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INTERPOLATION PROBLEMS FOR FUNCTIONS WITH
ZERO BALL MEANS

Abstract. Let 𝑛 > 2, 𝑉𝑟(R𝑛) be the set of functions with zero
integrals over all balls in R𝑛 of radius 𝑟. Various interpolation
problems for the class 𝑉𝑟(R𝑛) are studied. In the case when the set
of interpolation nodes is finite, we solve the interpolation problem
under general conditions. For the problems with infinite set of
nodes, some sufficient conditions of solvability are founded.

Note that an essential condition is that the definition of the
class 𝑉𝑟(R𝑛) involves integration over balls. For instance, it can
be shown that the analogues of our results in which the class of
functions is defined using zero integrals over all shifts of a fixed
parallelepiped in R𝑛 do not hold true.
Key words: interpolation problems, spherical means, mean peri-
odicity
2020 Mathematical Subject Classification: 44A35, 45E10,
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1. Introduction. Let R𝑛 be real Euclidean space of dimension 𝑛 > 2
with Euclidean norm | · |. Assume that 𝑓 ∈ 𝐿loc(R𝑛) and the equality∫︁

|𝑥|6𝑟
𝑓(𝑥 + 𝑦)𝑑𝑥 = 0 (1)

holds for some fixed 𝑟 > 0 and all 𝑦 ∈ R𝑛. Is it true that 𝑓 = 0? This ques-
tion was addressed in 1929 by the well-known Romanian mathematician
D. Pompeiu, who stated that the answer is positive for
𝑛 = 2 (see, e. g., [15]). However, fifteen years later L. Chakalov [15]
found an error in Pompeiu’s proof. Moreover, he showed that the function
𝑓(𝑥1, 𝑥2) = sin(𝜆𝑥1) has zero integrals over all unit disks in R2 if 𝜆 is a
zero of the Bessel function 𝐽1. Later, it was found that similar examples
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of nonzero functions with condition (1) can be constructed by a method
proposed by J. Radon as early as 1917. This method is based on the mean
value theorem for eigenfunctions of the Laplacian and can be extended to
an arbitrary two-point homogeneous space 𝑋 (see [10, Part 2, Sect. 2.4]).
Additionally, the method allows one to construct nonzero functions on 𝑋
with zero integrals over all spheres of fixed radius.

Let 𝑉𝑟(R𝑛) denote the set of functions 𝑓 ∈ 𝐿loc(R𝑛) satisfying (1) for
all 𝑦 ∈ R𝑛. Over the recent fifty years, this class of functions and its
various analogues and generalizations have been intensively studied by
F. John, J. Delsarte, J. D. Smith, L. Zalcman, C. A. Berenstein, and
others (see the overviews in [1], [15], [16] and monographs [10–12], which
provide extensive bibliographies). The basic directions in these studies
can be listed as follows.

1. The study of zero sets and corresponding uniqueness theorems
for the class 𝑉𝑟(R𝑛) [5], [8], [10–12]. This direction goes back to the
uniqueness theorem of John [5, Chapter 6] for functions with zero spheri-
cal means.

2. The study of admissible constraints on the growth of nonzero func-
tions of the class 𝑉𝑟(R𝑛) and its analogues on unbounded domains (theo-
rem of the Liouville and Phragmén-Lindelöf types [4–6], [8–12]).

3. The study of functions with conditions of type (1), in which 𝑟
belongs to a given two-element set [1], [7], [8], [10–12], [15], [16] (two-
radius theorem). The first result in this direction is Delsarte’s classical
theorem on the characterization of harmonic functions by a mean-value
equation satisfied by only two radii.

4. Description of functions of the class 𝑉𝑟(R𝑛) in the form of series
in terms of spherical harmonics [10–13] (analogues of Taylor and Laurent
expansions in the theory of analytic functions).

5. The problem of continuation [10–12] .
6. Theorems on removable singularities [10–14].
7. Integral geometry problems of reconstructing functions of specified

classes from given spherical means [1], [2], [11], [12], [15], [16].
8. Approximation of functions with zero spherical means by linear

combinations of special functions [10–12].
9. The study of analogues and generalizations of the class 𝑉𝑟(R𝑛) on

various homogeneous spaces and groups (e. g., on Riemannian symmetric
spaces) [1], [2], [7], [10–12], [14–16].

