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ABOUT ONE PROBLEM ON EXTREMAL
DECOMPOSITION

Abstract. In the paper, we consider an open problem of finding
the maximum of product of inner radii of mutually non-overlapping
domains with respect to the points of the unit circle on a certain
positive degree 𝛾 of the inner radius of the domain with respect to
the origin, moreover, the domain containing origin does not inter-
sect with other domains.
Key words: inner radius of the domain, mutually non-overlapping
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1. Preliminaries. Let N, C be the sets of natural and complex
numbers, respectively, C = C

⋃︀
{∞} be its one-point compactification,

R+ = (0,∞). Let 𝐵 be a domain in C. Let

𝑔𝐵(𝑧, 𝑎) = ℎ𝐵,𝑎 + log
1

|𝑧 − 𝑎|
+ 𝑜(1)

be the Green function of the domain 𝐵 with respect to a point 𝑎 ∈ 𝐵.
Quantity 𝑟(𝐵, 𝑎) := exp(ℎ𝐵,𝑎) is called an inner radius of the domain
𝐵 ⊂ C with respect to a point 𝑎 ∈ 𝐵 (see, for example, [6], [9], [11], [15]).

Let 𝑛 ∈ N, 𝑛 > 2. A set of points 𝐴𝑛 :=
{︀
𝑎𝑘 ∈ C : 𝑘 = 1, 𝑛

}︀
is called

an 𝑛-radial system if |𝑎𝑘| ∈ R+ and 0 = arg 𝑎1 < . . . < arg 𝑎𝑛 < 2𝜋.
Denote the numbers 𝛼𝑘, 𝑘 = 1, 𝑛 as follows: 𝛼1 := 1

𝜋
(arg 𝑎2 − arg 𝑎1),

𝛼2 :=
1
𝜋
(arg 𝑎3− arg 𝑎2), . . . , 𝛼𝑛 := 1

𝜋
(2𝜋− arg 𝑎𝑛). Obviously,

𝑛∑︀
𝑘=1

𝛼𝑘 = 2.

Let 𝛼0 = max
𝑘

𝛼𝑘.
Consider the following problem, which was formulated in [9], [10] in

the list of unsolved problems.
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The Dubinin Problem. Prove that the maximum of the functional

𝐼𝑛(𝛾) = 𝑟𝛾(𝐵0, 𝑎0)
𝑛∏︁

𝑘=1

𝑟(𝐵𝑘, 𝑎𝑘),

where 𝐵0, 𝐵1, 𝐵2, . . . , 𝐵𝑛, (𝑛 > 2) are pairwise non-overlapping domains
in C, 𝑎0 = 0, |𝑎𝑘| = 1, 𝑘 = 1, 𝑛, 𝑎𝑘 ∈ 𝐵𝑘, 𝑘 = 0, 𝑛 and 𝛾 6 𝑛, is attained
at a configuration of domains 𝐵𝑘 and points 𝑎𝑘 possessing rotational 𝑛-
symmetry.

In the paper [9] the above-formulated problem was solved for 𝛾 = 1
and all values of the natural parameter 𝑛 > 2. Namely, it was shown that
the following inequality holds:

𝑟(𝐵0, 0)
𝑛∏︁

𝑘=1

𝑟(𝐵𝑘, 𝑎𝑘) 6 𝑟 (𝐷0, 0)
𝑛∏︁

𝑘=1

𝑟 (𝐷𝑘, 𝑑𝑘) ,

where 𝑑𝑘, 𝐷𝑘, 𝑘 = 0, 𝑛, are the poles and circular domains of the quadratic
differential

𝑄(𝑤)𝑑𝑤2 = −(𝑛2 − 1)𝑤𝑛 + 1

𝑤2(𝑤𝑛 − 1)2
𝑑𝑤2.

In the work [14], Kovalev got the solution for systems of points for which
the following inequalities hold:

|𝑎𝑘| = 1, 0 < 𝛼𝑘 6 2/
√
𝛾, 𝑘 = 1, 𝑛, 𝑛 > 5.

In the work [3], it was shown that the result by Kovalev is also true for
𝑛 = 4. In the monograph [2] the problem was solved for an arbitrary 𝛾 > 1
but starting from some previously unknown number 𝑛. The next step was
to study this problem at the restrictions 1 < 𝛾 6 𝑛𝛿, where 0 < 𝛿 < 1
(see, for example [7], [8], [18–20]).

