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APPROXIMATION BY LINEAR MEANS OF FOURIER
SERIES AND REALIZATION FUNCTIONALS IN

WEIGHTED ORLICZ SPACES

Abstract. Using one-sided Steklov means, we introduce a new
modulus of smoothness in weighted Orlicz spaces and state its
equivalence with a special 𝐾-functional. We prove Stechkin-Ni-
kol’skii-type inequality for trigonometric polynomials and direct es-
timates for the approximation by Riesz-Zygmund, Vallée-Poussin,
and Euler means in weighted Orlicz spaces. By these results, sev-
eral types of realization functionals equivalent to the above cited
𝐾-functional in points 1/𝑛, 𝑛 ∈ N, are constructed.
Key words: weighted Orlicz spaces, 𝐾-functional, realization func-
tional, Riesz-Zygmund means, Euler means
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1. Introduction. Let 𝑓 be a 2𝜋-periodic continuous function (𝑓 ∈ 𝐶2𝜋),
𝑇𝑛 be the space of trigonometric polynomials of degree at most 𝑛, 𝑛 ∈
Z+ = {0, 1, . . . }, ‖𝑓‖∞ = max

𝑥∈[0, 2𝜋]
|𝑓(𝑥)|. For 𝑟 ∈ N = {1, 2, . . . }, let us

consider the 𝑟-th difference with step ℎ

∆𝑟
ℎ𝑓(𝑥) =

𝑟∑︁
𝑗=0

(−1)𝑟−𝑗
(︂
𝑟

𝑗

)︂
𝑓(𝑥+ 𝑗ℎ)

and the 𝑟-th modulus of continuity 𝜔𝑟(𝑓, 𝛿)∞ = sup
06ℎ6𝛿

‖∆𝑟
ℎ𝑓‖∞. By defini-

tion, the best approximation is given by 𝐸𝑛(𝑓)∞ =inf{‖𝑓− 𝑡𝑛‖∞ : 𝑡𝑛∈𝑇𝑛},
𝑛 ∈ Z+. Then the classical Jackson-Stechkin theorem states that

𝐸𝑛(𝑓)∞ 6 𝐶𝜔𝑟(𝑓, (𝑛+ 1)−1)∞, 𝑛 ∈ Z+, (1)
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(see [6, Ch. 7, Theorem 2.3]). On the other hand, for 𝑡𝑛 ∈ 𝑇𝑛, 𝑛 ∈ N,
𝑟 ∈ N, the Stechkin-Nikol’skii inequality

‖𝑡(𝑟)𝑛 ‖∞ 6 𝐶𝑟
𝑛‖∆𝑟

𝜋/2𝑛𝑡𝑛‖∞ 6 𝐶𝑛𝑟𝜔𝑟(𝑡𝑛, 2𝜋/𝑛)∞ (2)

holds (see [6, Ch. 4, § 12, (12.1)]).
If 𝜏𝑛(𝑓) ∈ 𝑇𝑛 satisfies the equality ‖𝑓 − 𝜏𝑛(𝑓)‖∞ = 𝐸𝑛(𝑓)∞, then, by

(1) and (2), it is easy to see that

‖𝜏 (𝑟)𝑛 (𝑓)‖∞ 6 𝐶𝑛𝑟𝜔𝑟(𝜏𝑛(𝑓), 2𝜋/𝑛)∞ 6 𝐶𝑛𝑟𝜔𝑟(𝑓, 1/𝑛)∞, 𝑛 ∈ N,

and the inequality

𝐶1𝜔𝑟(𝑓, 1/𝑛)∞ 6 ‖𝑓 − 𝜏𝑛(𝑓)‖∞ + 𝑛−𝑟‖𝜏 (𝑟)𝑛 (𝑓)‖∞ 6 𝐶2𝜔𝑟(𝑓, 1/𝑛)∞ (3)

holds for all 𝑛 ∈ N. The inequality (3) shows that the modulus of smooth-
ness 𝜔𝑟(𝑓, 1/𝑛)∞ and the 𝐾-functional

𝐾(𝑓, 𝑛−𝑟, 𝐶2𝜋, 𝐶
𝑟
2𝜋) = inf{‖𝑓 − 𝑔‖∞ + 𝑛−𝑟‖𝑔(𝑟)‖∞ : 𝑔 ∈ 𝐶𝑟

2𝜋}

are equivalent, where 𝐶𝑟
2𝜋 is the space of 2𝜋-periodic 𝑟 times continuously

differentiable functions on R. Moreover, we can take 𝑔 = 𝜏𝑛(𝑓) to realize
this equivalence. The middle part of (3) is often called the realization
functional for 𝐾(𝑓, 𝑛−𝑟, 𝐶2𝜋, 𝐶

𝑟
2𝜋). The idea of such functionals belongs to

Ditzian, Hristov, and Ivanov [7].
In this paper, we study another forms of realization functionals, using

Riesz-Zygmund, generalized Vallée-Poussin, and Euler means of Fourier
series in weighted Orlicz spaces. The main tool is a Stechkin-Nikol’skii-
type inequality (Theorem 4) and direct estimates of approximation by the
cited means. In this paper, We use a new type of a modulus of smoothness
in the weighted Orlicz space similar to that introduced in [19] for variable
exponent spaces and in [20] for weighted Lorentz spaces.

2. Definitions. Let 𝑀(𝑢) be a continuous convex strictly increasing
on [0,+∞) function, such that 𝑀(0) = 0, lim

𝑢→0+0
𝑀(𝑢)/𝑢 = 0,

lim
𝑢→+∞

𝑀(𝑢)/𝑢 = +∞. Then 𝑀(𝑢) is called a Young function or an 𝑁 -
function.