In this paper, interpolation problems for the class 𝑉𝑟(R𝑛) are studied.
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In the case when the set of interpolation nodes is finite, a theorem on the
existence of a solution to the interpolation problem is obtained under gen-
eral assumptions (see Theorem 1 below). Next, we provide some sufficient
conditions for the solvability of multiple interpolation problems with an
infinite number of nodes (see Theorem 2).

2. Formulations of the main results. As usual, the symbols N,
Z+, and C denote the sets of positive integers, nonnegative integers, and
complex numbers, respectively.

First consider the interpolation problem for the class 𝑉𝑟(R𝑛) with a
finite set of interpolation nodes.

Theorem 1. Let 𝑞 ∈ N. Then, for any set of distinct points 𝑎1, . . . , 𝑎𝑞
in R𝑛 and for any collection of constants 𝑏𝑘 ∈ C, 𝑘 = 1, . . . , 𝑞, there exists
a real analytic function 𝑓 ∈ 𝑉𝑟(R𝑛) satisfying the conditions

𝑓(𝑎𝑘) = 𝑏𝑘, 𝑘 = 1, . . . , 𝑞. (2)

Note that an essential condition in Theorem 1 is that the definition of
the class 𝑉𝑟(R𝑛) involves integration over balls. It can be shown that the
analogue of Theorem 1, in which the class of functions is defined using zero
integrals over all shifts of a fixed parallelepiped in R𝑛 does not hold true.
Indeed, any such function of the class 𝐶∞(R𝑛) satisfies a linear difference
equation relating the values of the function and its partial derivatives at
the vertices of the given parallelepiped (see [11, Part 4]. Therefore, if the
vertices of this parallelepiped are used as interpolation nodes, then the
numbers 𝑏𝑘 in condition (2) cannot be taken as arbitrary.

Theorem 1 has the following immediate consequence, which shows that
the solution of interpolation problem (2) for the class 𝑉𝑟(R𝑛) is not unique.

Corollary 1. Let 𝑞 ∈ N. Then, for any set of distinct points 𝑎1, . . . , 𝑎𝑞
in R𝑛, there exists a nonzero real analytic function 𝑓 ∈ 𝑉𝑟(R𝑛) satisfying
the conditions

𝑓(𝑎𝑘) = 0, 𝑘 = 1, . . . , 𝑞.

In the general case, interpolation problems for the class 𝑉𝑟(R𝑛) with
an infinite set of interpolation nodes is much more complicated than in
the case of a finite set. Below, we present some sufficient conditions for
the existence of a solution to the multiple interpolation problem.

We set

𝐴 = {𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 : 𝑥1 > 0, 𝑥2 = . . . = 𝑥𝑛 = 0} .
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Theorem 2. Let {𝑎𝑘}∞𝑘=1 be a sequence of distinct points in 𝐴 such that

lim
𝑘→∞

𝑎𝑘 = ∞. (3)

Then, for any sequence {𝑚𝑘}∞𝑘=1 of nonnegative integers and for any col-
lection of constants

𝑏𝑘,𝑙 ∈ C (𝑘 ∈ N, 𝑙 = 0, . . . ,𝑚𝑘),

there exists a real analytic function 𝑓 ∈ 𝑉𝑟(R𝑛), such that(︂
𝜕

𝜕𝑥1

)︂𝑙

𝑓(𝑎𝑘) = 𝑏𝑘,𝑙 (4)

for all 𝑘 ∈ N, 𝑙 = 0, . . . ,𝑚𝑘.

This result yields the following analogue of Corollary 1.

Corollary 1. Suppose that the sequence {𝑎𝑘}∞𝑘=1 of distinct points in
𝐴 satisfies condition (3). Then, for any sequence {𝑚𝑘}∞𝑘=1 of nonnegative
integers there exists a real analytic function 𝑓 ∈ 𝑉𝑟(R𝑛), such that(︂

𝜕

𝜕𝑥1

)︂𝑙

𝑓(𝑎𝑘) = 0, 𝑘 ∈ N, 𝑙 = 0, . . . ,𝑚𝑘,

and 𝑓 |𝐴 ̸= 0.

