S. S. Volosivets

APPROXIMATION BY LINEAR MEANS OF FOURIER SERIES AND REALIZATION FUNCTIONALS IN WEIGHTED ORLICZ SPACES

Abstract

Using one-sided Steklov means, we introduce a new modulus of smoothness in weighted Orlicz spaces and state its equivalence with a special K-functional. We prove Stechkin-Ni-kol'skii-type inequality for trigonometric polynomials and direct estimates for the approximation by Riesz-Zygmund, Vallée-Poussin, and Euler means in weighted Orlicz spaces. By these results, several types of realization functionals equivalent to the above cited K-functional in points $1 / n, n \in \mathbb{N}$, are constructed.

Key words: weighted Orlicz spaces, K-functional, realization functional, Riesz-Zygmund means, Euler means
2020 Mathematical Subject Classification: 42A10, 42A24, 46E30

1. Introduction. Let f be a 2π-periodic continuous function $\left(f \in C_{2 \pi}\right)$, T_{n} be the space of trigonometric polynomials of degree at most $n, n \in$ $\mathbb{Z}_{+}=\{0,1, \ldots\},\|f\|_{\infty}=\max _{x \in[0,2 \pi]}|f(x)|$. For $r \in \mathbb{N}=\{1,2, \ldots\}$, let us consider the r-th difference with step h

$$
\Delta_{h}^{r} f(x)=\sum_{j=0}^{r}(-1)^{r-j}\binom{r}{j} f(x+j h)
$$

and the r-th modulus of continuity $\omega_{r}(f, \delta)_{\infty}=\sup _{0 \leqslant h \leqslant \delta}\left\|\Delta_{h}^{r} f\right\|_{\infty}$. By definition, the best approximation is given by $E_{n}(f)_{\infty}=\inf \left\{\left\|f-t_{n}\right\|_{\infty}: t_{n} \in T_{n}\right\}$, $n \in \mathbb{Z}_{+}$. Then the classical Jackson-Stechkin theorem states that

$$
\begin{equation*}
E_{n}(f)_{\infty} \leqslant C \omega_{r}\left(f,(n+1)^{-1}\right)_{\infty}, \quad n \in \mathbb{Z}_{+} \tag{1}
\end{equation*}
$$

(C) Petrozavodsk State University, 2022
(see [6, Ch. 7, Theorem 2.3]). On the other hand, for $t_{n} \in T_{n}, n \in \mathbb{N}$, $r \in \mathbb{N}$, the Stechkin-Nikol'skii inequality

$$
\begin{equation*}
\left\|t_{n}^{(r)}\right\|_{\infty} \leqslant C_{n}^{r}\left\|\Delta_{\pi / 2 n}^{r} t_{n}\right\|_{\infty} \leqslant C n^{r} \omega_{r}\left(t_{n}, 2 \pi / n\right)_{\infty} \tag{2}
\end{equation*}
$$

holds (see [6, Ch. 4, §12, (12.1)]).
If $\tau_{n}(f) \in T_{n}$ satisfies the equality $\left\|f-\tau_{n}(f)\right\|_{\infty}=E_{n}(f)_{\infty}$, then, by (1) and (2), it is easy to see that

$$
\left\|\tau_{n}^{(r)}(f)\right\|_{\infty} \leqslant C n^{r} \omega_{r}\left(\tau_{n}(f), 2 \pi / n\right)_{\infty} \leqslant C n^{r} \omega_{r}(f, 1 / n)_{\infty}, \quad n \in \mathbb{N}
$$

and the inequality

$$
\begin{equation*}
C_{1} \omega_{r}(f, 1 / n)_{\infty} \leqslant\left\|f-\tau_{n}(f)\right\|_{\infty}+n^{-r}\left\|\tau_{n}^{(r)}(f)\right\|_{\infty} \leqslant C_{2} \omega_{r}(f, 1 / n)_{\infty} \tag{3}
\end{equation*}
$$

holds for all $n \in \mathbb{N}$. The inequality (3) shows that the modulus of smoothness $\omega_{r}(f, 1 / n)_{\infty}$ and the K-functional

$$
K\left(f, n^{-r}, C_{2 \pi}, C_{2 \pi}^{r}\right)=\inf \left\{\|f-g\|_{\infty}+n^{-r}\left\|g^{(r)}\right\|_{\infty}: g \in C_{2 \pi}^{r}\right\}
$$

are equivalent, where $C_{2 \pi}^{r}$ is the space of 2π-periodic r times continuously differentiable functions on \mathbb{R}. Moreover, we can take $g=\tau_{n}(f)$ to realize this equivalence. The middle part of (3) is often called the realization functional for $K\left(f, n^{-r}, C_{2 \pi}, C_{2 \pi}^{r}\right)$. The idea of such functionals belongs to Ditzian, Hristov, and Ivanov [7].

In this paper, we study another forms of realization functionals, using Riesz-Zygmund, generalized Vallée-Poussin, and Euler means of Fourier series in weighted Orlicz spaces. The main tool is a Stechkin-Nikol'skiitype inequality (Theorem 4) and direct estimates of approximation by the cited means. In this paper, We use a new type of a modulus of smoothness in the weighted Orlicz space similar to that introduced in [19] for variable exponent spaces and in [20] for weighted Lorentz spaces.
2. Definitions. Let $M(u)$ be a continuous convex strictly increasing on $[0,+\infty)$ function, such that $M(0)=0, \lim _{u \rightarrow 0+0} M(u) / u=0$, $\lim _{u \rightarrow+\infty} M(u) / u=+\infty$. Then $M(u)$ is called a Young function or an $N-$ function.