We denote by 𝑁(𝑣) the complementary function 𝑁(𝑣) = max{𝑢𝑣−
−𝑀(𝑢) : 𝑢 > 0}, 𝑣 ∈ [0,+∞). It is known that 𝑁(𝑣) is also a Young
function.
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For a Young function 𝑀(𝑢), we denote by 𝐿𝑀, 2𝜋 the linear space of
2𝜋-periodic measurable functions 𝑓 : [0, 2𝜋] → R, such that the integral
2𝜋∫︀
0

𝑀(𝜆|𝑓(𝑥)|) 𝑑𝑥 is finite for some 𝜆 > 0. It is well known that 𝐿𝑀, 2𝜋

equipped with the Orlicz norm

‖𝑓‖𝑀 := sup

{︂ 2𝜋∫︁
0

|𝑓(𝑥)𝑔(𝑥)| 𝑑𝑥 :

2𝜋∫︁
0

𝑁(|𝑔(𝑥)|) 𝑑𝑥 6 1

}︂
is a Banach space called the Orlicz space generated by 𝑀 . The Orlicz
spaces may be considered as a generalization of the Lebesgue spaces 𝐿𝑝2𝜋,
1 < 𝑝 < ∞, which are obtained in the case 𝑀𝑝(𝑢) = 𝑢𝑝/𝑝. If 𝐿𝑝2𝜋,

1 6 𝑝 < ∞, we consider the norm ‖𝑓‖𝑝 =
(︁ 2𝜋∫︀

0

|𝑓(𝑡)|𝑝 𝑑𝑡
)︁1/𝑝

. More about

Orlicz spaces can be found in [13] and [17]. Matuszewska and Orlicz [15]
introduced a pair of indices associated with a given Orlicz space 𝐿𝑀, 2𝜋.

Let 𝑀−1 : [0,+∞) → [0,+∞) be the inverse function of a Young
function 𝑀 and ℎ(𝑡) = lim sup

𝑥→∞
𝑀−1(𝑥)/𝑀−1(𝑡𝑥), 𝑡 > 0. Then

𝛼𝑀 = lim
𝑡→+∞

− log ℎ(𝑡)

log 𝑡
, 𝛽𝑀 = lim

𝑡→0+0
− log ℎ(𝑡)

log 𝑡
(4)

are called the lower and upper Boyd indices of the function 𝑀 and of
the Orlicz space 𝐿𝑀, 2𝜋. Boyd [5] proved that the indices defined above
coincide with the general indices for rearrangement invariant spaces named
after him (see [3, Ch. 3, Definition 5.12]). Matuszewska and Orlicz [15]
considered reciprocals to 𝛼𝑀 and 𝛽𝑀 . It is known that 0 6 𝛼𝑀 6 𝛽𝑀 6 1,
𝛼𝑁 + 𝛽𝑀 = 1, 𝛼𝑀 + 𝛽𝑁 = 1. If 0 < 𝛼𝑀 6 𝛽𝑀 < 1, then we say that 𝑀
and 𝐿𝑀, 2𝜋 has nontrivial Boyd indices.

A nonnegative 2𝜋-periodic measurable function 𝑤 is called a weight
function if the set 𝑤−1({0,+∞}) has zero Lebesgue measure. For a Young
function 𝑀 and a weight function 𝑤, we denote by 𝐿𝑀,𝑤 the space of all
2𝜋-periodic measurable functions 𝑓 , such that 𝑓𝑤 ∈ 𝐿2𝜋 with the norm
‖𝑓‖𝑀,𝑤 = ‖𝑓𝑤‖𝑀 . We will often use the spaces 𝐿𝑝𝑤, 1 6 𝑝 <∞, with the
norm ‖𝑓‖𝑝, 𝑤 = ‖𝑓𝑤‖𝑝.

A weight 𝑤 belongs to the Muckenhoupt class 𝐴𝑝(T), 1 < 𝑝 <∞, if

|𝑤|𝐴𝑝 = sup

⎛⎝|𝐼|−1

∫︁
𝐼

𝑤𝑝(𝑥) 𝑑𝑥

⎞⎠1/𝑝⎛⎝|𝐼|−1

∫︁
𝐼

𝑤−𝑝′(𝑥) 𝑑𝑥

⎞⎠1/𝑝′

<∞,
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where 𝑝′ = 𝑝/(𝑝 − 1) and the supremum is taken with respect to all
intervals 𝐼 ⊂ R whose lengths |𝐼| do not exceed 2𝜋 (see [16], where 𝑤𝑝
was substituted by 𝜔).

The class of trigonometric polynomials was shown to be dense in 𝐿𝑀,𝑤

for 𝑀 with nontrivial Boyd indices and 𝑤 ∈ 𝐴1/𝛼𝑀
(T) ∩ 𝐴1/𝛽𝑀 (T) in [10,

Lemma 4]. Thus, we may define the best approximations 𝐸𝑛(𝑓)𝑀,𝑤 =
= inf

𝑡𝑛∈𝑇𝑛
‖𝑓 − 𝑡𝑛‖𝑀,𝑤, 𝑛 ∈ Z+, and the sequence {𝐸𝑛(𝑓)𝑀,𝑤}∞𝑛=0 decreases

to zero. On the other hand, for a 2𝜋-periodic locally integrable function
𝑓 , we can consider two variants of Steklov operators

𝑠ℎ(𝑓)(𝑥) = ℎ−1

𝑥+ℎ∫︁
𝑥

𝑓(𝑢) 𝑑𝑢, 𝑠
(2)
ℎ (𝑓)(𝑥) = (2ℎ)−1

𝑥+ℎ∫︁
𝑥−ℎ

𝑓(𝑢) 𝑑𝑢.