In the paper [5], the authors obtained its complete solution for 𝑛 = 2.
Note that the result of [5] is a consequence of the well-known theorem of
Kolbina [13].

Let

𝐼0𝑛(𝛾) := 𝑟𝛾(𝐷0, 0)
𝑛∏︁

𝑘=1

𝑟(𝐷𝑘, 𝑑𝑘),

where 𝑑𝑘, 𝐷𝑘, 𝑘 = 0, 𝑛, 𝑑0 = 0, be, respectively, the poles and circular
domains of the quadratic differential

𝑄(𝑤)𝑑𝑤2 = −(𝑛2 − 𝛾)𝑤𝑛 + 𝛾

𝑤2(𝑤𝑛 − 1)2
𝑑𝑤2. (1)
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As has been shown in Theorem 5.2.3 [2], the quantity 𝐼0𝑛(𝛾) takes the form

𝐼0𝑛(𝛾) =

(︂
4

𝑛

)︂𝑛
(︀
4𝛾
𝑛2

)︀ 𝛾
𝑛(︀

1− 𝛾
𝑛2

)︀𝑛+ 𝛾
𝑛

(︃
1−

√
𝛾

𝑛

1 +
√
𝛾

𝑛

)︃2
√
𝛾

. (2)

Theorem 1. [5] Let 𝛾 ∈ (1, 2]. Then, for any different points 𝑎1 and 𝑎2
of the unit circle and any pairwise non-overlapping domains 𝐵0, 𝐵1, 𝐵2,
𝑎0 = 0 ∈ 𝐵0 ⊂ C, 𝑎1 ∈ 𝐵1 ⊂ C, 𝑎2 ∈ 𝐵2 ⊂ C, the following inequality
holds:

𝑟𝛾 (𝐵0, 0) 𝑟 (𝐵1, 𝑎1) 𝑟 (𝐵2, 𝑎2) 6 𝐼02 (𝛾)

(︂
1

2
|𝑎1 − 𝑎2|

)︂2−𝛾

.

The sign of equality is attained when the points 𝑎0, 𝑎1, 𝑎2 and the do-
mains 𝐵0, 𝐵1, 𝐵2 are, respectively, the poles and circular domains of the
quadratic differential

𝑄(𝑤)𝑑𝑤2 = −(4− 𝛾)𝑤2 + 𝛾

𝑤2(𝑤2 − 1)2
𝑑𝑤2.

Besides, in the paper [5] the solution for 𝑛 > 3 and 𝛾 ∈ (1,
√
𝑛 ] is

obtained using an upper estimate for the functional 𝐼𝑛(𝛾) [4].

Theorem 2. [5] Let 𝑛 ∈ N, 𝑛 > 3, 𝛾 ∈ (1,
√
𝑛 ]. Then, for any system

of different points 𝐴𝑛 = {𝑎𝑘}𝑛𝑘=1 of a unit circle and for any collection of
mutually non-overlapping domains 𝐵0, 𝐵𝑘, 𝑎0 = 0 ∈ 𝐵0 ⊂ C, 𝑎𝑘 ∈ 𝐵𝑘⊂C,
𝑘 = 1, 𝑛, the following inequality holds:

𝑟𝛾 (𝐵0, 0)
𝑛∏︁

𝑘=1

𝑟 (𝐵𝑘, 𝑎𝑘) 6 𝑟𝛾 (𝐷0, 0)
𝑛∏︁

𝑘=1

𝑟 (𝐷𝑘, 𝑑𝑘) ,

where 𝑑𝑘, 𝐷𝑘, 𝑘 = 0, 𝑛, 𝑑0 = 0, are, respectively, the poles and circular
domains of the quadratic differential (1).

Also, in [5] the following upper estimate for 𝐼𝑛(𝛾) is proved for 𝑛 > 3
and 𝛾 ∈ (1, 𝑛]:

Theorem 3. [5] Let 𝑛 ∈ N, 𝑛 > 3, 𝛾 ∈ (1, 𝑛]. Then, for any system
of different points 𝐴𝑛 = {𝑎𝑘}𝑛𝑘=1 of a unit circle and for any collection of
mutually non-overlapping domains 𝐵0, 𝐵𝑘, 𝑎0 = 0 ∈ 𝐵0 ⊂ C, 𝑎𝑘 ∈ 𝐵𝑘⊂C,
𝑘 = 1, 𝑛, the inequality

𝑟𝛾(𝐵0, 0)
𝑛∏︁

𝑘=1

𝑟(𝐵𝑘, 𝑎𝑘) 6
(︁
sin

𝜋

𝑛

)︁𝑛−𝛾
(︂
𝐼02

(︂
2𝛾

𝑛

)︂)︂𝑛
2
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holds.