We denote by $N(v)$ the complementary function $N(v)=\max \{u v-$ $-M(u): u \geqslant 0\}, v \in[0,+\infty)$. It is known that $N(v)$ is also a Young function.

For a Young function $M(u)$, we denote by $L_{M, 2 \pi}$ the linear space of 2π-periodic measurable functions $f:[0,2 \pi] \rightarrow \mathbb{R}$, such that the integral $\int_{0}^{2 \pi} M(\lambda|f(x)|) d x$ is finite for some $\lambda>0$. It is well known that $L_{M, 2 \pi}$ equipped with the Orlicz norm

$$
\|f\|_{M}:=\sup \left\{\int_{0}^{2 \pi}|f(x) g(x)| d x: \int_{0}^{2 \pi} N(|g(x)|) d x \leqslant 1\right\}
$$

is a Banach space called the Orlicz space generated by M. The Orlicz spaces may be considered as a generalization of the Lebesgue spaces $L_{2 \pi}^{p}$, $1<p<\infty$, which are obtained in the case $M_{p}(u)=u^{p} / p$. If $L_{2 \pi}^{p}$, $1 \leqslant p<\infty$, we consider the norm $\|f\|_{p}=\left(\int_{0}^{2 \pi}|f(t)|^{p} d t\right)^{1 / p}$. More about Orlicz spaces can be found in [13] and [17]. Matuszewska and Orlicz [15] introduced a pair of indices associated with a given Orlicz space $L_{M, 2 \pi}$.

Let $M^{-1}:[0,+\infty) \rightarrow[0,+\infty)$ be the inverse function of a Young function M and $h(t)=\limsup _{x \rightarrow \infty} M^{-1}(x) / M^{-1}(t x), t>0$. Then

$$
\begin{equation*}
\alpha_{M}=\lim _{t \rightarrow+\infty}-\frac{\log h(t)}{\log t}, \quad \beta_{M}=\lim _{t \rightarrow 0+0}-\frac{\log h(t)}{\log t} \tag{4}
\end{equation*}
$$

are called the lower and upper Boyd indices of the function M and of the Orlicz space $L_{M, 2 \pi}$. Boyd [5] proved that the indices defined above coincide with the general indices for rearrangement invariant spaces named after him (see [3, Ch. 3, Definition 5.12]). Matuszewska and Orlicz [15] considered reciprocals to α_{M} and β_{M}. It is known that $0 \leqslant \alpha_{M} \leqslant \beta_{M} \leqslant 1$, $\alpha_{N}+\beta_{M}=1, \alpha_{M}+\beta_{N}=1$. If $0<\alpha_{M} \leqslant \beta_{M}<1$, then we say that M and $L_{M, 2 \pi}$ has nontrivial Boyd indices.

A nonnegative 2π-periodic measurable function w is called a weight function if the set $w^{-1}(\{0,+\infty\})$ has zero Lebesgue measure. For a Young function M and a weight function w, we denote by $L_{M, w}$ the space of all 2π-periodic measurable functions f, such that $f w \in L_{2 \pi}$ with the norm $\|f\|_{M, w}=\|f w\|_{M}$. We will often use the spaces $L_{w}^{p}, 1 \leqslant p<\infty$, with the norm $\|f\|_{p, w}=\|f w\|_{p}$.

A weight w belongs to the Muckenhoupt class $A_{p}(\mathbb{T}), 1<p<\infty$, if

$$
|w|_{A_{p}}=\sup \left(|I|^{-1} \int_{I} w^{p}(x) d x\right)^{1 / p}\left(|I|^{-1} \int_{I} w^{-p^{\prime}}(x) d x\right)^{1 / p^{\prime}}<\infty
$$

where $p^{\prime}=p /(p-1)$ and the supremum is taken with respect to all intervals $I \subset \mathbb{R}$ whose lengths $|I|$ do not exceed 2π (see [16], where w^{p} was substituted by ω).

The class of trigonometric polynomials was shown to be dense in $L_{M, w}$ for M with nontrivial Boyd indices and $w \in A_{1 / \alpha_{M}}(\mathbb{T}) \cap A_{1 / \beta_{M}}(\mathbb{T})$ in [10, Lemma 4]. Thus, we may define the best approximations $E_{n}(f)_{M, w}=$ $=\inf _{t_{n} \in T_{n}}\left\|f-t_{n}\right\|_{M, w}, n \in \mathbb{Z}_{+}$, and the sequence $\left\{E_{n}(f)_{M, w}\right\}_{n=0}^{\infty}$ decreases to zero. On the other hand, for a 2π-periodic locally integrable function f, we can consider two variants of Steklov operators

$$
s_{h}(f)(x)=h^{-1} \int_{x}^{x+h} f(u) d u, \quad s_{h}^{(2)}(f)(x)=(2 h)^{-1} \int_{x-h}^{x+h} f(u) d u .
$$