In the present paper, we use the following modulus of smoothness:

Ω𝑟(𝑓, 𝛿)𝑀,𝑤 = sup
06ℎ𝑖6𝛿

⃦⃦⃦⃦
⃦

𝑟∏︁
𝑖=1

(𝐼 − 𝑠ℎ𝑖)(𝑓)

⃦⃦⃦⃦
⃦
𝑀,𝑤

,

where 𝐼 is the identity operator. In [10], [8], [11] a similar construction
Ω*
𝑟(𝑓, 𝛿)𝑀,𝑤 with 𝑠(2)ℎ𝑖 instead of 𝑠ℎ𝑖 was used. The Fourier series of 𝑠(2)ℎ (𝑓)

is more appropriate for the treatment than one of 𝑠ℎ(𝑓), while Ω𝑟(𝑓, 𝛿)𝑀,𝑤

are more general than Ω*
𝑟(𝑓, 𝛿)𝑀,𝑤, since the last modulus of smoothness

is equivalent to Ω2𝑟(𝑓, 𝛿)𝑀,𝑤 for 𝑟 ∈ N under some conditions on𝑀 and 𝑤
(see Corollary 1). These concepts are well-defined: this follows from the
boundedness of 𝑠ℎ and 𝑠(2)ℎ in 𝐿𝑀,𝑤 under the conditions at the beginning
of this paragraph (see Lemma 2 and Lemma 1 in [10]). Unfortunately,
the definition of a fractional modulus of smoothness in such a way is
connected with the problem of uniform boundedness of iterates of the
Steklov operators. We note also the papers [18], [9] that study the moduli
of smoothness defined with help of 𝑠ℎ(𝑓).

For an 𝑟 ∈ N, a Young function 𝑀 , and a weight 𝑤, we denote by
𝑊 𝑟𝐿𝑀,𝑤 the collection of all absolutely continuous on each period func-
tions 𝑓 (𝑓 ∈ 𝐴𝐶2𝜋), such that 𝑓 ′, . . . , 𝑓 (𝑟−1) ∈ 𝐴𝐶2𝜋 and 𝑓 (𝑟) ∈ 𝐿𝑀,𝑤. If
𝑓 ∈ 𝐿𝑀,𝑤 and 𝑟 ∈ N, then we define the Peetre’s 𝐾-functional by

𝐾(𝑓, 𝑡, 𝐿𝑀,𝑤,𝑊
𝑟𝐿𝑀,𝑤) = inf{‖𝑓 − 𝑔‖𝑀,𝑤 + 𝑡‖𝑔(𝑟)‖𝑀,𝑤 : 𝑔 ∈ 𝑊 𝑟𝐿𝑀,𝑤}.

It is well known that 𝐿𝑝𝑤 ⊂ 𝐿1
2𝜋 for 1 < 𝑝 < ∞ and 𝑤 ∈ 𝐴𝑝(T). By

the proof of Lemma 2 below, under conditions 0 < 𝛼𝑀 6 𝛽𝑀 < 1 and
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𝑤 ∈ 𝐴1/𝛼𝑀
(T) ∩ 𝐴1/𝛽𝑀 (T), there exists 𝑞, 𝑝, such that 1 < 𝑞 < 1/𝛽𝑀 6

6 1/𝛼𝑀 < 𝑝 < ∞ and 𝑤 ∈ 𝐴𝑝(T) ∩ 𝐴𝑞(T). Moreover, from the results
of Boyd [5] we see that 𝑓𝑤 ∈ 𝐿𝑝2𝜋 + 𝐿𝑞2𝜋 = 𝐿𝑞2𝜋, i. e., 𝑓𝑤 = 𝑔1 + 𝑔2,
𝑔1 ∈ 𝐿𝑝2𝜋, 𝑔2 ∈ 𝐿𝑞2𝜋, or 𝑓 ∈ 𝐿𝑞𝑤 ⊂ 𝐿1

2𝜋. Thus, if 0 < 𝛼𝑀 6 𝛽𝑀 < 1 and
𝑤 ∈ 𝐴1/𝛼𝑀

(T) ∩ 𝐴1/𝛽𝑀 (T), then 𝑓 ∈ 𝐿𝑀,𝑤 has the Fourier series

𝑎0(𝑓)/2 +
∞∑︁
𝑘=1

(𝑎𝑘(𝑓) cos 𝑘𝑥+ 𝑏𝑘(𝑓) sin 𝑘𝑥) =:
∞∑︁
𝑘=0

𝐴𝑘(𝑓)(𝑥).

Further we will consider the Fourier partial sums 𝑆𝑛(𝑓)(𝑥) =
𝑛∑︀
𝑘=0

𝐴𝑘(𝑓)(𝑥),

the Riesz-Zygmund means of order 𝑟 ∈ N

𝑍𝑟
𝑛(𝑓)(𝑥) =

𝑛∑︁
𝑘=0

(1 − 𝑘𝑟/(𝑛+ 1)𝑟)𝐴𝑘(𝑓)(𝑥), 𝑛 ∈ N,

the generalized Vallée-Poussin means

𝑣𝑟𝑛(𝑓)(𝑥) =
(2𝑛+ 1)𝑟𝑍𝑟

2𝑛(𝑓)(𝑥)

(2𝑛+ 1)𝑟 − (𝑛+ 1)𝑟
− (𝑛+ 1)𝑟𝑍𝑟

𝑛(𝑓)(𝑥)

(2𝑛+ 1)𝑟 − (𝑛+ 1)𝑟
, 𝑛 ∈ N,

and the Euler means

𝑒𝑡𝑛(𝑓)(𝑥) = (1 + 𝑡)−𝑛
𝑛∑︁
𝑘=0

(︂
𝑛

𝑘

)︂
𝑡𝑛−𝑘𝑆𝑘(𝑓)(𝑥), 𝑡 > 0, 𝑛 ∈ N.

