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APPROXIMATION BY LINEAR MEANS OF FOURIER
SERIES AND REALIZATION FUNCTIONALS IN
WEIGHTED ORLICZ SPACES

Abstract. Using one-sided Steklov means, we introduce a new
modulus of smoothness in weighted Orlicz spaces and state its
equivalence with a special K-functional. We prove Stechkin-Ni-
kol’skii-type inequality for trigonometric polynomials and direct es-
timates for the approximation by Riesz-Zygmund, Vallée-Poussin,
and Euler means in weighted Orlicz spaces. By these results, sev-
eral types of realization functionals equivalent to the above cited
K-functional in points 1/n, n € N, are constructed.
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1. Introduction. Let f be a 27-periodic continuous function (f € Cy,),
T, be the space of trigonometric polynomials of degree at most n, n €
Zy =1{0,1,...}, Ifllo = max |f(z)]. Forr € N = {1,2,...}, let us

€0, 27|
consider the r-th difference with step h

T » r ‘
Apfte) =S (1) s+ in
=0 J
and the r-th modulus of continuity w,(f,0)s = sup ||A} f|le. By defini-
0<h

<h<6
tion, the best approximation is given by E,,(f)eo =Inf{||f —tn||oc:tn €10},
n € Z,. Then the classical Jackson-Stechkin theorem states that

En(f)oo < Cwr(f,(n+1) o, n€Zy, (1)
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(see |6, Ch. 7, Theorem 2.3]). On the other hand, for ¢, € T,,, n € N,
r € N, the Stechkin-Nikol’skii inequality

Htg)Hoo < CZHA;/QnthOO < On"wy(ty, 2m/n)00 (2)

holds (see |6, Ch. 4, §12, (12.1)]).
If 7,(f) € T, satisfies the equality ||f — 7.(f)|lco = En(f)oo, then, by
(1) and (2), it is easy to see that

1787 (Flloo < Cn"wi(Ta(f), 27/0)o < Cr'wr(f,1/0)oe, €N,
and the inequality

Cror(f, 1/n)oe <If =7l Nl + 07170 (oo < Cowr(f,1/n)oe (3)

holds for all n € N. The inequality (3) shows that the modulus of smooth-
ness w,(f,1/n) and the K-functional

K(f,n™", Cor, C.) = inf{|| f — glloc + 2 "9 |0 : g € C5.}

are equivalent, where C3_ is the space of 2r-periodic r times continuously
differentiable functions on R. Moreover, we can take g = 7,,(f) to realize
this equivalence. The middle part of (3) is often called the realization
functional for K(f,n™", Cs,, C3_). The idea of such functionals belongs to
Ditzian, Hristov, and Ivanov [7].

In this paper, we study another forms of realization functionals, using
Riesz-Zygmund, generalized Vallée-Poussin, and Euler means of Fourier
series in weighted Orlicz spaces. The main tool is a Stechkin-Nikol’skii-
type inequality (Theorem 4) and direct estimates of approximation by the
cited means. In this paper, We use a new type of a modulus of smoothness
in the weighted Orlicz space similar to that introduced in [19] for variable
exponent spaces and in [20] for weighted Lorentz spaces.

2. Definitions. Let M(u) be a continuous convex strictly increasing

on [0,400) function, such that M(0) = 0, li{)rJlroM(u)/u = 0,
u—

lim M(u)/u = +oo. Then M (u) is called a Young function or an N-

u——+00
function.

We denote by N(v) the complementary function N(v) = max{uv—
—M(u) : u > 0}, v € [0,+00). It is known that N(v) is also a Young
function.
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For a Young function M (u), we denote by Ly o, the linear space of
27-periodic measurable functions f : [0,27] — R, such that the integral

2
[ M(X\f(x)])dx is finite for some X\ > 0. It is well known that Ly ox

0
equipped with the Orlicz norm

[1fllar == sup { 7|f(w)g(x)! dx 7N(\g($)|) dz < 1}

is a Banach space called the Orlicz space generated by M. The Orlicz
spaces may be considered as a generalization of the Lebesgue spaces L},