In the present paper, we use the following modulus of smoothness:

$$
\Omega_{r}(f, \delta)_{M, w}=\sup _{0 \leqslant h_{i} \leqslant \delta}\left\|\prod_{i=1}^{r}\left(I-s_{h_{i}}\right)(f)\right\|_{M, w},
$$

where I is the identity operator. In [10], [8], [11] a similar construction $\Omega_{r}^{*}(f, \delta)_{M, w}$ with $s_{h_{i}}^{(2)}$ instead of $s_{h_{i}}$ was used. The Fourier series of $s_{h}^{(2)}(f)$ is more appropriate for the treatment than one of $s_{h}(f)$, while $\Omega_{r}(f, \delta)_{M, w}$ are more general than $\Omega_{r}^{*}(f, \delta)_{M, w}$, since the last modulus of smoothness is equivalent to $\Omega_{2 r}(f, \delta)_{M, w}$ for $r \in \mathbb{N}$ under some conditions on M and w (see Corollary 1). These concepts are well-defined: this follows from the boundedness of s_{h} and $s_{h}^{(2)}$ in $L_{M, w}$ under the conditions at the beginning of this paragraph (see Lemma 2 and Lemma 1 in [10]). Unfortunately, the definition of a fractional modulus of smoothness in such a way is connected with the problem of uniform boundedness of iterates of the Steklov operators. We note also the papers [18], [9] that study the moduli of smoothness defined with help of $s_{h}(f)$.

For an $r \in \mathbb{N}$, a Young function M, and a weight w, we denote by $W^{r} L_{M, w}$ the collection of all absolutely continuous on each period functions $f\left(f \in A C_{2 \pi}\right)$, such that $f^{\prime}, \ldots, f^{(r-1)} \in A C_{2 \pi}$ and $f^{(r)} \in L_{M, w}$. If $f \in L_{M, w}$ and $r \in \mathbb{N}$, then we define the Peetre's K-functional by

$$
K\left(f, t, L_{M, w}, W^{r} L_{M, w}\right)=\inf \left\{\|f-g\|_{M, w}+t\left\|g^{(r)}\right\|_{M, w}: g \in W^{r} L_{M, w}\right\}
$$

It is well known that $L_{w}^{p} \subset L_{2 \pi}^{1}$ for $1<p<\infty$ and $w \in A_{p}(\mathbb{T})$. By the proof of Lemma 2 below, under conditions $0<\alpha_{M} \leqslant \beta_{M}<1$ and
$w \in A_{1 / \alpha_{M}}(\mathbb{T}) \cap A_{1 / \beta_{M}}(\mathbb{T})$, there exists q, p, such that $1<q<1 / \beta_{M} \leqslant$ $\leqslant 1 / \alpha_{M}<p<\infty$ and $w \in A_{p}(\mathbb{T}) \cap A_{q}(\mathbb{T})$. Moreover, from the results of Boyd [5] we see that $f w \in L_{2 \pi}^{p}+L_{2 \pi}^{q}=L_{2 \pi}^{q}$, i.e., $f w=g_{1}+g_{2}$, $g_{1} \in L_{2 \pi}^{p}, g_{2} \in L_{2 \pi}^{q}$, or $f \in L_{w}^{q} \subset L_{2 \pi}^{1}$. Thus, if $0<\alpha_{M} \leqslant \beta_{M}<1$ and $w \in A_{1 / \alpha_{M}}(\mathbb{T}) \cap A_{1 / \beta_{M}}(\mathbb{T})$, then $f \in L_{M, w}$ has the Fourier series

$$
a_{0}(f) / 2+\sum_{k=1}^{\infty}\left(a_{k}(f) \cos k x+b_{k}(f) \sin k x\right)=: \sum_{k=0}^{\infty} A_{k}(f)(x) .
$$

Further we will consider the Fourier partial sums $S_{n}(f)(x)=\sum_{k=0}^{n} A_{k}(f)(x)$, the Riesz-Zygmund means of order $r \in \mathbb{N}$

$$
Z_{n}^{r}(f)(x)=\sum_{k=0}^{n}\left(1-k^{r} /(n+1)^{r}\right) A_{k}(f)(x), \quad n \in \mathbb{N},
$$

the generalized Vallée-Poussin means

$$
v_{n}^{r}(f)(x)=\frac{(2 n+1)^{r} Z_{2 n}^{r}(f)(x)}{(2 n+1)^{r}-(n+1)^{r}}-\frac{(n+1)^{r} Z_{n}^{r}(f)(x)}{(2 n+1)^{r}-(n+1)^{r}}, \quad n \in \mathbb{N},
$$

and the Euler means

$$
e_{n}^{t}(f)(x)=(1+t)^{-n} \sum_{k=0}^{n}\binom{n}{k} t^{n-k} S_{k}(f)(x), \quad t>0, \quad n \in \mathbb{N} .
$$

More about these means can be found in the monograph by Hardy [14]. It is well known that for $f \in L_{2 \pi}^{1}$ the following limit

$$
\widetilde{f}(x)=(2 \pi)^{-1} \lim _{t \rightarrow 0+0} \int_{t}^{\pi}(f(x-u)-f(x+u)) \operatorname{ctg}(u / 2) d u
$$

exists a. e. on \mathbb{R} (see [1, Ch. VIII, §7]). The function $\widetilde{f}(x)$ is called the conjugate function to f. If $\tilde{f} \in L_{2 \pi}^{1}$, then its Fourier series has the form $\sum_{k=1}^{\infty}\left(a_{k}(f) \sin k x-b_{k}(f) \cos k x\right)$.
3. Auxiliary propositions. Lemma 1 is proved in [3, p. 153].

