𝑞(𝑤𝑞) − 𝑞−1𝑥𝑤𝑞 = 0.

From relation (3), it follows that

𝐻𝑞((𝑥
2 − 𝑞−2)𝑤𝑞) +

1 − 𝑞−3

1 − 𝑞
𝑥𝑤𝑞 = 0. (13)

On the other hand, from (10) and by virtue of Lemma 2, we have

𝐻𝑞

(︀
(𝑥2 − 𝑞−2)ℎ

𝑞−
1
2
𝒰𝑞

)︀
+

1 − 𝑞−3

1 − 𝑞
𝑥ℎ

𝑞−
1
2
𝒰𝑞 = 0. (14)
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Based on relations (13), (14), and the fact that (ℎ
𝑞−

1
2
𝒰𝑞)0 = (𝑤𝑞)0 = 1,

we get ℎ
𝑞−

1
2
𝒰𝑞 = 𝑤𝑞, which provides (11). �

Remark. When 𝑞 → 1 in relation (11), we obtain the connection formula
given in [10].

In the sequel, we denote by {�̃�𝑛(𝑥, 𝑞)}𝑛>0 the MOPS with respect to
𝒰𝑞 := ℎ

𝑞−
1
2
𝒰𝑞. Then we have

�̃�𝑛(𝑥, 𝑞) = 𝑞−
𝑛
2 �̂�𝑛(𝑞

1
2𝑥, 𝑞), 𝑛 > 0.{︃

�̃�0(𝑥, 𝑞) = 1, �̃�1(𝑥, 𝑞) = 𝑥,

�̃�𝑛+2(𝑥, 𝑞)(𝑥, 𝑞) = 𝑥�̃�𝑛+1(𝑥, 𝑞) − 𝛾
𝒰𝑞

𝑛+1�̃�𝑛(𝑥, 𝑞), 𝑛 > 0
(15)

with
𝛾
𝒰𝑞

𝑛+1 =
𝑞𝑛+1

(1 + 𝑞𝑛+1)(1 + 𝑞𝑛+2)
, 𝑛 > 0. (16)

Lemma 5. The following formulas hold:

�̃�𝑛(1, 𝑞) =
2

(−1; 𝑞−1)𝑛+1

𝑛∑︁
𝑘=0

𝑞−
𝑘(𝑘+1)

2 , 𝑛 > 0. (17)

�̃� (1)
𝑛 (1, 𝑞) =

2(𝑞 + 1)

(−1; 𝑞−1)𝑛+2

𝑛∑︁
𝑘=0

𝑞−
(𝑘+1)(𝑘+2)

2 , 𝑛 > 0. (18)

Proof. From relations (15) and (16), it follows that

�̃�𝑛+2(1, 𝑞) = �̃�𝑛+1(1, 𝑞) −
𝑞𝑛+1

(1 + 𝑞𝑛+1)(1 + 𝑞𝑛+2)
�̃�𝑛(1, 𝑞), 𝑛 > 0.

Equivalently,

(1 + 𝑞𝑛+2)�̃�𝑛+2(1, 𝑞) − 𝑞𝑛+2�̃�𝑛+1(1, 𝑞) =

=
1

1 + 𝑞𝑛+1

(︁
(1 + 𝑞𝑛+1)�̃�𝑛+1(1, 𝑞) − 𝑞𝑛+1�̃�𝑛(1, 𝑞)

)︁
, 𝑛 > 0.

Therefore,

(1+𝑞𝑛+2)�̃�𝑛+2(1, 𝑞)−𝑞𝑛+2�̃�𝑛+1(1, 𝑞) =
(1 + 𝑞)�̃�1(1, 𝑞) − 𝑞�̃�0(1, 𝑞)

𝑛∏︀
𝑘=0

(1 + 𝑞𝑘+1)
, 𝑛 > 0.
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Since �̃�0(1, 𝑞) = �̃�1(1, 𝑞) = 1, we get

�̃�𝑛+1(1, 𝑞) =
1

1 + 𝑞−𝑛−1
�̃�𝑛(1, 𝑞) +

𝑞−
(𝑛+1)(𝑛+2)

2

𝑛+1∏︀
𝑘=0

(1 + 𝑞−𝑘)

, 𝑛 > 1,

but the previous relation is valid for 𝑛 = 0. Using Lemma 3, we obtain

�̃�𝑛+1(1, 𝑞) =
1

𝑛+2∏︀
𝑘=1

(1 + 𝑞−𝑘)

(︁
1 +

𝑛∑︁
𝑘=0

𝑞−
(𝑘+1)(𝑘+2)

2

)︁
=

=
2

(−1; 𝑞−1)𝑛+2

𝑛+1∑︁
𝑘=0

𝑞−
𝑘(𝑘+1)

2 , 𝑛 > 0.