1 < p < oo, which are obtained in the case M,(u) = w?/p. If L%,
2 1/p

1 < p < oo, we consider the norm || f||, = <f ()P dt) . More about
0

Orlicz spaces can be found in [13] and [17]. Matuszewska and Orlicz [15]
introduced a pair of indices associated with a given Orlicz space Lz, 2.
Let M~' : [0,+00) — [0,400) be the inverse function of a Young
function M and h(t) = limsup M~ (z)/M~(tz), t > 0. Then
Tr—00
log h(t)

t—+oo  logt

log h(t)
o P = 150+0  logt (4)
are called the lower and upper Boyd indices of the function M and of
the Orlicz space Lys o.. Boyd [5] proved that the indices defined above
coincide with the general indices for rearrangement invariant spaces named
after him (see [3, Ch. 3, Definition 5.12]). Matuszewska and Orlicz [15]
considered reciprocals to aj; and £yy. It is known that 0 < ajy < By < 1,
an+ By =1, ay+ =1 If 0 < ay < Py <1, then we say that M
and Ly or has nontrivial Boyd indices.

A nonnegative 2m-periodic measurable function w is called a weight
function if the set w='({0, +00}) has zero Lebesgue measure. For a Young
function M and a weight function w, we denote by L, ., the space of all
2m-periodic measurable functions f, such that fw € Lo, with the norm
| fllar,w = || fw|lar. We will often use the spaces LF, 1 < p < oo, with the

norm || flp,w = [lfwllp.
A weight w belongs to the Muckenhoupt class A,(T), 1 < p < oo, if
1/p 1/p’
lwla, = sup \I[‘l/wp(:r) dx ][|_1/w_p,(:t) dx < 00,

1 1
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where p' = p/(p — 1) and the supremum is taken with respect to all
intervals I C R whose lengths || do not exceed 27 (see [16], where w?
was substituted by w).

The class of trigonometric polynomials was shown to be dense in Ly
for M with nontrivial Boyd indices and w € Ay/q,,(T) N Ay/s,,(T) in [10,
Lemma 4|. Thus, we may define the best approximations E,(f)u,w =

= tin% | f — tullasr,w, n € Zy, and the sequence {E,(f)r v}, decreases
'VLE n

to zero. On the other hand, for a 27-periodic locally integrable function
f, we can consider two variants of Steklov operators

s =07 [ fde, 27 = w7 [ fwdu

In the present paper, we use the following modulus of smoothness:

r

[T =0

=1

Y

M,w

Q. (f,0) 0 = sup

0<h; <o

where [ is the identity operator. In [10], [8], [11] a similar construction
Q(f,0)m,w with 353,) instead of s;, was used. The Fourier series of s,(f)( f)
is more appropriate for the treatment than one of s, (f), while Q,.(f, ),
are more general than QF(f,0)a w, since the last modulus of smoothness
is equivalent to Qo (f, 0) s for r € N under some conditions on M and w
(see Corollary 1). These concepts are well-defined: this follows from the
boundedness of s;, and 522) in Ly, ., under the conditions at the beginning
of this paragraph (see Lemma 2 and Lemma 1 in [10]). Unfortunately,
the definition of a fractional modulus of smoothness in such a way is
connected with the problem of uniform boundedness of iterates of the
Steklov operators. We note also the papers [18], [9] that study the moduli
of smoothness defined with help of s,(f).

For an r € N, a Young function M, and a weight w, we denote by
WL, the collection of all absolutely continuous on each period func-
tions f (f € ACs,), such that f/,..., f0=Y € ACy, and f0) € Ly, If
f € L, and 7 € N, then we define the Peetre’s K-functional by

K(fataLM,waWTLM7w) = 1nf{||f - gHM,w +tHg(r)||M,w °g € WTLM,w}-

It is well known that L2 C L for 1 < p < oo and w € A,(T). By
the proof of Lemma 2 below, under conditions 0 < aj; < Sy < 1 and
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w € Aija,, (T) N Aiys,, (T), there exists ¢,p, such that 1 < ¢ < 1/8y <
< 1/ay < p < oo and w € A,(T) N A, (T). Moreover, from the results
of Boyd [5] we see that fw € LY + L = Li. ie, fu = g + g2,

21

g €Lb g€ Ll or feld cLi. Thus, if 0 < ay < By < 1 and
w € Ao, (T) N Ay, (T), then f € Ly, has the Fourier series

ao(f)/2 + Z(&k(f) cos kx + by (f) sin kx) =: ZAk(f)(x)