More about these means can be found in the monograph by Hardy [14].
It is well known that for 𝑓 ∈ 𝐿1

2𝜋 the following limit

̃︀𝑓(𝑥) = (2𝜋)−1 lim
𝑡→0+0

𝜋∫︁
𝑡

(𝑓(𝑥− 𝑢) − 𝑓(𝑥+ 𝑢)) ctg(𝑢/2) 𝑑𝑢

exists a. e. on R (see [1, Ch. VIII, § 7]). The function ̃︀𝑓(𝑥) is called the
conjugate function to 𝑓 . If ̃︀𝑓 ∈ 𝐿1

2𝜋, then its Fourier series has the form
∞∑︀
𝑘=1

(𝑎𝑘(𝑓) sin 𝑘𝑥− 𝑏𝑘(𝑓) cos 𝑘𝑥).

3. Auxiliary propositions. Lemma 1 is proved in [3, p. 153].

Lemma 1. Let 1 < 𝑞 < 𝑝 < ∞. If a linear operator is bounded in the
Lebesgue spaces 𝐿𝑝2𝜋 and 𝐿𝑞2𝜋, then it is bounded in every Orlicz space
𝐿𝑀, 2𝜋 provided that 1/𝑝 < 𝛼𝑀 6 𝛽𝑀 < 1/𝑞.
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Lemma 2 is proved for 𝑠(2)ℎ in [10, Lemma 1].

Lemma 2. Let 𝑀 be a Young function with nontrivial indices and
𝑤 ∈ 𝐴1/𝛼𝑀

(T) ∩𝐴1/𝛽𝑀 (T). Then the operators 𝑠ℎ are uniformly bounded
in 𝐿𝑀,𝑤 with respect to ℎ > 0.

Proof. Since 0 < 𝛼𝑀 6 𝛽𝑀 < 1, by [4, Theorem 2.31] we find 𝑞 and 𝑝 such
that 1 < 𝑞 < 1/𝛽𝑀 6 1/𝛼𝑀 < 𝑝 <∞ and 𝑤 ∈ 𝐴𝑝(T)∩𝐴𝑞(T). It is known
that the maximal operator is bounded in all 𝐿𝑟𝑤, 1 < 𝑟 < ∞, 𝑤 ∈ 𝐴𝑟(T)
(see [16]). We use the multiplication operator 𝐹𝑤(𝑓) = 𝑤𝑓 to define
𝐴ℎ(𝑓) = 𝐹𝑤(𝑠ℎ(𝐹𝑤−1(𝑓))). Then 𝐴ℎ is uniformly in ℎ > 0 bounded in 𝐿𝑝2𝜋
and 𝐿𝑞2𝜋. Indeed, let 𝑓 = 𝑓1𝑤, 𝑓1 ∈ 𝐿𝑝𝑤. Then 𝑠ℎ(𝑓1) = 𝑠ℎ(𝑇𝑤−1𝑓) ∈ 𝐿𝑝𝑤
and

‖𝐴ℎ(𝑓)‖𝑝 = ‖𝑤𝑠ℎ(𝑓1)‖𝑝, 𝑤 6 𝐶1‖𝑓1‖𝑝, 𝑤 = 𝐶1‖𝑓‖𝑝.

By Lemma 1, the operator 𝐴ℎ is uniformly in ℎ > 0 bounded in 𝐿𝑀, 2𝜋,
i. e., for 𝑓 = 𝑓1𝑤

−1, 𝑓 ∈ 𝐿𝑀,𝑤, one has

‖𝑠ℎ(𝑓)‖𝑀,𝑤 = ‖𝑤𝑠ℎ(𝑓)‖𝑀 = ‖𝐴ℎ(𝑓1)‖𝑀 6 𝐶2‖𝑓1‖𝑀 = 𝐶2‖𝑓‖𝑀,𝑤.

The proof is completed. �

Lemma 3 is stated in [10, (15) and (16)]. The statement concerning
conjugation operator can be proved by the same method as in Lemma 2,
while the inequalities (5) can be proved as in [1, Ch. VIII, § 20].

Lemma 3. Let 𝑀 be a Young function with nontrivial indices and
𝑤 ∈ 𝐴1/𝛼𝑀

(T) ∩ 𝐴1/𝛽𝑀 (T). Then the conjugation operator is bounded in
𝐿𝑀,𝑤 and for 𝑓 ∈ 𝐿𝑀,𝑤 the inequalities

‖𝑆𝑛(𝑓)‖𝑀,𝑤 6 𝐶1‖𝑓‖𝑀,𝑤, ‖𝑓 − 𝑆𝑛(𝑓)‖𝑀,𝑤 6 (𝐶1 + 1)𝐸𝑛(𝑓)𝑀,𝑤, (5)

hold for 𝑛 ∈ Z+.

Lemma 4 is a variant of the Bernstein inequality proved in [10, Lemma 3].
It will be used in the proof of its extension, Theorem 4.