In deriving our results, the following estimates specified below are re-
quired:

Lemma 1. [1] Let 𝑛 ∈ N, 𝑛 > 2, 𝛾 > 0. Let {𝐵0, 𝐵1, 𝐵2, . . . , 𝐵𝑛} be a
system of mutually non-overlapping simply connected domains, such that

0∈𝐵0⊂C, 𝑎𝑘∈𝐵𝑘⊂C, |𝑎𝑘|=1, 𝑘=1, 𝑛, and 𝑟𝛾(𝐵0, 0)
𝑛∏︀

𝑘=1

𝑟(𝐵𝑘, 𝑎𝑘)>𝐼0𝑛(𝛾).

Then the following inequality holds:

𝑟 (𝐵0, 0) 6 𝑛− 𝑛
2(𝑛−𝛾) 𝐼0𝑛(𝛾)

− 1
𝑛−𝛾 .

Lemma 2. [4] Let 𝑛 ∈ N, 𝑛 > 2, 𝛾 ∈ (0, 𝑛]. Then for any system of dif-

ferent fixed points 𝐴𝑛 = {𝑎𝑘}𝑛𝑘=1 ⊂ C ∖ {0}, such that
𝑛∏︀

𝑘=1

|𝑎𝑘| 6 1, and for

any collection of mutually non-overlapping domains {𝐵0, 𝐵1, 𝐵2, . . . , 𝐵𝑛},
such that 𝑎0 = 0, 𝑎𝑘 ∈ 𝐵𝑘 ⊂ C, 𝑘 = 0, 𝑛, the following inequality holds:

𝐼𝑛(𝛾) 6 𝑛− 𝛾
2 (𝐼𝑛(0))

1− 𝛾
𝑛 . (3)

According to the condition of the problem 𝑎0 = 0, |𝑎𝑘| = 1, 𝑘 = 1, 𝑛,
further, we assume without loss of generality that 0 = arg 𝑎1 < arg 𝑎2 <
. . . < arg 𝑎𝑛 < 2𝜋. Since in [14] the problem was solved under conditions
0 < 𝛼𝑘 6 2/

√
𝛾, 𝑘 = 1, 𝑛, 𝑛 > 5, then, for a given 𝑛, it is sufficient

to consider only configurations of domains 𝐵𝑘 and points 𝑎𝑘 for which
𝛼0 > 2√

𝛾
. The results of this paper are addendum to the theorem of the

work [14].

2. Main results. In this work, we prove the following propositions.

Theorem 4. Let 𝑛 ∈ N, 𝑛 > 24 and 1 < 𝛾 6 𝑛
2
3
− 2

3
ln(ln(𝑛))
ln(𝑛) . Then the

following inequality holds:

𝑟𝛾(𝐵0, 𝑎0)
𝑛∏︁

𝑘=1

𝑟(𝐵𝑘, 𝑎𝑘) 6

(︂
4

𝑛

)︂𝑛
(︀
4𝛾
𝑛2

)︀ 𝛾
𝑛(︀

1− 𝛾
𝑛2

)︀𝑛+ 𝛾
𝑛

(︃
1−

√
𝛾

𝑛

1 +
√
𝛾

𝑛

)︃2
√
𝛾

,

where 𝐵𝑘, 𝑘 = 0, 𝑛, are mutually non-overlapping simply connected do-
mains in C, 𝑎0 = 0, |𝑎𝑘| = 1, 𝑘 = 1, 𝑛, and the equality is attained, in
particular, for points 𝑎𝑘 and domains 𝐵𝑘 that are, respectively, the poles
and circular domains of the quadratic differential (1).
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Proof. Using Lemma 1 and the result of the paper [14], consider the
case 𝛼0 >

2√
𝛾
and 𝑟 (𝐵0, 0) 6 𝑛− 𝑛

2(𝑛−𝛾) 𝐼0𝑛(𝛾)
− 1

𝑛−𝛾 . Prove that under these
conditions

𝑟𝛾(𝐵0, 𝑎0)
𝑛∏︀

𝑘=1

𝑟(𝐵𝑘, 𝑎𝑘)

(︀
4
𝑛

)︀𝑛 ( 4𝛾

𝑛2 )
𝛾
𝑛

(1− 𝛾

𝑛2 )
𝑛+

𝛾
𝑛

(︂
1−

√
𝛾

𝑛

1+
√
𝛾

𝑛

)︂2
√
𝛾
< 1.