Thus, �̃�𝑛(1, 𝑞) =
2

(−1; 𝑞−1)𝑛+1

𝑛∑︁
𝑘=0

𝑞−
𝑘(𝑘+1)

2 , 𝑛 > 1. But the previous rela-

tion is valid for 𝑛 = 0: this provides (17).
Based on relations (15) and (16), we get

(1 + 𝑞𝑛+3)�̃�
(1)
𝑛+2(1, 𝑞) − 𝑞𝑛+3�̃�

(1)
𝑛+1(1, 𝑞) =

=
1

1 + 𝑞𝑛+2

(︁
(1 + 𝑞𝑛+2)�̃�

(1)
𝑛+1(1, 𝑞) − 𝑞𝑛+2�̃� (1)

𝑛 (1, 𝑞)
)︁
, 𝑛 > 0.

Then

(1 + 𝑞𝑛+3)�̃�
(1)
𝑛+2(1, 𝑞) − 𝑞𝑛+3�̃�

(1)
𝑛+1(1, 𝑞) =

=
(1 + 𝑞2)�̃�

(1)
1 (1, 𝑞) − 𝑞2�̃�

(1)
0 (1, 𝑞)

𝑛∏︀
𝑘=0

(1 + 𝑞𝑘+2)
=

2(1 + 𝑞)
𝑛+2∏︀
𝑘=0

(1 + 𝑞𝑘)

, 𝑛 > 0.

So,

�̃�
(1)
𝑛+1(1, 𝑞) =

1

1 + 𝑞−𝑛−2
�̃� (1)
𝑛 (1, 𝑞) +

2(1 + 𝑞)𝑞−
(𝑛+2)(𝑛+3)

2

𝑛+2∏︀
𝑘=0

(1 + 𝑞−𝑘)

, 𝑛 > 1,

and, by Lemma 3, since the last relation is valid for 𝑛 = 0, we get

�̃�
(1)
𝑛+1(1, 𝑞) =

2(1 + 𝑞)

(−1; 𝑞−1)𝑛+3

𝑛+1∑︁
𝑘=0

𝑞−
(𝑘+1)(𝑛+2)

2 , 𝑛 > 0.



𝑞-Chebyshev polynomials 89

By virtue of the previous relation and the fact that �̃� (1)
0 (1, 𝑞) = 1, we

obtain relation (18). �

Theorem 2. We have the following connection formulas:

𝑇𝑛+2(𝑥, 𝑞) = �̃�𝑛+2(𝑥, 𝑞) −
𝑞2𝑛+3

(1 + 𝑞𝑛+1)(1 + 𝑞𝑛+2)
�̃�𝑛(𝑥, 𝑞), 𝑛 > 0, (19)

𝐻𝑞(𝑇𝑛+1(𝑥, 𝑞)) =
𝑞𝑛+1 − 1

𝑞 − 1
�̃�𝑛(𝑥, 𝑞), 𝑛 > 0, (20)

(𝑥2 − 1)�̃�𝑛(𝑥, 𝑞) = 𝑇𝑛+2(𝑥, 𝑞) + 𝑏𝑛𝑇𝑛(𝑥, 𝑞), 𝑛 > 0, (21)

(𝑥2 − 1)𝐻𝑞(𝑇𝑛+1(𝑥, 𝑞)) =
𝑞𝑛+1 − 1

𝑞 − 1

{︁
𝑇𝑛+2(𝑥, 𝑞) + 𝑏𝑛𝑇𝑛(𝑥, 𝑞)

}︁
, 𝑛 > 0, (22)

where
𝑏0 = − 1

1 + 𝑞
, 𝑏𝑛 = − 1

(1 + 𝑞𝑛)(1 + 𝑞𝑛+1)
, 𝑛 > 1.

Proof. Based on relation (11), we learn that [2]

𝑇𝑛+2(𝑥, 𝑞) = �̃�𝑛+2(𝑥, 𝑞) + 𝑎𝑛�̃�𝑛(𝑥, 𝑞), 𝑛 > 0,

where

𝑎𝑛 = −
�̃�𝑛+2(1, 𝑞) − 1

1+𝑞
�̃�

(1)
𝑛+1(1, 𝑞)

�̃�𝑛(1, 𝑞) − 1
1+𝑞

�̃�
(1)
𝑛−1(1, 𝑞)

, 𝑛 > 0, �̃�−1(1, 𝑞) = 0.

By virtue of Lemma 5, we obtain

𝑎𝑛 = − 1

(1 + 𝑞−𝑛−1)(1 + 𝑞−𝑛−2)
, 𝑛 > 0.

This provides (19).