Further we will consider the Fourier partial sums S, (f)(z) = > Ax(f)(x),
k=0

the Riesz-Zygmund means of order r € N

n

Zy(f)(x) =Y (1=K /(n+ 1)) A(f)(x), neN,

k=0
the generalized Vallée-Poussin means

(2n+1)"Z5,(Nx) — (n+1)"Z5(f)(x)
Cn+1)—(m+1)" (2n+1)—(n+1)"’

v (f)(x) =

n € N,

and the Euler means

n

et (f)x) = (1 +t)_"z (Z)t"‘kSk(f)(x), t>0, neN

k=0

More about these means can be found in the monograph by Hardy [14].
It is well known that for f € Li_ the following limit

™

Fla) = @2m)" lim [ (fle - u) — fla+u)) ctg(u/2) du

t—040
t

exists a.e. on R (see [1, Ch. VIIL §7]). The function f(z) is called the

conjugate function to f. If f € Ll _, then its Fourier series has the form
o0

> (ag(f) sinkz — by (f) cos kx).

k=1

3. Auxiliary propositions. Lemma 1 is proved in [3, p. 153].
Lemma 1. Let1l < g < p < oo. If a linear operator is bounded in the
Lebesgue spaces L and Lj_, then it is bounded in every Orlicz space
Ly or provided that 1/p < apr < B < 1/q.
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Lemma 2 is proved for 322) in [10, Lemma 1.

Lemma 2. Let M be a Young function with nontrivial indices and
w € Ayjq,, (T) N Ayys,, (T). Then the operators s, are uniformly bounded
in Ly, with respect to h > 0.

Proof. Since 0 < ap < Sy < 1, by [4, Theorem 2.31] we find ¢ and p such
that 1 < ¢ <1/8ym < 1/ay <p <ooand w € Ay(T)NA,(T). It is known
that the maximal operator is bounded in all L7 | 1 < r < oo, w € A,(T)
(see [16]). We use the multiplication operator F,(f) = wf to define
Ap(f) = Fy(sn(Fu-1(f))). Then Ay, is uniformly in A > 0 bounded in L
and Li_. Indeed, let f = fiw, fi € L2. Then s,(f1) = sp(Tp-1f) € LE,
and

ARl = llwsn(fOllp,w < Crllfrllp,w = Cill fllp-

By Lemma 1, the operator Aj is uniformly in A > 0 bounded in Ly or,
i.e, for f = fiw™', f € L w, one has

lsn(Flat.w = lwsn(Pllar = [[AR(fOllar < Callfrllar = Col[ fllar,w-

The proof is completed. [

Lemma 3 is stated in [10, (15) and (16)]. The statement concerning
conjugation operator can be proved by the same method as in Lemma 2,
while the inequalities (5) can be proved as in [1, Ch. VIII, §20].

Lemma 3. Let M be a Young function with nontrivial indices and
w € Ai/a,, (T) N Aqyg,,(T). Then the conjugation operator is bounded in
Ly, and for f € Ly, the inequalities

10 (Nllar,w < Cullfllarw, I = Sa(llarw < (Cr+ D) En(f) a0, (5)

hold forn € Z, .

Lemma 4 is a variant of the Bernstein inequality proved in [10, Lemma 3].
It will be used in the proof of its extension, Theorem 4.

Lemma 4. Let M and w be as in Lemma 3, t, € T,,, n € N, r € N.
Then

167 Mg, 0 < O ([l (6)
4. Direct and inverse approximation theorems. The relation

A(t) < B(t), t € T, means that there exist C, Cy > 0, such that C1 A(t) <
< B(t) < CLA(t), t € T. Since the proofs of Theorems 1 -3 are similar to
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that of the corresponding results in [20, Theorems 1-3| and [19], we omit
them. Theorems 2 and 3 are de facto proved in [10, Theorems 2 and 4|
for even r (see Corollary 1).