Further, from Lemma 1 𝑟𝛾(𝐵0, 𝑎0) 6 𝑛− 𝑛𝛾
2(𝑛−𝛾) 𝐼0𝑛(𝛾)

− 𝛾
𝑛−𝛾 . Then, using

Theorem 5.2.3 [2], the following estimates hold:

𝑛∏︁
𝑘=1

𝑟(𝐵𝑘,𝑎𝑘) 6 2𝑛
𝑛∏︁

𝑘=1

𝛼𝑘 6 2𝑛𝛼0

(︂
2− 𝛼0

𝑛− 1

)︂𝑛−1

<

<
4𝑛

(𝑛− 1)𝑛−1
√
𝛾

(︂
1− 1

√
𝛾

)︂𝑛−1

.

And, thus, we obtain the inequality

𝐼𝑛(𝛾)

𝐼0𝑛(𝛾)
6

4𝑛

(𝑛−1)𝑛−1√𝛾

(︁
1− 1√

𝛾

)︁𝑛−1

𝑛
𝑛𝛾

2(𝑛−𝛾) 𝐼0𝑛(𝛾)
𝑛

𝑛−𝛾

:= 𝐺𝑛(𝛾).

Combining the previous inequality and inequality (2), we get

𝐺𝑛(𝛾) = 𝑛
𝑛𝛾+2𝑛+2𝛾

2(𝑛−𝛾)

(︁ 𝑛

𝑛− 1

)︁𝑛−1(︁
1− 1

√
𝛾

)︁𝑛−1(︁
1− 𝛾

𝑛2

)︁𝑛2+𝛾
𝑛−𝛾 ×

×
(︁ 1

4
√
𝛾

)︁𝑛+𝛾
𝑛−𝛾
(︁1 + √

𝛾

𝑛

1−
√
𝛾

𝑛

)︁ 2𝑛
√
𝛾

𝑛−𝛾
.

Note that in order to prove Theorem 4, we need to show that 𝐺𝑛(𝛾) < 1
for given 𝑛 and 𝛾.

Evaluate the expression 𝐺𝑛(𝛾) under the conditions of the theorem. It

is not difficult to show that
(︀

𝑛
𝑛−1

)︀𝑛−1
< 𝑒 and

(︀
1− 𝛾

𝑛2

)︀𝑛2+𝛾
𝑛−𝛾 < 1. Also, the

assessment
(︂

1+
√
𝛾

𝑛

1−
√
𝛾

𝑛

)︂ 2𝑛
√
𝛾

𝑛−𝛾 (︁
1

4
√
𝛾

)︁𝑛+𝛾
𝑛−𝛾

< 0,06 < 1
𝑒
is correct. Accordingly,

𝐺𝑛(𝛾) < 𝑛
𝑛𝛾+2𝑛+2𝛾

2(𝑛−𝛾)

(︂
1− 1

√
𝛾

)︂𝑛−1

. (4)
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Evaluate the expression 𝑛
𝑛𝛾+2𝑛+2𝛾

2(𝑛−𝛾)

(︁
1− 1√

𝛾

)︁𝑛−1

. We get the following
transformations:

𝑛
𝑛𝛾+2𝑛+2𝛾

2(𝑛−𝛾)

(︂
1− 1

√
𝛾

)︂𝑛−1

= 𝑛
𝑛𝛾+2𝑛+2𝛾

2(𝑛−𝛾)

(︃(︂
1− 1

√
𝛾

)︂√
𝛾
)︃𝑛−1√

𝛾

<

<

(︃
𝑛

(︂
1

𝑒

)︂ 2𝑛2−2𝑛−2𝑛𝛾+2𝛾
𝑛𝛾

√
𝛾+2𝑛

√
𝛾+2𝛾

√
𝛾

)︃𝑛𝛾+2𝑛+2𝛾
2(𝑛−𝛾)

=

(︃
𝑛

(︂
1

𝑒

)︂ 𝑛

𝛾
3
2

2− 2
𝑛− 2𝛾

𝑛 +
2𝛾

𝑛2

1+ 2
𝛾 + 2

𝑛

)︃𝑛𝛾+2𝑛+2𝛾
2(𝑛−𝛾)

.