We know that the sequence
{︁ 𝑞 − 1

𝑞𝑛+1 − 1
𝐻𝑞𝑇𝑛+1(𝑥, 𝑞)

}︁
𝑛>0

is a𝐻𝑞-classical

orthogonal sequence with respect to 𝒯 [1]
𝑞 [6]. Moreover, by (9) and for-

mula (2.9) in [6, p.58], we get

𝐻𝑞((𝑥
2 − 𝑞−2)𝒯 [1]

𝑞 ) +
1 − 𝑞−3

1 − 𝑞
𝑥𝒯 [1]

𝑞 = 0.

Comparing the previous equation with the equation (14), we obtain

𝒯 [1]
𝑞 = ℎ

𝑞−
1
2
𝒰𝑞.
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Whence, �̃�𝑛(𝑥, 𝑞) = 𝑞−1
𝑞𝑛+1−1

𝐻𝑞𝑇𝑛+1(𝑥, 𝑞), 𝑛 > 0. Thus, we get (20).
From the functional equation (11), we have [13]

(𝑥2 − 1)�̃�𝑛(𝑥, 𝑞) = 𝑇𝑛+2(𝑥, 𝑞) + 𝑏𝑛𝑇𝑛(𝑥, 𝑞), 𝑛 > 0, (23)

with 𝑏𝑛 =
⟨𝒯𝑞, (𝑥

2 − 1)�̃�𝑛(𝑥, 𝑞)𝑇𝑛(𝑥, 𝑞)⟩
⟨𝒯𝑞, 𝑇 2

𝑛(𝑥, 𝑞)⟩
, 𝑛 > 0.

Equivalently,

𝑏𝑛 =
⟨(𝑥2 − 1)𝒯𝑞, �̃�𝑛(𝑥, 𝑞)𝑇𝑛(𝑥, 𝑞)⟩

⟨𝒯𝑞, 𝑇 2
𝑛(𝑥, 𝑞)⟩

, 𝑛 > 0,

and, by the formula (11), we obtain 𝑏𝑛 = − 1

1 + 𝑞

⟨𝒰𝑞, �̃�𝑛(𝑥, 𝑞)𝑇𝑛(𝑥, 𝑞)⟩
⟨𝒯𝑞, 𝑇 2

𝑛(𝑥, 𝑞)⟩
,

𝑛 > 0. Therefore,

𝑏𝑛 = − 1

1 + 𝑞

⟨𝒰𝑞, �̃�
2
𝑛(𝑥, 𝑞)⟩

⟨𝒯𝑞, 𝑇 2
𝑛(𝑥, 𝑞)⟩

, 𝑛 > 0. (24)

On one hand, we have

⟨𝒯𝑞, 𝑇
2
𝑛(𝑥, 𝑞)⟩ = 𝛾𝒯𝑞𝑛 ⟨𝒯𝑞, 𝑇

2
𝑛−1(𝑥, 𝑞)⟩, 𝑛 > 1.

So, ⟨𝒯𝑞, 𝑇
2
𝑛(𝑥, 𝑞)⟩ =

𝑛∏︀
𝑘=1

𝛾
𝒯𝑞
𝑘 , 𝑛 > 1, and, by (9), we obtain

⟨𝒯𝑞, 𝑇
2
𝑛(𝑥, 𝑞)⟩ = 4

(1 + 𝑞𝑛)𝑞
𝑛(𝑛+1)

2(︁ 𝑛∏︀
𝑘=0

(1 + 𝑞𝑘)
)︁2
, 𝑛 > 1. (25)

On the other hand, we may write

⟨𝒰𝑞, �̃�
2
𝑛(𝑥, 𝑞)⟩ =

𝑛∏︁
𝑘=1

𝛾
𝒰𝑞

𝑘 , 𝑛 > 1.

Using relation (10), we get

⟨𝒰𝑞, �̃�
2
𝑛(𝑥, 𝑞)⟩ = 4(1 + 𝑞)

(1 + 𝑞𝑛+1)𝑞
𝑛(𝑛+1)

2(︁𝑛+1∏︀
𝑘=0

(1 + 𝑞𝑘)
)︁2

, 𝑛 > 0. (26)
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Relations (23), (24), (25), (26) and the fact that 𝑏0 = − 1
1+𝑞

, give (21).
After multiplying both sides of equation (20) by 𝑥2 − 1 and using

relation (21), we deduce (22). �

Remark. When 𝑞 → 1 in equations (19), (20), (21) and, (22) respectively,
we meet, again, the formulas given in [10], [16], [17] concerning the classical
monic Chebyshev polynomials.