Lemma 4. Let 𝑀 and 𝑤 be as in Lemma 3, 𝑡𝑛 ∈ 𝑇𝑛, 𝑛 ∈ N, 𝑟 ∈ N.
Then

‖𝑡(𝑟)𝑛 ‖𝑀,𝑤 6 𝐶𝑛𝑟‖𝑡𝑛‖𝑀,𝑤. (6)

4. Direct and inverse approximation theorems. The relation
𝐴(𝑡) ≍ 𝐵(𝑡), 𝑡 ∈ 𝑇 , means that there exist 𝐶1, 𝐶2 > 0, such that 𝐶1𝐴(𝑡) 6
6 𝐵(𝑡) 6 𝐶2𝐴(𝑡), 𝑡 ∈ 𝑇 . Since the proofs of Theorems 1 – 3 are similar to
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that of the corresponding results in [20, Theorems 1-3] and [19], we omit
them. Theorems 2 and 3 are de facto proved in [10, Theorems 2 and 4]
for even 𝑟 (see Corollary 1).

Theorem 1. Let 𝑀 be a Young function with nontrivial indices and
𝑤 ∈ 𝐴1/𝛼𝑀

(T) ∩ 𝐴1/𝛽𝑀 (T), 𝑟 ∈ N. Then, for 𝑓 ∈ 𝐿𝑀,𝑤, we have:

Ω𝑟(𝑓, 𝑡)𝑀,𝑤 ≍ 𝐾(𝑓, 𝑡𝑟, 𝐿𝑀,𝑤,𝑊
𝑟𝐿𝑀,𝑤), 𝑡 ∈ [0, 2𝜋].

From the comparison of Theorem 1 and [10, Theorem 8], we obtain:

Corollary 1. Under conditions of Theorem 1, one has:

Ω2𝑟(𝑓, 𝛿)𝑀,𝑤 ≍ Ω*
𝑟(𝑓, 𝛿)𝑀,𝑤, 𝛿 ∈ [0, 2𝜋].

Theorem 2. Let 𝑀 be a Young function with nontrivial indices and
𝑤 ∈ 𝐴1/𝛼𝑀

(T)∩𝐴1/𝛽𝑀 (T), 𝑟 ∈ N. Then, for 𝑓 ∈ 𝐿𝑀,𝑤, the direct approx-
imation theorem

𝐸𝑛(𝑓)𝑀,𝑤 6 𝐶Ω𝑟(𝑓, (𝑛+ 1)−1)𝑀,𝑤, 𝑛 ∈ Z+,

holds.

Theorem 3. Let 𝑀 , 𝑤 and 𝑟 be as in Theorem 2. Then

Ω𝑟(𝑓, 𝑛
−1)𝑀,𝑤 6 𝐶𝑛−𝑟

𝑛∑︁
𝑘=1

𝑘𝑟−1𝐸𝑘−1(𝑓)𝑀,𝑤, 𝑛 ∈ N.

If 𝜔 is increasing and continuous on [0; 2𝜋], 𝜔(0) = 0, then 𝜔 ∈ Φ.
A function 𝜔 ∈ Φ belongs to the Bary-Stechkin class 𝐵𝛼, 𝛼 > 0, if
𝑛∑︀
𝑘=1

𝑘𝛼−1𝜔(𝑘−1) = 𝑂(𝑛𝛼𝜔(𝑛−1)), 𝑛 ∈ N (see [2]). Corollary 1 easily fol-

lows from Theorems 2 and 3.

Corollary 1. Let 𝑀 , 𝑤, and 𝑟 be as in Theorem 2, 𝜔 ∈ 𝐵𝑟. Then
the conditions 𝐸𝑛(𝑓)𝑀,𝑤 = 𝑂(𝜔((𝑛 + 1)−1)), 𝑛 ∈ Z+, and Ω𝑟(𝑓, 𝛿)𝑀,𝑤 =
= 𝑂(𝜔(𝛿)), 𝛿 ∈ [0, 2𝜋], are equivalent.

5. Approximation by linear means of Fourier series and reali-
zation functionals. The following analogue of the Stechkin-Nikol’skii
inequality (2) plays an important role in this paper. It also generalizes
Lemma 4.



Realization functionals in weighted Orlicz spaces 113

Theorem 4. Let 𝑀 , 𝑤 and 𝑟 be as in Theorem 2. Then, for 𝑡𝑛 ∈ 𝑇𝑛,
𝑛 ∈ N, the following inequality holds:

‖𝑡(𝑟)𝑛 ‖𝑀,𝑤 6 𝐶𝑛𝑟Ω𝑟(𝑡𝑛, 1/𝑛)𝑀,𝑤.

Proof. By the definition of𝐾-functional, we find 𝐶1>1 and 𝑔 ∈ 𝑊 𝑟𝐿𝑀,𝑤,
such that

‖𝑡𝑛 − 𝑔‖𝑀,𝑤 + 𝑛−𝑟‖𝑔(𝑟)‖𝑀,𝑤 6 𝐶1𝐾(𝑓, 𝑛−𝑟, 𝐿𝑀,𝑤,𝑊
𝑟𝐿𝑀,𝑤).