Since in the paper [18] the problem is solved for 𝑛 > 12 and 1 < 𝛾 6 𝑛0,45,
it is enough to consider only 𝛾 > 𝑛0,45.

For 𝑛 > 24 and 𝑛0,45 < 𝛾 < 𝑛
2
3
− 2

3
ln(ln(𝑛))
ln(𝑛) , the inequality

2− 2
𝑛
− 2𝛾

𝑛
+ 2𝛾

𝑛2

1 + 2
𝛾
+ 2

𝑛

> 1

is satisfied. So, we have

𝑛

(︂
1

𝑒

)︂ 𝑛

𝛾
3
2

2− 2
𝑛− 2𝛾

𝑛 +
2𝛾

𝑛2

1+ 2
𝛾 + 2

𝑛
< 𝑛

(︂
1

𝑒

)︂ 𝑛

𝛾
3
2
< 𝑛

(︂
1

𝑒

)︂𝑛
ln(ln(𝑛))
ln(𝑛)

= 1.

Thus, from inequality (4) we obtain that for 𝑛 and 𝛾 given in Theorem 4
𝐺𝑛(𝛾) < 1, which means that

𝑟𝛾(𝐵0, 𝑎0)
𝑛∏︁

𝑘=1

𝑟(𝐵𝑘, 𝑎𝑘) 6 𝐼0𝑛(𝛾).

Theorem 4 is proved. �

Theorem 5. Let 𝑛 ∈ N, 𝑛 > 12 and 1 < 𝛾 6 𝑛
2
3
− 2

3
ln(2 ln(𝑛))

ln(𝑛) . Then the
result of the Theorem 4 remains valid without the condition of simply
connected domains 𝐵𝑘, 𝑘 = 0, 𝑛.

Proof. Taking into account the paper [14], consider the case 𝛼0 > 2√
𝛾
.

Prove that under this condition

𝑟𝛾(𝐵0, 𝑎0)
𝑛∏︀

𝑘=1

𝑟(𝐵𝑘, 𝑎𝑘)

𝐼0𝑛(𝛾)
< 1.
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Then, using Theorem 5.2.3 [2], we obtain
𝑛∏︁

𝑘=1

𝑟(𝐵𝑘, 𝑎𝑘) <
4𝑛

(𝑛− 1)𝑛−1
√
𝛾

(︂
1− 1

√
𝛾

)︂𝑛−1

.

Thus, using inequality (3) and the previous inequality,

𝑟𝛾(𝐵0, 𝑎0)
𝑛∏︁

𝑘=1

𝑟(𝐵𝑘, 𝑎𝑘) <

< 𝑛− 𝛾
2 4𝑛−𝛾

(︂
1

𝑛− 1

)︂𝑛2−𝑛−𝑛𝛾+𝛾
𝑛

(︂
1

𝛾

)︂𝑛−𝛾
2𝑛
(︂
1− 1

√
𝛾

)︂𝑛2−𝑛−𝑛𝛾+𝛾
𝑛

.

So, we have the inequality

𝐼𝑛(𝛾)

𝐼0𝑛(𝛾)
6 4−𝛾− 𝛾

𝑛𝑛𝑛− 𝛾
2
+ 2𝛾

𝑛

(︂
1

𝛾

)︂𝑛+𝛾
2𝑛
(︂

1

𝑛− 1

)︂𝑛2−𝑛−𝑛𝛾+𝛾
𝑛

×

×
(︂
1− 1

√
𝛾

)︂𝑛2−𝑛−𝑛𝛾+𝛾
𝑛 (︁

1− 𝛾

𝑛2

)︁𝑛+ 𝛾
𝑛

(︃
1 +

√
𝛾

𝑛

1−
√
𝛾

𝑛

)︃2
√
𝛾

:= 𝑃𝑛(𝛾).

It is easy to see that

𝑛𝑛− 𝛾
2
+ 2𝛾

𝑛

(︂
1

𝑛− 1

)︂𝑛2−𝑛−𝑛𝛾+𝛾
𝑛

= 𝑛𝛾+1+ 𝛾
𝑛

(︂
𝑛

𝑛− 1

)︂𝑛−1−𝛾+ 𝛾
𝑛

.