4. Integral representation of 𝒯𝑞 and 𝒰𝑞.

Theorem 3. For 𝑓 ∈ 𝒫 , we have

⟨𝒰𝑞, 𝑓⟩ = 𝐾𝑞
1

+1∫︁
−1

(𝑥2; 𝑞2)∞
(𝑞𝑥2; 𝑞2)∞

𝑓(𝑥) 𝑑𝑥, 0 < 𝑞 < 1, (27)

⟨𝒰𝑞, 𝑓⟩ = 𝐾𝑞
2

+𝑞
1
2∫︁

−𝑞
1
2

(𝑞−1𝑥2; 𝑞−2)∞
(𝑞−2𝑥2; 𝑞−2)∞

𝑓(𝑥) 𝑑𝑥, 𝑞 > 1, (28)

⟨𝒯𝑞, 𝑓⟩ =
1

2

{︁
1 − 𝑞

1
2𝐾𝑞

1

𝑞 + 1

+𝑞−
1
2∫︁

−𝑞−
1
2

(𝑞𝑥2; 𝑞2)∞
(𝑥+ 1)(𝑞2𝑥2; 𝑞2)∞

𝑑𝑥
}︁
𝑓(−1)+

+
1

2

{︁
1 +

𝑞
1
2𝐾𝑞

1

𝑞 + 1

+𝑞−
1
2∫︁

−𝑞−
1
2

(𝑞𝑥2; 𝑞2)∞
(𝑥− 1)(𝑞2𝑥2; 𝑞2)∞

𝑑𝑥
}︁
𝑓(1)+

+
𝑞

1
2𝐾𝑞

1

𝑞 + 1

+𝑞−
1
2∫︁

−𝑞−
1
2

(𝑞𝑥2; 𝑞2)∞
(1 − 𝑥2)(𝑞2𝑥2; 𝑞2)∞

𝑓(𝑥) 𝑑𝑥, 0 < 𝑞 < 1, (29)

⟨𝒯𝑞, 𝑓⟩ =
1

2

{︁
1 − 𝑞

1
2𝐾𝑞

2

𝑞 + 1

+1∫︁
−1

(𝑥2; 𝑞−2)∞

(𝑥+ 1)(𝑞−1𝑥2; 𝑞
−2)
∞

𝑑𝑥
}︁
𝑓(−1)+

+
1

2

{︁
1 +

𝑞
1
2𝐾𝑞

2

𝑞 + 1

+1∫︁
−1

(𝑥2; 𝑞−2)∞
(𝑥− 1)(𝑞−1𝑥2; 𝑞−2)∞

𝑑𝑥
}︁
𝑓(1)+
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+
𝑞

1
2𝐾𝑞

2

𝑞 + 1

+1∫︁
−1

(𝑥2; 𝑞−2)∞
(1 − 𝑥2)(𝑞−1𝑥2; 𝑞−2)∞

𝑓(𝑥)𝑑𝑥, 𝑞 > 1, (30)

where

(𝐾𝑞
1)−1 =

+1∫︁
−1

(𝑥2; 𝑞2)∞
(𝑞𝑥2; 𝑞2)∞

𝑑𝑥, (𝐾𝑞
2)−1 =

+𝑞
1
2∫︁

−𝑞
1
2

(𝑞−1𝑥2; 𝑞−2)∞
(𝑞−2𝑥2; 𝑞−2)∞

𝑑𝑥. (31)

Proof. We need the following formula [11]:

(𝑥− 𝑎)−1(𝑥− 𝑎)𝑤 = 𝑤 − (𝑤)0𝛿𝑎, 𝑎 ∈ C, 𝑤 ∈ 𝒫 ′. (32)

From the definition of the form 𝒰𝑞, we have

⟨𝒰𝑞, 𝑓⟩ =
⟨︀
𝑢
(︀1

2

)︀
, 𝑓(𝑞−

1
2𝑥)

⟩︀
, 𝑓 ∈ 𝒫 .

By virtue of Proposition 4.3 in [15], we get

⟨𝒰𝑞, 𝑓⟩ = 𝐾1

+𝑞
1
2∫︁

−𝑞
1
2

(𝑞−1𝑥2; 𝑞2)∞
(𝑥2; 𝑞2)∞

𝑓(𝑞−
1
2𝑥) 𝑑𝑥, 0 < 𝑞 < 1, (33)

⟨𝒰𝑞, 𝑓⟩ = 𝐾2

+𝑞∫︁
−𝑞

(𝑞−2𝑥2; 𝑞−2)∞
(𝑞−3𝑥2; 𝑞−2)∞

𝑓(𝑞−
1
2𝑥) 𝑑𝑥, 𝑞 > 1, (34)

where 𝐾1 and 𝐾2 are normalization constants.
The change of variable 𝑡 = 𝑞−

1
2𝑥 in (33) and (34) gives relations (27)

and (28), respectively.
Taking into account the functional equation (11), we may write

(𝑥− 1)−1(𝑥− 1)(𝑥+ 1)𝒯𝑞 = − 1

𝑞 + 1
(𝑥− 1)−1ℎ

𝑞−
1
2
𝒰𝑞,

and, by formula (32) and the fact that ((𝑥+ 1)𝒯𝑞)0 = 1, we get

(𝑥+ 1)𝒯𝑞 = 𝛿1 −
1

𝑞 + 1
(𝑥− 1)−1ℎ

𝑞−
1
2
𝒰𝑞.
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Always by (32), it follows that

𝒯𝑞 = 𝛿−1 + (𝑥+ 1)−1𝛿1 −
1

𝑞 + 1
(𝑥+ 1)−1(𝑥− 1)−1ℎ

𝑞−
1
2
𝒰𝑞.