Theorem 1. Let M be a Young function with nontrivial indices and
w € Aoy (T) N Avys,,(T), 7 € N. Then, for f € Ly, ., we have:
Qr(f,t)M,w XK(f,tT,LMVw,WTLM’w), t e [0,271']

From the comparison of Theorem 1 and [10, Theorem 8|, we obtain:

Corollary 1. Under conditions of Theorem 1, one has:
Q2r(f75)M,w XQ:<f7§)M,wa 5 € [0727]

Theorem 2. Let M be a Young function with nontrivial indices and
w € A/, (T)N Ay, (T), r € N. Then, for f € Ly, ., the direct approx-
imation theorem

Eo( )0 <OCU(f,(n+ 1) agw, n € Zy,

holds.
Theorem 3. Let M, w and r be as in Theorem 2. Then

Q(fn e <O Y KT B (faw, nEN
k=1

If w is increasing and continuous on [0;27], w(0) = 0, then w € &.
A function w € @ belongs to the Bary-Stechkin class B,, a > 0, if

STk lw(kT) = O(n*w(n™h)), n € N (see [2]). Corollary 1 easily fol-
k=1
lows from Theorems 2 and 3.

Corollary 1. Let M, w, and r be as in Theorem 2, w € B,. Then
the conditions E,(f)arw = Ow((n+1)™Y), n € Zy, and Q,.(f,0) s =
= O(w(9)), d € [0,27], are equivalent.

5. Approximation by linear means of Fourier series and reali-
zation functionals. The following analogue of the Stechkin-Nikol’skii
inequality (2) plays an important role in this paper. It also generalizes
Lemma 4.
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Theorem 4. Let M, w and r be as in Theorem 2. Then, for t, € T,,
n € N, the following inequality holds:

||t£LT)||M,w < CnTQ'r(tn7 1/n)M,w‘

Proof. By the definition of K-functional, we find C1 >1and g € W" Ly 4,
such that

th - gHM,w + n_ng(T)”M,w < ClK(f7 n", Lt w, WTLM,w)-

Note two famous properties S, (t,,) = t, for t,, € T,, and S (9) = Sn(g"™)
for g € W" Ly . Using Lemma 3, (6) from Lemma 4, and Theorem 1, we
obtain:

TN g <018 = ST (9t w + 15T (9)1ag0) =
TS (e = Dllagw + 150 (9" ar, ) <
<0 (Con” [[tn = gllagw + C3llg" [[ar,w) <
< max(Ca, Cs)(|Itn = gllar,w + 1197 ar,w) <
S CuK (ty,n™" Lt aw, W Lng ) < C5Q0(tny 1/0) 0t 0
The proof is completed. [

Now we can prove a direct approximation result for the Riesz-Zygmund
means.

Theorem 5. Let M be a Young function with nontrivial indices and
w € Ao, (T) N Ay, (T), r € N. Then, for f € Ly, we have

If = Zo(Dllw < C(f,1/0)01,0, 1 €N,
Proof. Note that

_L%%ﬁ@ﬂ

1S,(P@) = Zo(a)] = (n+1)” o

Zk’“

for even r and

1S, () (@) = Z5(f)(x)] = (n+ )78 (f)(2)]

for odd r. By Lemma 3 and Theorem 4, in both cases we obtain

1S:(f) = Zh(F)llarw < Ci(n+ 1) 7SO ()t 0 <
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< Co(n+1)7"n"Q(Su(f), 1/n) 01, - (7)

By Lemma 3, Theorem 2, and the inequality Q,(g,0)r.w < Csl|g|las,w,
which follows from Lemma 2, we find that

QT(Sn(f)7 1/”)M,w < Qr(Sn<f) - f7 1/n>M,w + Qr(f7 1/n>M,w <

< CSHSn(f) - f||M,w + QT(fa 1/n)M7’LU < C4QT(f7 1/n)M,w‘ (8)
Finally, from (7), (8), Lemma 3, and Theorem 2, we deduce that
1f = Za(Dw <N = Sa() st + [192(F) = Zn(F) Iz, <

< 05(En(f)M,w + Qr(fa 1/”)M,w) < CGQr(fa 1/n)M,wa n e N
0
Remark 1. In [11, Corollary 2.1], the estimate

1f = Za(Dllarw < COf, 1/ )0, 1 EN, (9)

is stated. This corollary follows from Theorem 2.1 in [11], where the
fulfilment of condition

n¥l-AY<Cv”, v=1,2,...,n, neN, (10)
is necessary. However, for \J" = 1 — v"/(n 4+ 1)" the condition (10)

is not valid. The more correct variant of (9) is ||f — Z> (f)lmw < <
CQ(f, 1/m)at,u, n € N,