Note two famous properties 𝑆𝑛(𝑡𝑛) = 𝑡𝑛 for 𝑡𝑛 ∈ 𝑇𝑛 and 𝑆(𝑟)
𝑛 (𝑔) = 𝑆𝑛(𝑔(𝑟))

for 𝑔 ∈ 𝑊 𝑟𝐿𝑀,𝑤. Using Lemma 3, (6) from Lemma 4, and Theorem 1, we
obtain:

𝑛−𝑟‖𝑡(𝑟)𝑛 ‖𝑀,𝑤 6 𝑛−𝑟(‖𝑡(𝑟)𝑛 − 𝑆(𝑟)
𝑛 (𝑔)‖𝑀,𝑤 + ‖𝑆(𝑟)

𝑛 (𝑔)‖𝑀,𝑤) =

= 𝑛−𝑟(‖𝑆(𝑟)
𝑛 (𝑡𝑛 − 𝑔)‖𝑀,𝑤 + ‖𝑆𝑛(𝑔(𝑟))‖𝑀,𝑤) 6

6 𝑛−𝑟(𝐶2𝑛
𝑟‖𝑡𝑛 − 𝑔‖𝑀,𝑤 + 𝐶3‖𝑔(𝑟)‖𝑀,𝑤) 6

6 max(𝐶2, 𝐶3)(‖𝑡𝑛 − 𝑔‖𝑀,𝑤 + ‖𝑔(𝑟)‖𝑀,𝑤) 6

6 𝐶4𝐾(𝑡𝑛, 𝑛
−𝑟, 𝐿𝑀,𝑤,𝑊

𝑟𝐿𝑀,𝑤) 6 𝐶5Ω𝑟(𝑡𝑛, 1/𝑛)𝑀,𝑤.

The proof is completed. �

Now we can prove a direct approximation result for the Riesz-Zygmund
means.

Theorem 5. Let 𝑀 be a Young function with nontrivial indices and
𝑤 ∈ 𝐴1/𝛼𝑀

(T) ∩ 𝐴1/𝛽𝑀 (T), 𝑟 ∈ N. Then, for 𝑓 ∈ 𝐿𝑀,𝑤, we have

‖𝑓 − 𝑍𝑟
𝑛(𝑓)‖𝑀,𝑤 6 𝐶Ω𝑟(𝑓, 1/𝑛)𝑀,𝑤, 𝑛 ∈ N.

Proof. Note that

|𝑆𝑛(𝑓)(𝑥) − 𝑍𝑟
𝑛(𝑓)(𝑥)| = (𝑛+ 1)−𝑟

⃒⃒⃒⃒
⃒
𝑛∑︁
𝑘=1

𝑘𝑟𝐴𝑘(𝑓)(𝑥)

⃒⃒⃒⃒
⃒ =

|𝑆(𝑟)
𝑛 (𝑓)(𝑥)|
(𝑛+ 1)𝑟

for even 𝑟 and

|𝑆𝑛(𝑓)(𝑥) − 𝑍𝑟
𝑛(𝑓)(𝑥)| = (𝑛+ 1)−𝑟|̃︂𝑆(𝑟)

𝑛 (𝑓)(𝑥)|

for odd 𝑟. By Lemma 3 and Theorem 4, in both cases we obtain

‖𝑆𝑛(𝑓) − 𝑍𝑟
𝑛(𝑓)‖𝑀,𝑤 6 𝐶1(𝑛+ 1)−𝑟‖𝑆(𝑟)

𝑛 (𝑓)‖𝑀,𝑤 6
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6 𝐶2(𝑛+ 1)−𝑟𝑛𝑟Ω𝑟(𝑆𝑛(𝑓), 1/𝑛)𝑀,𝑤. (7)

By Lemma 3, Theorem 2, and the inequality Ω𝑟(𝑔, 𝛿)𝑀,𝑤 6 𝐶3‖𝑔‖𝑀,𝑤,
which follows from Lemma 2, we find that

Ω𝑟(𝑆𝑛(𝑓), 1/𝑛)𝑀,𝑤 6 Ω𝑟(𝑆𝑛(𝑓) − 𝑓, 1/𝑛)𝑀,𝑤 + Ω𝑟(𝑓, 1/𝑛)𝑀,𝑤 6

6 𝐶3‖𝑆𝑛(𝑓) − 𝑓‖𝑀,𝑤 + Ω𝑟(𝑓, 1/𝑛)𝑀,𝑤 6 𝐶4Ω𝑟(𝑓, 1/𝑛)𝑀,𝑤. (8)

Finally, from (7), (8), Lemma 3, and Theorem 2, we deduce that

‖𝑓 − 𝑍𝑟
𝑛(𝑓)‖𝑀,𝑤 6 ‖𝑓 − 𝑆𝑛(𝑓)‖𝑀,𝑤 + ‖𝑆𝑛(𝑓) − 𝑍𝑟

𝑛(𝑓)‖𝑀,𝑤 6

6 𝐶5(𝐸𝑛(𝑓)𝑀,𝑤 + Ω𝑟(𝑓, 1/𝑛)𝑀,𝑤) 6 𝐶6Ω𝑟(𝑓, 1/𝑛)𝑀,𝑤, 𝑛 ∈ N.

�

Remark 1. In [11, Corollary 2.1], the estimate

‖𝑓 − 𝑍𝑟
𝑛(𝑓)‖𝑀,𝑤 6 𝐶Ω*

𝑟(𝑓, 1/𝑛)𝑀,𝑤, 𝑛 ∈ N, (9)

is stated. This corollary follows from Theorem 2.1 in [11], where the
fulfilment of condition

𝑛2𝑟|1 − 𝜆(𝑛)𝜈 | 6 𝐶𝜈2𝑟, 𝜈 = 1, 2, . . . , 𝑛, 𝑛 ∈ N, (10)

is necessary. However, for 𝜆(𝑛)𝜈 = 1 − 𝜈𝑟/(𝑛 + 1)𝑟 the condition (10)
is not valid. The more correct variant of (9) is ‖𝑓 − 𝑍2𝑟

𝑛 (𝑓)‖𝑀,𝑤 6 6
𝐶Ω*

𝑟(𝑓, 1/𝑛)𝑀,𝑤, 𝑛 ∈ N.