But (𝑥+ 1)−1𝛿1 = 1
2
(𝛿1 − 𝛿−1); then

𝒯𝑞 =
1

2
(𝛿−1 + 𝛿1) −

1

𝑞 + 1
(𝑥+ 1)−1(𝑥− 1)−1ℎ

𝑞−
1
2
𝒰𝑞.

This implies for 𝑓 ∈ 𝒫

⟨𝒯𝑞, 𝑓⟩ =
1

2
(𝑓(−1) + 𝑓(1)) − 1

𝑞 + 1
Λ(𝑓). (35)

where
Λ(𝑓) = ⟨(𝑥+ 1)−1(𝑥− 1)−1ℎ

𝑞−
1
2
𝒰𝑞, 𝑓⟩.

We may write

Λ(𝑓) = ⟨ℎ
𝑞−

1
2
𝒰𝑞, 𝜃1𝜃−1𝑓⟩ =

=
1

2

⟨
ℎ
𝑞−

1
2
𝒰𝑞,

2𝑓(𝑥) − 𝑥(𝑓(1) − 𝑓(−1)) − 𝑓(−1) − 𝑓(1)

𝑥2 − 1

⟩
.

Therefore,

Λ(𝑓) =
1

2

⟨
𝒰𝑞,

2𝑓(𝑞−
1
2𝑥) − (𝑞−

1
2𝑥+ 1)𝑓(1) + (𝑞−

1
2𝑥− 1)𝑓(−1)

𝑞−1𝑥2 − 1

⟩
. (36)

When 0 < 𝑞 < 1, we get, by (27),

Λ(𝑓) =
1

2
𝐾𝑞

1×

×
+1∫︁

−1

(𝑥2; 𝑞2)∞
(𝑞𝑥2; 𝑞2)∞

2𝑓(𝑞−
1
2𝑥) − (𝑞−

1
2𝑥+ 1)𝑓(1) + (𝑞−

1
2𝑥− 1)𝑓(−1))

𝑞−1𝑥2 − 1
𝑑𝑥.

Let 𝑡 = 𝑞−
1
2𝑥, it follows that

Λ(𝑓) = 𝑞
1
2𝐾𝑞

1

+𝑞−
1
2∫︁

−𝑞−
1
2

(𝑞𝑡2; 𝑞2)∞𝑓(𝑥)

(𝑡2 − 1)(𝑞2𝑡2; 𝑞2)∞
𝑑𝑡+
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+
1

2
𝑞

1
2𝐾𝑞

1

(︁ +𝑞−
1
2∫︁

−𝑞−
1
2

(𝑞𝑡2; 𝑞2)∞
(𝑡+ 1)(𝑞2𝑡2; 𝑞2)∞

𝑑𝑡
)︁
𝑓(−1)×

× 1

2
𝑞

1
2𝐾𝑞

1

(︁ +𝑞−
1
2∫︁

−𝑞−
1
2

(𝑞𝑡2; 𝑞2)∞
(1 − 𝑡)(𝑞2𝑡2; 𝑞2)∞

𝑑𝑡
)︁
𝑓(1).

By virtue of the previous relation and (35), we deduce (29).
In the case of 𝑞 > 1, we get, by (28) and (36),

Λ(𝑓) =
1

2
𝐾𝑞

2×

×
+𝑞

1
2∫︁

−𝑞
1
2

(𝑞−1𝑥2; 𝑞−2)∞
(𝑞−2𝑥2; 𝑞−2)∞

2𝑓(𝑞−
1
2𝑥) − (𝑞−

1
2𝑥+ 1)𝑓(1) + (𝑞−

1
2𝑥− 1)𝑓(−1)

𝑞−1𝑥2 − 1
𝑑𝑥,

Using the change of variable 𝑦 = 𝑞−
1
2𝑥, we obtain

Λ(𝑓) = 𝑞
1
2𝐾𝑞

2

+1∫︁
−1

(𝑦2; 𝑞−2)∞𝑓(𝑦)

(𝑦2 − 1)(𝑞−1𝑦2; 𝑞−2)∞
𝑑𝑦+

+
1

2
𝑞

1
2𝐾𝑞

2

(︁ +1∫︁
−1

(𝑦2; 𝑞−2)∞
(𝑦 + 1)(𝑞−1𝑦2; 𝑞−2)∞

𝑑𝑦
)︁
𝑓(−1)+

+
1

2
𝑞

1
2𝐾𝑞

2

(︁ +1∫︁
−1

(𝑦2; 𝑞−2)∞
(1 − 𝑦)(𝑞−1𝑦2; 𝑞−2)∞

𝑑𝑦
)︁
𝑓(1).