Lemma 1. Let $1<q<p<\infty$. If a linear operator is bounded in the Lebesgue spaces $L_{2 \pi}^{p}$ and $L_{2 \pi}^{q}$, then it is bounded in every Orlicz space $L_{M, 2 \pi}$ provided that $1 / p<\alpha_{M} \leqslant \beta_{M}<1 / q$.

Lemma 2 is proved for $s_{h}^{(2)}$ in [10, Lemma 1].
Lemma 2. Let M be a Young function with nontrivial indices and $w \in A_{1 / \alpha_{M}}(\mathbb{T}) \cap A_{1 / \beta_{M}}(\mathbb{T})$. Then the operators s_{h} are uniformly bounded in $L_{M, w}$ with respect to $h>0$.

Proof. Since $0<\alpha_{M} \leqslant \beta_{M}<1$, by [4, Theorem 2.31] we find q and p such that $1<q<1 / \beta_{M} \leqslant 1 / \alpha_{M}<p<\infty$ and $w \in A_{p}(\mathbb{T}) \cap A_{q}(\mathbb{T})$. It is known that the maximal operator is bounded in all $L_{w}^{r}, 1<r<\infty, w \in A_{r}(\mathbb{T})$ (see [16]). We use the multiplication operator $F_{w}(f)=w f$ to define $A_{h}(f)=F_{w}\left(s_{h}\left(F_{w^{-1}}(f)\right)\right)$. Then A_{h} is uniformly in $h>0$ bounded in $L_{2 \pi}^{p}$ and $L_{2 \pi}^{q}$. Indeed, let $f=f_{1} w, f_{1} \in L_{w}^{p}$. Then $s_{h}\left(f_{1}\right)=s_{h}\left(T_{w^{-1}} f\right) \in L_{w}^{p}$ and

$$
\left\|A_{h}(f)\right\|_{p}=\left\|w s_{h}\left(f_{1}\right)\right\|_{p, w} \leqslant C_{1}\left\|f_{1}\right\|_{p, w}=C_{1}\|f\|_{p}
$$

By Lemma 1 , the operator A_{h} is uniformly in $h>0$ bounded in $L_{M, 2 \pi}$, i. e., for $f=f_{1} w^{-1}, f \in L_{M, w}$, one has

$$
\left\|s_{h}(f)\right\|_{M, w}=\left\|w s_{h}(f)\right\|_{M}=\left\|A_{h}\left(f_{1}\right)\right\|_{M} \leqslant C_{2}\left\|f_{1}\right\|_{M}=C_{2}\|f\|_{M, w}
$$

The proof is completed.
Lemma 3 is stated in $[10,(15)$ and (16)]. The statement concerning conjugation operator can be proved by the same method as in Lemma 2, while the inequalities (5) can be proved as in [1, Ch. VIII, § 20].

Lemma 3. Let M be a Young function with nontrivial indices and $w \in A_{1 / \alpha_{M}}(\mathbb{T}) \cap A_{1 / \beta_{M}}(\mathbb{T})$. Then the conjugation operator is bounded in $L_{M, w}$ and for $f \in L_{M, w}$ the inequalities

$$
\begin{equation*}
\left\|S_{n}(f)\right\|_{M, w} \leqslant C_{1}\|f\|_{M, w}, \quad\left\|f-S_{n}(f)\right\|_{M, w} \leqslant\left(C_{1}+1\right) E_{n}(f)_{M, w} \tag{5}
\end{equation*}
$$

hold for $n \in \mathbb{Z}_{+}$.
Lemma 4 is a variant of the Bernstein inequality proved in [10, Lemma 3]. It will be used in the proof of its extension, Theorem 4.

Lemma 4. Let M and w be as in Lemma $3, t_{n} \in T_{n}, n \in \mathbb{N}, r \in \mathbb{N}$. Then

$$
\begin{equation*}
\left\|t_{n}^{(r)}\right\|_{M, w} \leqslant C n^{r}\left\|t_{n}\right\|_{M, w} \tag{6}
\end{equation*}
$$

4. Direct and inverse approximation theorems. The relation $A(t) \asymp B(t), t \in T$, means that there exist $C_{1}, C_{2}>0$, such that $C_{1} A(t) \leqslant$ $\leqslant B(t) \leqslant C_{2} A(t), t \in T$. Since the proofs of Theorems 1-3 are similar to
that of the corresponding results in [20, Theorems 1-3] and [19], we omit them. Theorems 2 and 3 are de facto proved in [10, Theorems 2 and 4] for even r (see Corollary 1).

Theorem 1. Let M be a Young function with nontrivial indices and $w \in A_{1 / \alpha_{M}}(\mathbb{T}) \cap A_{1 / \beta_{M}}(\mathbb{T}), r \in \mathbb{N}$. Then, for $f \in L_{M, w}$, we have:

$$
\Omega_{r}(f, t)_{M, w} \asymp K\left(f, t^{r}, L_{M, w}, W^{r} L_{M, w}\right), \quad t \in[0,2 \pi] .
$$

From the comparison of Theorem 1 and [10, Theorem 8], we obtain:
Corollary 1. Under conditions of Theorem 1, one has:

$$
\Omega_{2 r}(f, \delta)_{M, w} \asymp \Omega_{r}^{*}(f, \delta)_{M, w}, \quad \delta \in[0,2 \pi] .
$$