Corollary 1. Under conditions of Theorem 5, for 𝑘 ∈ N, the inequality

‖𝑓 − 𝑣𝑟𝑛(𝑓)‖𝑀,𝑤 6 𝐶𝐸𝑛(𝑓)𝑀,𝑤 6 𝐶Ω𝑘(𝑓, 1/𝑛)𝑀,𝑤, 𝑛 ∈ N, (11)

holds.

Proof. Using summation by parts, we obtain:

𝑣𝑟𝑛(𝑓) =
1

(2𝑛+ 1)𝑟 − (𝑛+ 1)𝑟

2𝑛∑︁
𝑘=𝑛+1

((𝑘 + 1)𝑟 − 𝑘𝑟)𝑆𝑘(𝑓)

and 𝑣𝑟𝑛(𝑡𝑛) = 𝑡𝑛 for 𝑡𝑛 ∈ 𝑇𝑛, 𝑛 ∈ N. From Theorem 5, we deduce that 𝑍𝑟
𝑛

and 𝑣𝑟𝑛 are uniformly in 𝑛 ∈ N bounded in 𝐿𝑀,𝑤. By a standard procedure,
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we deduce the first inequality in (11), while the second one follows from
it and Theorem 2. �

Theorem 6 is proved similarly to Theorem 4 in [20].

Theorem 6. Let 𝑀 be a Young function with nontrivial indices and
𝑤 ∈ 𝐴1/𝛼𝑀

(T) ∩ 𝐴1/𝛽𝑀 (T), 𝑟 ∈ N. Then, for 𝑓 ∈ 𝐿𝑀,𝑤, we have:

‖𝑓 − 𝑒𝑡𝑛(𝑓)‖𝑀,𝑤 6 𝐶Ω𝑟(𝑓, 1/𝑛)𝑀,𝑤, 𝑛 ∈ N.

Let 𝑟, 𝑘 ∈ N, 𝑡 > 0, and 𝜏𝑛(𝑓) ∈ 𝑇𝑛 be the polynomial of the best
approximation for 𝑓 ∈ 𝐿𝑀,𝑤, i. e., ‖𝑓 − 𝜏𝑛(𝑓)‖𝑀,𝑤 = 𝐸𝑛(𝑓)𝑀,𝑤. Now we
define five types of realization functionals:

𝑅𝜏
𝑟 (𝑓, 𝑛

−𝑟, 𝐿𝑀,𝑤) := ‖𝑓 − 𝜏𝑛(𝑓)‖𝑀,𝑤 + 𝑛−𝑟‖𝜏 (𝑟)𝑛 (𝑓)‖𝑀,𝑤,

𝑅𝑧
𝑟(𝑓, 𝑛

−𝑟, 𝐿𝑀,𝑤) := ‖𝑓 − 𝑍𝑟
𝑛(𝑓)‖𝑀,𝑤 + 𝑛−𝑟‖(𝑍𝑟

𝑛(𝑓))(𝑟)‖𝑀,𝑤,

𝑅𝑆
𝑟 (𝑓, 𝑛−𝑟, 𝐿𝑀,𝑤) := ‖𝑓 − 𝑆𝑛(𝑓)‖𝑀,𝑤 + 𝑛−𝑟‖𝑆(𝑟)

𝑛 (𝑓)‖𝑀,𝑤,

𝑅𝑣, 𝑘
𝑟 (𝑓, 𝑛−𝑟, 𝐿𝑀,𝑤) := ‖𝑓 − 𝑣𝑘𝑛(𝑓)‖𝑀,𝑤 + 𝑛−𝑟‖(𝑣𝑘𝑛(𝑓))(𝑟)‖𝑀,𝑤,

𝑅𝑒, 𝑡
𝑟 (𝑓, 𝑛−𝑟, 𝐿𝑀,𝑤) := ‖𝑓 − 𝑒𝑡𝑛(𝑓)‖𝑀,𝑤 + 𝑛−𝑟‖(𝑒𝑡𝑛(𝑓))(𝑟)‖𝑀,𝑤.

The partial cases of Theorem 7 for 𝑅𝑆
𝑟 (𝑓, 𝑛−𝑟, 𝐿𝑀,𝑤) in the case of even

𝑟 and for 𝑅𝑣, 𝑘
𝑟 (𝑓, 𝑛−𝑟, 𝐿𝑀,𝑤) in the case of even 𝑟 and 𝑘 = 1 were proved

by Jafarov [12, Theorem 1.7].

Theorem 7. Let 𝑀 be a Young function with nontrivial indices and
𝑤 ∈ 𝐴1/𝛼𝑀

(T) ∩ 𝐴1/𝛽𝑀 (T), 𝑘,𝑟 ∈ N. Then for 𝑛 ∈ N and 𝑓 ∈ 𝐿𝑀,𝑤, we
have:

𝑅𝜏
𝑟 (𝑓, 𝑛

−𝑟, 𝐿𝑀,𝑤) ≍ 𝐾(𝑓, 𝑛−𝑟, 𝐿𝑀,𝑤,𝑊
𝑟𝐿𝑀,𝑤) ≍ 𝑅𝑧

𝑟(𝑓, 𝑛
−𝑟, 𝐿𝑀,𝑤) ≍

≍ 𝑅𝑆
𝑟 (𝑓, 𝑛−𝑟, 𝐿𝑀,𝑤) ≍ 𝑅𝑣, 𝑘

𝑟 (𝑓, 𝑛−𝑟, 𝐿𝑀,𝑤) ≍ 𝑅𝑒, 𝑡
𝑟 (𝑓, 𝑛−𝑟, 𝐿𝑀,𝑤).