Taking into account the last relation and (35), we get (30). �

Corollary 1. When 𝑞 → 1 in representation (29) (respectively, (30)), we
obtain the integral representation of 𝒯 .

Proof. We need the following relations [2]:

+1∫︁
−1

√
1 − 𝑥√
1 + 𝑥

𝑑𝑥 =

+1∫︁
−1

√
1 + 𝑥√
1 − 𝑥

𝑑𝑥 = 𝜋. (37)
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Using relation (7), we obtain, successively:

lim
𝑞→1

(𝑥2, 𝑞2)∞
(𝑞𝑥2, 𝑞2)∞

= lim
𝑞→1

(𝑞𝑥2, 𝑞2)∞
(𝑞2𝑥2, 𝑞2)∞

=
√

1 − 𝑥2, |𝑥| < 1. (38)

lim
𝑞→1

(𝑥2, 𝑞−2)∞
(𝑞−1𝑥2, 𝑞−2)∞

= lim
𝑞→1

(𝑞−1𝑥2, 𝑞−2)∞
(𝑞−2𝑥2, 𝑞−2)∞

=
√

1 − 𝑥2, |𝑥| < 1 (39)

Based on relations (38) and (2), we get

lim
𝑞→1

𝐾𝑞
1 = lim

𝑞→1

(︁ +1∫︁
−1

(𝑥2; 𝑞2)∞
(𝑞𝑥2; 𝑞2)∞

𝑑𝑥
)︁−1

=
1

+1∫︀
−1

√
1 − 𝑥2 𝑑𝑥

=
2

𝜋
. (40)

On one hand, by (38) and (37) we have

lim
𝑞→1

+𝑞−
1
2∫︁

−𝑞−
1
2

(𝑞𝑥2; 𝑞2)∞
(𝑥+ 1)(𝑞2𝑥2; 𝑞2)∞

𝑑𝑥 =

+1∫︁
−1

√
1 − 𝑥√
1 + 𝑥

𝑑𝑥 = 𝜋. (41)

On the other hand, by relations (38) and (37), we obtain

lim
𝑞→1

+𝑞−
1
2∫︁

−𝑞−
1
2

(𝑞𝑥2; 𝑞2)∞
(𝑥− 1)(𝑞2𝑥2; 𝑞2)∞

𝑑𝑥 = −
+1∫︁

−1

√
1 + 𝑥√
1 − 𝑥

𝑑𝑥 = −𝜋. (42)

Using relation (38), we see that

lim
𝑞→1

+𝑞−
1
2∫︁

−𝑞−
1
2

(𝑞𝑥2; 𝑞2)∞𝑓(𝑥)

(1 − 𝑥2)(𝑞2𝑥2; 𝑞2)∞
𝑑𝑥 =

+1∫︁
−1

𝑓(𝑥)√
1 − 𝑥2

𝑑𝑥, 𝑓 ∈ 𝒫 . (43)

Taking into account relations (38)–(43) and (30), we get

lim
𝑞→1

⟨𝒯𝑞, 𝑓⟩ =
1

𝜋

+1∫︁
−1

1√
1 − 𝑥2

𝑓(𝑥) 𝑑𝑥 = ⟨𝒯 , 𝑓⟩, 𝑓 ∈ 𝒫 .
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In a similar way, we obtain, from (39):

lim
𝑞→1

𝐾𝑞
2 =

2

𝜋
.

Also, by relations (39) and (38), we can deduce, successively,

lim
𝑞→1

+1∫︁
−1

(𝑥2; 𝑞−2)∞

(𝑥+ 1)(𝑞−1𝑥2; 𝑞
−2)
∞

𝑑𝑥 =

+1∫︁
−1

√
1 − 𝑥√
𝑥+ 1

𝑑𝑥 = 𝜋. (44)

lim
𝑞→1

+1∫︁
−1

(𝑥2; 𝑞−2)∞
(𝑥− 1)(𝑞−1𝑥2; 𝑞−2)∞

𝑑𝑥 = −
+1∫︁

−1

√
1 + 𝑥√
1 − 𝑥

𝑑𝑥. (45)

By (39), we get

lim
𝑞→1

+1∫︁
−1

(𝑥2; 𝑞−2)∞
(1 − 𝑥2)(𝑞−1𝑥2; 𝑞−2)∞

𝑓(𝑥) 𝑑𝑥 =

+1∫︁
−1

𝑓(𝑥)√
1 − 𝑥2

𝑑𝑥, 𝑓 ∈ 𝒫 . (46)

Based on relations (44), (45), (46), and (31), we obtain

lim
𝑞→1

⟨𝒯𝑞,𝑓⟩ =
1

𝜋

+1∫︁
−1

1√
1 − 𝑥2

𝑓(𝑥) 𝑑𝑥 = ⟨𝒯 , 𝑓⟩, 𝑓 ∈ 𝒫 .