Taking into account the previous equality, we get the following expression:

𝑃𝑛(𝛾) = 4−𝛾− 𝛾
𝑛

(︂
1

𝛾

)︂𝑛+𝛾
2𝑛

𝑛𝛾+1+ 𝛾
𝑛

(︂
1− 1

√
𝛾

)︂𝑛2−𝑛−𝑛𝛾+𝛾
𝑛

×

×
(︂

𝑛

𝑛− 1

)︂𝑛−1−𝛾+ 𝛾
𝑛 (︁

1− 𝛾

𝑛2

)︁𝑛+ 𝛾
𝑛

(︃
1 +

√
𝛾

𝑛

1−
√
𝛾

𝑛

)︃2
√
𝛾

.

Since in the paper [18] the problem is solved for 𝑛 > 12 and 1 < 𝛾 6 𝑛0,45,
it is enough to consider only 𝛾 > 𝑛0,45. Evaluate the expression 𝑃𝑛(𝛾)
under the conditions of the theorem. Using estimates(︂

𝑛

𝑛− 1

)︂𝑛−1−𝛾+ 𝛾
𝑛

< 𝑒,
(︁
1− 𝛾

𝑛2

)︁𝑛+ 𝛾
𝑛
< 1,
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(︃
1 +

√
𝛾

𝑛

1−
√
𝛾

𝑛

)︃2
√
𝛾

4−𝛾− 𝛾
𝑛

(︂
1

𝛾

)︂𝑛+𝛾
2𝑛

< 0,06 <
1

𝑒
,

we get

𝑃𝑛(𝛾) < 𝑛𝛾+1+ 𝛾
𝑛

(︂
1− 1

√
𝛾

)︂𝑛2−𝑛−𝑛𝛾+𝛾
𝑛

. (5)

Evaluate the expression 𝑛𝛾+1+ 𝛾
𝑛

(︁
1− 1√

𝛾

)︁𝑛2−𝑛−𝑛𝛾+𝛾
𝑛 under the conditions

of the theorem. The following transformations are also correct:

𝑛𝛾+1+ 𝛾
𝑛

(︂
1− 1

√
𝛾

)︂𝑛2−𝑛−𝑛𝛾+𝛾
𝑛

= 𝑛𝛾+1+ 𝛾
𝑛

(︃(︂
1− 1

√
𝛾

)︂√
𝛾
)︃𝑛2−𝑛−𝑛𝛾+𝛾√

𝑛𝛾

<

<

(︃
𝑛

(︂
1

𝑒

)︂ 𝑛2−𝑛−𝑛𝛾+𝛾
𝑛𝛾

√
𝛾+𝑛

√
𝛾+𝛾

√
𝛾

)︃𝛾+1+ 𝛾
𝑛

=

(︃
𝑛

(︂
1

𝑒

)︂ 𝑛

𝛾
3
2

1− 1
𝑛− 𝛾

𝑛+
𝛾

𝑛2

1+ 1
𝛾 + 1

𝑛

)︃𝛾+1+ 𝛾
𝑛

.

For 𝑛 > 12 and 𝑛0,45 < 𝛾 < 𝑛
2
3
− 2

3
ln(2 ln(𝑛))

ln(𝑛) , the inequality

1− 1
𝑛
− 𝛾

𝑛
+ 𝛾

𝑛2

1 + 1
𝛾
+ 1

𝑛

> 0,5

holds. Consequently,

𝑛

(︂
1

𝑒

)︂ 𝑛

𝛾
3
2

1− 1
𝑛− 𝛾

𝑛+
𝛾

𝑛2

1+ 1
𝛾 + 1

𝑛
< 𝑛

(︂
1

𝑒

)︂ 𝑛

2𝛾
3
2
<

< 𝑛

(︂
1

𝑒

)︂ 𝑛

2𝑛

3
2( 2

3− 2
3

ln(2 ln(𝑛))
ln(𝑛) )

= 𝑛

(︂
1

𝑒

)︂ 1
2
𝑛

ln(2 ln(𝑛))
ln(𝑛)

= 1.

Thus, from inequality (5) we obtain that for 𝑛 and 𝛾 given in Theorem 5
𝑃𝑛(𝛾) < 1, that is

𝑟𝛾(𝐵0, 𝑎0)
𝑛∏︁

𝑘=1

𝑟(𝐵𝑘, 𝑎𝑘) 6 𝐼0𝑛(𝛾).

Theorem 5 is proved. �
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