Proof. It is clear that𝐾(𝑓, 𝑛−𝑟, 𝐿𝑀,𝑤,𝑊
𝑟𝐿𝑀,𝑤) is majorized by all the re-

alization functionals. Also, by Theorem 2, Theorem 5, Lemma 3, Corollary
1, and Theorem 6, we obtain that the first term of the realization function-
als (in the same order as they are introduced above) is 𝑂(Ω𝑟(𝑓, 1/𝑛)𝑀,𝑤),
𝑛 ∈ N. By Theorem 1, we conclude that the first term of the realization
functionals is majorized by 𝐾(𝑓, 𝑛−𝑟, 𝐿𝑀,𝑤,𝑊

𝑟𝐿𝑀,𝑤).
Finally, we consider, e. g., the case of 𝑅𝑧

𝑟(𝑓, 𝑛
−𝑟, 𝐿𝑀,𝑤). By Theorems

4, 5 and 1 we have

𝑛−𝑟‖(𝑍𝑟
𝑛(𝑓))(𝑟)‖𝑀,𝑤 6 𝐶1Ω𝑟(𝑍

𝑟
𝑛(𝑓), 1/𝑛)𝑀,𝑤 6
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6 𝐶1(Ω𝑟(𝑍
𝑟
𝑛(𝑓) − 𝑓, 1/𝑛)𝑀,𝑤 + Ω𝑟(𝑓, 1/𝑛)𝑀,𝑤) 6

6 𝐶2(‖𝑍𝑟
𝑛(𝑓) − 𝑓‖𝑀,𝑤 + Ω𝑟(𝑓, 1/𝑛)𝑀,𝑤) 6 𝐶3Ω𝑟(𝑓, 1/𝑛)𝑀,𝑤 6

6 𝐶4𝐾(𝑓, 𝑛−𝑟, 𝐿𝑀,𝑤,𝑊
𝑟𝐿𝑀,𝑤), 𝑛 ∈ N. (12)

Thus, both terms of 𝑅𝑧
𝑟(𝑓, 𝑛

−𝑟, 𝐿𝑀,𝑤) are majorized by𝐾(𝑓, 𝑛−𝑟, 𝐿𝑀,𝑤,
𝑊 𝑟𝐿𝑀,𝑤). To finish the proof for other realization functionals, we ap-
ply again Theorems 4 and 1, and also Theorem 2 for 𝑅𝜏

𝑟 (𝑓, 𝑛
−𝑟, 𝐿𝑀,𝑤),

Lemma 3 for 𝑅𝑆
𝑟 (𝑓, 𝑛−𝑟, 𝐿𝑀,𝑤), Corollary 1 for 𝑅𝑣, 𝑘

𝑟 (𝑓, 𝑛−𝑟, 𝐿𝑀,𝑤), and
Theorem 6 for 𝑅𝑒, 𝑡

𝑟 (𝑓, 𝑛−𝑟, 𝐿𝑀,𝑤). �

Note the property established in the proof of Theorem 7. For 𝑍𝑟
𝑛, see

(12); for 𝑆𝑛, see (8); in other cases, the proof is similar.

Corollary 1. Let 𝑀 be a Young function with nontrivial indices and
𝑤 ∈ 𝐴1/𝛼𝑀

(T) ∩ 𝐴1/𝛽𝑀 (T), 𝑘, 𝑟 ∈ N. Then, for 𝑛 ∈ N and 𝑓 ∈ 𝐿𝑀,𝑤, we
have

Ω𝑟(𝜏𝑛(𝑓), 1/𝑛)𝑀,𝑤 6 𝐶Ω𝑟(𝑓, 1/𝑛)𝑀,𝑤,

Ω𝑟(𝑍
𝑟
𝑛(𝑓), 1/𝑛)𝑀,𝑤 6 𝐶Ω𝑟(𝑓, 1/𝑛)𝑀,𝑤,

Ω𝑟(𝑆𝑛(𝑓), 1/𝑛)𝑀,𝑤 6 𝐶Ω𝑟(𝑓, 1/𝑛)𝑀,𝑤,

Ω𝑟(𝑣
𝑘
𝑛(𝑓), 1/𝑛)𝑀,𝑤 6 𝐶Ω𝑟(𝑓, 1/𝑛)𝑀,𝑤,

Ω𝑟(𝑒
𝑡
𝑛(𝑓), 1/𝑛)𝑀,𝑤 6 𝐶Ω𝑟(𝑓, 1/𝑛)𝑀,𝑤.

Acknowledgement. Supported by the Ministry of science and edu-
cation of the Russian Federation in the framework of the basic part of the
scientific research state task, project FSRR-2020-0006.
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References

[1] Bary N. K. A treatise on trigonometric series. Pergamon Press, New York,
1964.

[2] Bary N. K., Stechkin S. B. Best approximations and differential properties
of two conjugate functions. Trudy Moskov. Mat. Obshch., 1956, vol. 5,
pp. 483–522 (in Russian).

[3] Bennett C., Sharpley R. Interpolation of operators. Academic Press, New
York, 1988.
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