Hence, the desired results. �

In the following section, we give explicitly the expression of the Stielt-
jes functions of the forms 𝒯𝑞 and 𝒰𝑞.

5. The Stieltjes functions of the forms 𝒯𝑞 and 𝒰𝑞.

Lemma 6. We have

(𝑧2 − 𝑞2)𝐻𝑞−1(𝑆(𝑧,𝒯𝑞)) = −𝑞𝑧𝑆(𝑧,𝒯𝑞), (47)

(𝑧2 − 𝑞)𝐻𝑞−1(𝑆(𝑧,𝒰𝑞)) = 𝑧𝑆(𝑧,𝒰𝑞) + 𝑞 + 1. (48)

Proof. We need the following formulas [2]:

𝑤(1)(𝑥) = 1, 𝑤(𝜉)(𝑥) = 𝑥, 𝑤 ∈ 𝒫 ′ (symmetric form). (49)



𝑞-Chebyshev polynomials 97

From the functional equation in (9) and Theorem 2, we have(︀
𝑞−2𝑧2 − 1

)︀
𝐻𝑞−1(𝑆(𝑧, 𝒯𝑞) = −

(︁
𝐻𝑞−1(𝑧2 − 1)) − 𝑧

)︁
(𝑆(𝑧,𝒯𝑞)(𝑧)−

−𝐻𝑞−1(𝒯𝑞𝜃0(𝑥
2 − 1))(𝑧) − 𝑞(𝒯𝑞𝜃0)(−𝑞−1𝑥)(𝑧).

However, 𝐻𝑞−1(𝑧2 − 1)) − 𝑧 = −𝑞−1𝑧, and with (49), we have

−𝐻𝑞−1(𝒯𝑞𝜉)(𝑧) + (𝒯𝑞1)(𝑧) = −𝐻𝑞−1(𝑧) + (𝒯𝑞1)(𝑧) = 0.

Thus, we conclude the relation (47).
By the functional equation in (10) and Theorem 2, we may write

(︀
𝑞−2𝑧2−𝑞−1

)︀
𝐻𝑞−1(𝑆(𝑧,𝒰𝑞))=−

(︁
𝐻𝑞−1(𝑧2−𝑞−1)+

𝑞 − 𝑞−2

1 − 𝑞
𝑧
)︁

(𝑆(𝑧,𝒯𝑞)(𝑧)−

−𝐻𝑞−1(𝒰𝑞𝜃0(𝑥
2 − 𝑞−1))(𝑧) − 𝑞(𝒰𝑞𝜃0)

(︁1 − 𝑞−3

1 − 𝑞
𝑥
)︁

(𝑧),

since 𝐻𝑞−1(𝑧2 − 𝑞−1) + 𝑞−𝑞−2

1−𝑞
𝑧 = −𝑞−2𝑧. By (47),

−𝐻𝑞−1(𝒰𝑞𝜃0(𝑥
2 − 𝑞−1))(𝑧) − 𝑞(𝒰𝑞𝜃0)(

1 − 𝑞−3

1 − 𝑞
𝑥)(𝑧) =

= −𝐻𝑞−1(𝑥)(𝑧) − 𝑞 − 𝑞−2

1 − 𝑞
𝒰𝑞(1)(𝑧) = 𝑞−1 + 𝑞−2.

Which proves relation (48). �

Theorem 4. The following formulas hold:

𝑆(𝑧,𝒯𝑞) = −1

𝑧

(𝑞2𝑧−2; 𝑞2)∞
(𝑞𝑧−2; 𝑞2)∞

, |𝑞| < 1, 𝑧 ̸= 0, (50)

𝑆(𝑧,𝒯𝑞) = −1

𝑧

(𝑞−1𝑧−2; 𝑞−2)∞
(𝑧−2; 𝑞−2)∞

, |𝑞| > 1, 𝑧 ̸= 0, (51)

𝑆(𝑧,𝒰𝑞) = (1 + 𝑞−1)
{︁𝑧2 − 𝑞

𝑧

(𝑞3𝑧−2; 𝑞2)∞
(𝑞2𝑧−2; 𝑞2)∞

− 𝑧
}︁
, |𝑞| < 1, 𝑧 ̸= 0, (52)

𝑆(𝑧,𝒰𝑞) = (1 + 𝑞−1)
{︁𝑧2 − 𝑞

𝑧

(𝑧−2; 𝑞−2)∞
(𝑞𝑧−2; 𝑞−2)∞

− 𝑧
}︁
, |𝑞| > 1, 𝑧 ̸= 0. (53)
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Proof. Equation (47) can be written as follows:

𝑆(𝑞−1𝑧, 𝒯𝑞) =
𝑞𝑧2 − 𝑞2

𝑧2 − 𝑞2
𝑆(𝑧, 𝒯𝑞).