Theorem 2. Let M be a Young function with nontrivial indices and $w \in A_{1 / \alpha_{M}}(\mathbb{T}) \cap A_{1 / \beta_{M}}(\mathbb{T}), r \in \mathbb{N}$. Then, for $f \in L_{M, w}$, the direct approximation theorem

$$
E_{n}(f)_{M, w} \leqslant C \Omega_{r}\left(f,(n+1)^{-1}\right)_{M, w}, \quad n \in \mathbb{Z}_{+},
$$

holds.
Theorem 3. Let M, w and r be as in Theorem 2. Then

$$
\Omega_{r}\left(f, n^{-1}\right)_{M, w} \leqslant C n^{-r} \sum_{k=1}^{n} k^{r-1} E_{k-1}(f)_{M, w}, \quad n \in \mathbb{N} .
$$

If ω is increasing and continuous on $[0 ; 2 \pi], \omega(0)=0$, then $\omega \in \Phi$. A function $\omega \in \Phi$ belongs to the Bary-Stechkin class $B_{\alpha}, \alpha>0$, if $\sum_{k=1}^{n} k^{\alpha-1} \omega\left(k^{-1}\right)=O\left(n^{\alpha} \omega\left(n^{-1}\right)\right), n \in \mathbb{N}$ (see [2]). Corollary 1 easily follows from Theorems 2 and 3.

Corollary 1. Let M, w, and r be as in Theorem 2, $\omega \in B_{r}$. Then the conditions $E_{n}(f)_{M, w}=O\left(\omega\left((n+1)^{-1}\right)\right)$, $n \in \mathbb{Z}_{+}$, and $\Omega_{r}(f, \delta)_{M, w}=$ $=O(\omega(\delta)), \delta \in[0,2 \pi]$, are equivalent.
5. Approximation by linear means of Fourier series and realization functionals. The following analogue of the Stechkin-Nikol'skii inequality (2) plays an important role in this paper. It also generalizes Lemma 4.

Theorem 4. Let M, w and r be as in Theorem 2. Then, for $t_{n} \in T_{n}$, $n \in \mathbb{N}$, the following inequality holds:

$$
\left\|t_{n}^{(r)}\right\|_{M, w} \leqslant C n^{r} \Omega_{r}\left(t_{n}, 1 / n\right)_{M, w}
$$

Proof. By the definition of K-functional, we find $C_{1}>1$ and $g \in W^{r} L_{M, w}$, such that

$$
\left\|t_{n}-g\right\|_{M, w}+n^{-r}\left\|g^{(r)}\right\|_{M, w} \leqslant C_{1} K\left(f, n^{-r}, L_{M, w}, W^{r} L_{M, w}\right) .
$$

Note two famous properties $S_{n}\left(t_{n}\right)=t_{n}$ for $t_{n} \in T_{n}$ and $S_{n}^{(r)}(g)=S_{n}\left(g^{(r)}\right)$ for $g \in W^{r} L_{M, w}$. Using Lemma 3, (6) from Lemma 4, and Theorem 1, we obtain:

$$
\begin{aligned}
& n^{-r}\left\|t_{n}^{(r)}\right\|_{M, w} \leqslant n^{-r}\left(\left\|t_{n}^{(r)}-S_{n}^{(r)}(g)\right\|_{M, w}+\left\|S_{n}^{(r)}(g)\right\|_{M, w}\right)= \\
&= n^{-r}\left(\left\|S_{n}^{(r)}\left(t_{n}-g\right)\right\|_{M, w}+\left\|S_{n}\left(g^{(r)}\right)\right\|_{M, w}\right) \leqslant \\
& \leqslant n^{-r}\left(C_{2} n^{r}\left\|t_{n}-g\right\|_{M, w}+C_{3}\left\|g^{(r)}\right\|_{M, w}\right) \leqslant \\
& \leqslant \max \left(C_{2}, C_{3}\right)\left(\left\|t_{n}-g\right\|_{M, w}+\left\|g^{(r)}\right\|_{M, w}\right) \leqslant \\
& \quad \leqslant C_{4} K\left(t_{n}, n^{-r}, L_{M, w}, W^{r} L_{M, w}\right) \leqslant C_{5} \Omega_{r}\left(t_{n}, 1 / n\right)_{M, w} .
\end{aligned}
$$

The proof is completed.
Now we can prove a direct approximation result for the Riesz-Zygmund means.

Theorem 5. Let M be a Young function with nontrivial indices and $w \in A_{1 / \alpha_{M}}(\mathbb{T}) \cap A_{1 / \beta_{M}}(\mathbb{T}), r \in \mathbb{N}$. Then, for $f \in L_{M, w}$, we have

$$
\left\|f-Z_{n}^{r}(f)\right\|_{M, w} \leqslant C \Omega_{r}(f, 1 / n)_{M, w}, \quad n \in \mathbb{N} .
$$

Proof. Note that

$$
\left|S_{n}(f)(x)-Z_{n}^{r}(f)(x)\right|=(n+1)^{-r}\left|\sum_{k=1}^{n} k^{r} A_{k}(f)(x)\right|=\frac{\left|S_{n}^{(r)}(f)(x)\right|}{(n+1)^{r}}
$$

for even r and

$$
\left|S_{n}(f)(x)-Z_{n}^{r}(f)(x)\right|=(n+1)^{-r}\left|\widetilde{S_{n}^{(r)}}(f)(x)\right|
$$

for odd r. By Lemma 3 and Theorem 4, in both cases we obtain

$$
\left\|S_{n}(f)-Z_{n}^{r}(f)\right\|_{M, w} \leqslant C_{1}(n+1)^{-r}\left\|S_{n}^{(r)}(f)\right\|_{M, w} \leqslant
$$

$$
\begin{equation*}
\leqslant C_{2}(n+1)^{-r} n^{r} \Omega_{r}\left(S_{n}(f), 1 / n\right)_{M, w} \tag{7}
\end{equation*}
$$