Corollary 1. Under conditions of Theorem 5, for k € N, the inequality

1f = on(Dllat,w < CEL(f)m,w < OU(f,1/0) 010, 1 EN, (11)

holds.
Proof. Using summation by parts, we obtain:

2n

> ((k+1)" = k)SK(f)

k=n+1

1
Cn+1)"—(n+1)r

vn(f) =

and v (t,) = t, for t, € T,,, n € N. From Theorem 5, we deduce that Z]
and v], are uniformly in n € N bounded in Ly, ,. By a standard procedure,
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we deduce the first inequality in (11), while the second one follows from
it and Theorem 2. [

Theorem 6 is proved similarly to Theorem 4 in [20].
Theorem 6. Let M be a Young function with nontrivial indices and

w € Ao, (T) N Ay, (T), r € N. Then, for f € Ly, we have:

1f = e (Dlla,w < CU(f,1/n) a0, n €N

Let r,k € N, t > 0, and 7,(f) € T, be the polynomial of the best
approximation for f € Lys 4, i€, ||f — 7u(f)|a,0 = En(f)a,w- Now we
define five types of realization functionals:

RI(f,n™" Lagw) = I1f = Tl F)latw + 07150 () vt

Ri(fon™", Latw) = If = Zy(O)llagew + 1 120 st
RY(f,n™", Larw) = I = Su(H)llarew + 27 1S (H)las,w,
RyM(fon™ Lagw) = I1f = v (A lagw + 07 1 @n (5O llas,w,
Ry(fon, Larow) = I = en(Dagw + 17 1) 1at,w-

The partial cases of Theorem 7 for RZ(f,n™", Ly .,) in the case of even
r and for R*(f,n™", L) in the case of even r and k = 1 were proved
by Jafarov [12, Theorem 1.7].

Theorem 7. Let M be a Young function with nontrivial indices and
w € A1/ay (T) N Ayp,, (T), k,r € N. Then forn € N and f € Ly, ., we
have:

RZ(_ﬂ n_r, LM,w) = K(f, n_T,LM,w, WTLM71U> = Ri(f, n_r, LM,w) =

= RY(f,n ™", Larw) < RVF(f,n™", L w) < REYF,n™", Lasw)-

Proof. It is clear that K(f,n™", Ly, w, W' L, ) is majorized by all the re-
alization functionals. Also, by Theorem 2, Theorem 5, Lemma 3, Corollary
1, and Theorem 6, we obtain that the first term of the realization function-
als (in the same order as they are introduced above) is O(Q2,.(f,1/n)arw),
n € N. By Theorem 1, we conclude that the first term of the realization
functionals is majorized by K(f,n™", Las w, W Lt w)-

Finally, we consider, e.g., the case of RZ(f,n™", Ly, ). By Theorems
4,5 and 1 we have

0 Za (PN Nlagw < CLZ5(F), 1/7) a0 <
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1(Qr( ( ) fal/n)Mw+Q(71/n)Mw)<
(I!Z’"(f) Fllvtw + 0 (f, /1) 0a,0) < Cs(f, 1/1) 01,0 <
< O4K(f, n_T7LM7w, WTLMVW), n € N. (12)

Thus, both terms of RZ(f,n™", L, ) are majorized by K (f,n™", L, w,
WLy ). To finish the proof for other realization functionals, we ap-
ply again Theorems 4 and 1, and also Theorem 2 for RI(f,n™", L, w),
Lemma 3 for RY(f,n™", L), Corollary 1 for R>*(f,n™", Lys,), and
Theorem 6 for R&'(f,n™", Ly, ). O

Note the property established in the proof of Theorem 7. For Z], see
(12); for S, see (8); in other cases, the proof is similar.

Corollary 1. Let M be a Young function with nontrivial indices and
w € Aoy (T) NV Ayyp,, (T), k,r € N. Then, forn € N and f € Ly, ., we
have

(7 (f), /1) s < CQ(f,1/10) 01,0,
Q(Zy(f), /) a0 < CQ(f, 1/1) 0
Mw < CQ(f,1/n)
< CQ(f,1/n) 0w,
Q(en (), /) a0 < CQ(f, 1/0)01,0-
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