Therefore, 𝑆
(︁ 1

𝑞𝑧
, 𝒯𝑞

)︁
= 𝑞

1 − 𝑞𝑧2

1 − 𝑞2𝑧2
𝑆
(︁1

𝑧
, 𝒯𝑞

)︁
, 𝑧 ̸= 0.

Let
𝑆
(︁1

𝑧
, 𝒯𝑞

)︁
= 𝑧𝐴(𝑧), 𝑧 ̸= 0. (54)

Then

𝐴(𝑞𝑧) =
1 − 𝑞𝑧2

1 − 𝑞2𝑧2
𝐴(𝑧), 𝑧 ̸= 0. (55)

This implies

𝐴(𝑧) = 𝛼
(𝑞2𝑧2, 𝑞2)∞
(𝑞𝑧2, 𝑞2)∞

, |𝑞| < 1, 𝑧 ̸= 0, 𝛼 ∈ C.

By (54), we get

𝑆(𝑧, 𝒯𝑞) =
𝛼

𝑧

(𝑞2𝑧−2, 𝑞2)∞
(𝑞𝑧−2, 𝑞2)∞

, |𝑞| < 1, 𝑧 ̸= 0.

But 1
𝑧
𝑆(1

𝑧
, 𝒯𝑞) = 𝛼

(𝑞2𝑧2, 𝑞2)∞
(𝑞𝑧2, 𝑞2)∞

, and lim
𝑧→0

1
𝑧
𝑆(1

𝑧
,𝒯𝑞) = −1. Then 𝛼 = −1,

which provides (50).
From relation (55), we get

𝐴(𝑞−1𝑧) =
1 − 𝑧2

1 − 𝑞−1𝑧2
𝐴(𝑧), 𝑧 ̸= 0.

Thus,

𝐴(𝑧) = 𝛽
(𝑞−1𝑧2; 𝑞−2)∞

(𝑧2; 𝑞−2)∞
, 𝑧 ̸= 0, |𝑞| > 1, 𝛽 ∈ C,

and, by relation (54), it follows that

𝑆(𝑧, 𝒯𝑞) =
𝛽

𝑧

(𝑞−1𝑧−2,𝑞2)∞
(𝑧−2,𝑞−2)∞

, |𝑞| > 1, 𝑧 ̸= 0.

Since lim
𝑧→0

1
𝑧
𝑆(1

𝑧
,𝒯𝑞) = −1, we obtain 𝛽 = −1. So, we get (51).
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From the functional equation (11), we get

𝒰𝑞 = −(𝑞 + 1)ℎ
𝑞
1
2
((𝑥2 − 1)𝒯𝑞),

and by formula (5), it follows that

𝒰𝑞 = −(𝑞 + 1)((𝑞−1𝑥2 − 1)ℎ
𝑞
1
2
𝒯𝑞).

Then
𝑆(𝑧,𝒰𝑞) = −(𝑞 + 1)𝑆(𝑧, (𝑞−1𝑥2 − 1)ℎ

𝑞
1
2
𝒯𝑞)),

and, by (4), we get

𝑆(𝑧,𝒰𝑞) = −(𝑞 + 1)(𝑞−1𝑧2 − 1)𝑆(𝑧, ℎ
𝑞
1
2
𝒯𝑞))−

− (𝑞 + 1)(ℎ
𝑞
1
2
𝒯𝑞)𝜃0(𝑞

−1𝑥2 − 1))(𝑧).

But
(ℎ

𝑞
1
2
𝒯𝑞)𝜃0(𝑞

−1𝑥2 − 1))(𝑧) = 𝑞−1(ℎ
𝑞
1
2
𝒯𝑞)(𝜉)(𝑥) = 𝑞−1𝑥,

𝑆(𝑧, ℎ
𝑞
1
2
𝒯𝑞)) = 𝑞−

1
2𝑆(𝑞−

1
2 𝑧,𝒯𝑞).

Then

𝑆(𝑧,𝒰𝑞) = −(𝑞−1 + 1)
(︁
𝑞

1
2 (𝑞−1𝑧2 − 1)𝑆(𝑞−

1
2 𝑧,𝒯𝑞) + 𝑧)

)︁
.

Using relations (50) and (51), we obtain formulas (52) and (53). �
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