By Lemma 3, Theorem 2, and the inequality $\Omega_{r}(g, \delta)_{M, w} \leqslant C_{3}\|g\|_{M, w}$, which follows from Lemma 2, we find that

$$
\begin{align*}
& \Omega_{r}\left(S_{n}(f), 1 / n\right)_{M, w} \leqslant \Omega_{r}\left(S_{n}(f)-f, 1 / n\right)_{M, w}+\Omega_{r}(f, 1 / n)_{M, w} \leqslant \\
& \quad \leqslant C_{3}\left\|S_{n}(f)-f\right\|_{M, w}+\Omega_{r}(f, 1 / n)_{M, w} \leqslant C_{4} \Omega_{r}(f, 1 / n)_{M, w} . \tag{8}
\end{align*}
$$

Finally, from (7), (8), Lemma 3, and Theorem 2, we deduce that

$$
\begin{aligned}
&\left\|f-Z_{n}^{r}(f)\right\|_{M, w} \leqslant\left\|f-S_{n}(f)\right\|_{M, w}+\left\|S_{n}(f)-Z_{n}^{r}(f)\right\|_{M, w} \leqslant \\
& \leqslant C_{5}\left(E_{n}(f)_{M, w}+\Omega_{r}(f, 1 / n)_{M, w}\right) \leqslant C_{6} \Omega_{r}(f, 1 / n)_{M, w}, \quad n \in \mathbb{N} .
\end{aligned}
$$

Remark 1. In [11, Corollary 2.1], the estimate

$$
\begin{equation*}
\left\|f-Z_{n}^{r}(f)\right\|_{M, w} \leqslant C \Omega_{r}^{*}(f, 1 / n)_{M, w}, \quad n \in \mathbb{N}, \tag{9}
\end{equation*}
$$

is stated. This corollary follows from Theorem 2.1 in [11], where the fulfilment of condition

$$
\begin{equation*}
n^{2 r}\left|1-\lambda_{\nu}^{(n)}\right| \leqslant C \nu^{2 r}, \quad \nu=1,2, \ldots, n, \quad n \in \mathbb{N}, \tag{10}
\end{equation*}
$$

is necessary. However, for $\lambda_{\nu}^{(n)}=1-\nu^{r} /(n+1)^{r}$ the condition (10) is not valid. The more correct variant of (9) is $\left\|f-Z_{n}^{2 r}(f)\right\|_{M, w} \leqslant \leqslant$ $C \Omega_{r}^{*}(f, 1 / n)_{M, w}, n \in \mathbb{N}$.
Corollary 1. Under conditions of Theorem 5 , for $k \in \mathbb{N}$, the inequality

$$
\begin{equation*}
\left\|f-v_{n}^{r}(f)\right\|_{M, w} \leqslant C E_{n}(f)_{M, w} \leqslant C \Omega_{k}(f, 1 / n)_{M, w}, \quad n \in \mathbb{N} \tag{11}
\end{equation*}
$$

holds.
Proof. Using summation by parts, we obtain:

$$
v_{n}^{r}(f)=\frac{1}{(2 n+1)^{r}-(n+1)^{r}} \sum_{k=n+1}^{2 n}\left((k+1)^{r}-k^{r}\right) S_{k}(f)
$$

and $v_{n}^{r}\left(t_{n}\right)=t_{n}$ for $t_{n} \in T_{n}, n \in \mathbb{N}$. From Theorem 5 , we deduce that Z_{n}^{r} and v_{n}^{r} are uniformly in $n \in \mathbb{N}$ bounded in $L_{M, w}$. By a standard procedure,
we deduce the first inequality in (11), while the second one follows from it and Theorem 2.

Theorem 6 is proved similarly to Theorem 4 in [20].
Theorem 6. Let M be a Young function with nontrivial indices and $w \in A_{1 / \alpha_{M}}(\mathbb{T}) \cap A_{1 / \beta_{M}}(\mathbb{T}), r \in \mathbb{N}$. Then, for $f \in L_{M, w}$, we have:

$$
\left\|f-e_{n}^{t}(f)\right\|_{M, w} \leqslant C \Omega_{r}(f, 1 / n)_{M, w}, \quad n \in \mathbb{N}
$$

Let $r, k \in \mathbb{N}, t>0$, and $\tau_{n}(f) \in T_{n}$ be the polynomial of the best approximation for $f \in L_{M, w}$, i. e., $\left\|f-\tau_{n}(f)\right\|_{M, w}=E_{n}(f)_{M, w}$. Now we define five types of realization functionals:

$$
\begin{aligned}
R_{r}^{\tau}\left(f, n^{-r}, L_{M, w}\right) & :=\left\|f-\tau_{n}(f)\right\|_{M, w}+n^{-r}\left\|\tau_{n}^{(r)}(f)\right\|_{M, w}, \\
R_{r}^{z}\left(f, n^{-r}, L_{M, w}\right) & :=\left\|f-Z_{n}^{r}(f)\right\|_{M, w}+n^{-r}\left\|\left(Z_{n}^{r}(f)\right)^{(r)}\right\|_{M, w}, \\
R_{r}^{S}\left(f, n^{-r}, L_{M, w}\right) & :=\left\|f-S_{n}(f)\right\|_{M, w}+n^{-r}\left\|S_{n}^{(r)}(f)\right\|_{M, w}, \\
R_{r}^{v, k}\left(f, n^{-r}, L_{M, w}\right) & :=\left\|f-v_{n}^{k}(f)\right\|_{M, w}+n^{-r}\left\|\left(v_{n}^{k}(f)\right)^{(r)}\right\|_{M, w}, \\
R_{r}^{e, t}\left(f, n^{-r}, L_{M, w}\right) & :=\left\|f-e_{n}^{t}(f)\right\|_{M, w}+n^{-r}\left\|\left(e_{n}^{t}(f)\right)^{(r)}\right\|_{M, w} .
\end{aligned}
$$

The partial cases of Theorem 7 for $R_{r}^{S}\left(f, n^{-r}, L_{M, w}\right)$ in the case of even r and for $R_{r}^{v, k}\left(f, n^{-r}, L_{M, w}\right)$ in the case of even r and $k=1$ were proved by Jafarov [12, Theorem 1.7].
Theorem 7. Let M be a Young function with nontrivial indices and $w \in A_{1 / \alpha_{M}}(\mathbb{T}) \cap A_{1 / \beta_{M}}(\mathbb{T}), k, r \in \mathbb{N}$. Then for $n \in \mathbb{N}$ and $f \in L_{M, w}$, we have:

$$
\begin{aligned}
& R_{r}^{\tau}\left(f, n^{-r}, L_{M, w}\right) \asymp K\left(f, n^{-r}, L_{M, w}, W^{r} L_{M, w}\right) \asymp R_{r}^{z}\left(f, n^{-r}, L_{M, w}\right) \asymp \\
& \quad \asymp R_{r}^{S}\left(f, n^{-r}, L_{M, w}\right) \asymp R_{r}^{v, k}\left(f, n^{-r}, L_{M, w}\right) \asymp R_{r}^{e, t}\left(f, n^{-r}, L_{M, w}\right) .
\end{aligned}
$$

Proof. It is clear that $K\left(f, n^{-r}, L_{M, w}, W^{r} L_{M, w}\right)$ is majorized by all the realization functionals. Also, by Theorem 2, Theorem 5, Lemma 3, Corollary 1 , and Theorem 6, we obtain that the first term of the realization functionals (in the same order as they are introduced above) is $O\left(\Omega_{r}(f, 1 / n)_{M, w}\right)$, $n \in \mathbb{N}$. By Theorem 1, we conclude that the first term of the realization functionals is majorized by $K\left(f, n^{-r}, L_{M, w}, W^{r} L_{M, w}\right)$.

Finally, we consider, e.g., the case of $R_{r}^{z}\left(f, n^{-r}, L_{M, w}\right)$. By Theorems 4, 5 and 1 we have

$$
n^{-r}\left\|\left(Z_{n}^{r}(f)\right)^{(r)}\right\|_{M, w} \leqslant C_{1} \Omega_{r}\left(Z_{n}^{r}(f), 1 / n\right)_{M, w} \leqslant
$$

$$
\begin{gather*}
\leqslant C_{1}\left(\Omega_{r}\left(Z_{n}^{r}(f)-f, 1 / n\right)_{M, w}+\Omega_{r}(f, 1 / n)_{M, w}\right) \leqslant \\
\leqslant C_{2}\left(\left\|Z_{n}^{r}(f)-f\right\|_{M, w}+\Omega_{r}(f, 1 / n)_{M, w}\right) \leqslant C_{3} \Omega_{r}(f, 1 / n)_{M, w} \leqslant \\
\leqslant C_{4} K\left(f, n^{-r}, L_{M, w}, W^{r} L_{M, w}\right), \quad n \in \mathbb{N} \tag{12}
\end{gather*}
$$

Thus, both terms of $R_{r}^{z}\left(f, n^{-r}, L_{M, w}\right)$ are majorized by $K\left(f, n^{-r}, L_{M, w}\right.$, $\left.W^{r} L_{M, w}\right)$. To finish the proof for other realization functionals, we apply again Theorems 4 and 1 , and also Theorem 2 for $R_{r}^{\tau}\left(f, n^{-r}, L_{M, w}\right)$, Lemma 3 for $R_{r}^{S}\left(f, n^{-r}, L_{M, w}\right)$, Corollary 1 for $R_{r}^{v, k}\left(f, n^{-r}, L_{M, w}\right)$, and Theorem 6 for $R_{r}^{e, t}\left(f, n^{-r}, L_{M, w}\right)$.

Note the property established in the proof of Theorem 7. For Z_{n}^{r}, see (12); for S_{n}, see (8); in other cases, the proof is similar.

Corollary 1. Let M be a Young function with nontrivial indices and $w \in A_{1 / \alpha_{M}}(\mathbb{T}) \cap A_{1 / \beta_{M}}(\mathbb{T}), k, r \in \mathbb{N}$. Then, for $n \in \mathbb{N}$ and $f \in L_{M, w}$, we have

$$
\begin{aligned}
& \Omega_{r}\left(\tau_{n}(f), 1 / n\right)_{M, w} \leqslant C \Omega_{r}(f, 1 / n)_{M, w}, \\
& \Omega_{r}\left(Z_{n}^{r}(f), 1 / n\right)_{M, w} \leqslant C \Omega_{r}(f, 1 / n)_{M, w}, \\
& \Omega_{r}\left(S_{n}(f), 1 / n\right)_{M, w} \leqslant C \Omega_{r}(f, 1 / n)_{M, w}, \\
& \Omega_{r}\left(v_{n}^{k}(f), 1 / n\right)_{M, w} \leqslant C \Omega_{r}(f, 1 / n)_{M, w}, \\
& \Omega_{r}\left(e_{n}^{t}(f), 1 / n\right)_{M, w} \leqslant C \Omega_{r}(f, 1 / n)_{M, w} .
\end{aligned}
$$

Acknowledgement. Supported by the Ministry of science and education of the Russian Federation in the framework of the basic part of the scientific research state task, project FSRR-2020-0006.

Author thanks both referees for their valuable remarks and corrections.

References

[1] Bary N. K. A treatise on trigonometric series. Pergamon Press, New York, 1964.
[2] Bary N. K., Stechkin S. B. Best approximations and differential properties of two conjugate functions. Trudy Moskov. Mat. Obshch., 1956, vol. 5, pp. 483-522 (in Russian).
[3] Bennett C., Sharpley R. Interpolation of operators. Academic Press, New York, 1988.
[4] Böttcher A., Karlovich Yu. Carleson curves, Muckenhoupt weights and Toeplitz operators. Birkhäuser, Basel, 1997.
[5] Boyd D.W. Indices for the Orlicz spaces. Pacific J. Math., 1971, vol. 38, no. 2, pp. 315-323. DOI: https://doi.org/10.2140/pjm.1971.38.315
[6] DeVore R. A., Lorentz G. G. Constructive approximation. Springer, Berlin-Heidelberg-New York, 1993.
[7] Ditzian Z., Hristov V. H., Ivanov K. G. Moduli of smoothness and Kfunctionals in $L_{p}, 0<p<1$. Constr. Approx., 1995, vol. 11, no. 1, pp. 6783. DOI: https://doi.org/10.1007/BF01294339
[8] Guven A., Israfilov D. M. it On approximation in weighted Orlicz spaces. Math. Slovaca, 2012, vol. 62, no. 1, pp. 77-86.
DOI: https://doi.org/10.2478/s12175-011-0073-7
[9] Israfilov D. M., Testici A. Some inverse and simultaneous approximation theorems in weighted variable exponent Lebesgue spaces. Analysis Math., 2018, vol. 44, no. 4, pp. 475-492.
DOI: https://doi.org/10.1007/s10476-018-0403-x
[10] Israfilov D. M., Guven A. Approximation by trigonometric polynomials in weighted Orlicz spaces. Studia Math., 2006, vol. 174, no. 2, pp. 147-168. DOI: https://doi.org/10.4064/sm174-2-3
[11] Jafarov S. Z. Linear methods of summing Fourier series and approximation in weighted Orlicz spaces. Turk. J. Math., 2018, vol. 42, no. 6, pp. 29162925.
[12] Jafarov S. Z. Simultaneous approximation properties of de la Vallée-Poussin means in weighted Orlicz spaces. J. Class. Anal., 2020, vol. 17, no. 2, pp. 189-198. DOI: https://doi.org/110.7153/jca-2021-17-12
[13] Krasnosel'skii M. A., Rutickii Ya. B., Convex functions and Orlicz spaces, Noordhoff, Groningen, 1961.
[14] Hardy G. H. Divergent series. Oxford Univ. Press, Oxford, 1949.
[15] Matuszewska W., Orlicz W. On certain properties of φ-functions. Bull. Acad. Polon. Sci. Ser. sci. math. astr. et phys., 1960, vol. 8, pp. 439-443.
[16] Muckenhoupt B. Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc., 1972, vol. 165, pp. 207-226.
DOI: https://doi.org/10.1090/S0002-9947-1972-0293384-6
[17] Rao M. M., Ren Z. D. Applications of Orlicz spaces. Monographs and Textbooks in Pure and Applied Mathematics, 250. Dekker, New York, 2002.
[18] Sharapudinov I. I. Approximation of functions in $L_{2 \pi}^{p(x)}$ by trigonometric polynomials. Izv. Ross. Akad. Nauk Ser. Mat., 2013, vol. 77, no. 2, pp. 197224 (in Russian). Translated in Izv. Math., vol. 77, no. 2, pp. 407-434.
DOI: https://dx.doi.org/10.4213/im7808
[19] Volosivets S. S. Approximation of functions and their conjugates in variable Lebesgue spaces. Sbornik: Math., 2017, vol. 208, no. 1, pp. 44-59. Transl. from Mat. sbornik, 2017, vol. 208, no. 1, pp. 48-64.
DOI: https://doi.org/10.1070/SM8636
[20] Volosivets S. S. Modified modulus of smoothness and approxiamtion in weighted Lorentz spaces by Borel and Euler means. Probl. Anal. Issues Anal., 2021, vol. 10(28), no. 1, pp. 87-100.
DOI: https://doi.org/10.15393/j3.art.2021.8950

Received August 9, 2021.
In revised form, January 6, 2022.
Accepted February 2, 2022.
Published online March 4, 2022.

Saratov State University
83 Astrakhanskaya St., Saratov 410012, Russia
E-mail: VolosivetsSS@mail.ru