3. Notation and some auxiliary statements.
For 𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ C𝑛, 𝜁 = (𝜁1, . . . , 𝜁𝑛) ∈ C𝑛, we set

(𝑧, 𝜁) =
𝑛∑︁

𝑗=1

𝑧𝑗𝜁𝑗.

Let 𝑡 = (𝑡1, . . . , 𝑡𝑛−1) ∈ R𝑛−1, 𝑥 ∈ R𝑛, 𝑧 ∈ C,

ℎ(𝑥, 𝑧, 𝑡) = 𝑒𝑖(𝑥1𝑡1+···+𝑥𝑛−1𝑡𝑛−1) cos
(︁
𝑥𝑛

√︁
𝑧 − 𝑡21 − · · · − 𝑡2𝑛−1

)︁
. (5)

Also, let
S𝑛−1 = {𝑥 ∈ R𝑛 : |𝑥| = 1},

𝑈𝑎,𝑏 =
{︀
𝑡 ∈ R𝑛−1 : 𝑎 < 𝑡21 + · · · + 𝑡2𝑛−1 < 𝑏

}︀
.
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We denote the group of rotations of R𝑛 by 𝑆𝑂(𝑛). Let 𝐽𝜈 be the Bessel
function of the first kind of order 𝜈. For 𝑧 > 0, we define

I𝜈(𝑧) =
𝐽𝜈(𝑧)

𝑧𝜈
.

Note that the function I𝜈 with 𝜈 > −1 has an infinite number of positive
zeros (see [3, Ch. 7, Sect. 7.9]). The following lemmas are needed in the
proof of the main results.

Lemma 1. Let 𝑤𝑘 = (𝑤𝑘,1, . . . , 𝑤𝑘,𝑛) ∈ R𝑛, 𝑘 ∈ {1, . . . , 𝑞} and assume
that

𝑤𝑖,1 ̸= 𝑤𝑗,1 for 𝑖, 𝑗 ∈ {1, . . . , 𝑞}, 𝑖 ̸= 𝑗. (6)

Let 0 < 𝑎 < 𝑏, 𝑧 > 0. Suppose that there exist 𝑐𝑘 ∈ C, 𝑘 = 1, . . . , 𝑞, such
that

𝑞∑︁
𝑘=1

𝑐𝑘ℎ(𝑤𝑘, 𝑧, 𝑡) = 0 (7)

for all 𝑡 ∈ 𝑈𝑎,𝑏. Then 𝑐𝑘 = 0 for all 𝑘.

Proof. First consider the case 𝑛 > 3. We assume that 𝑡1 ∈ (𝛼, 𝛽) for some
0 < 𝛼 < 𝛽, the numbers 𝑡2, . . . , 𝑡𝑛−1 are fixed and 𝑡 = (𝑡1, . . . , 𝑡𝑛−1) ∈ 𝑈𝑎,𝑏.

Let

𝜆 =
𝑛−1∑︁
𝑗=2

𝑤𝑘,𝑗𝑡𝑗, 𝜇 = 𝑧 −
𝑛−1∑︁
𝑗=2

𝑡2𝑗 .

Consider the entire function

𝜙(𝜁) =

𝑞∑︁
𝑘=1

𝑐𝑘𝑒
𝑖(𝑤𝑘,1𝜁+𝜆) cos

(︁
𝑤𝑘,𝑛

√︀
𝜇2 − 𝜁2

)︁
, 𝜁 ∈ C. (8)

By the definition of ℎ and relation (7), we see that 𝜙(𝑡1) = 0. Since
𝑡1 ∈ (𝛼, 𝛽), the function 𝜙 vanishes due to the uniqueness theorem for
analytic functions. Suppose now that 𝜁2 = 𝜇2 − 𝜂, where 𝜂 > 0, 𝜂 → +∞
and Im𝜁 → −∞. Then, in view of (6), the equality

𝑞∑︁
𝑘=1

𝑐𝑘𝑒
𝑖(𝑤𝑘,1𝜁+𝜆) cos (𝑤𝑘,𝑛

√
𝜂) = 0

brings us to the conclusion that 𝑐𝑝 = 0 with 𝑤𝑝,1 = max
𝑘

𝑤𝑘,1. Similarly
we obtain 𝑐𝑘 = 0 for all 𝑘, as required.
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For the case 𝑛 = 2, it is sufficient to repeat the argument for the
function 𝜙 in (8) with 𝜆 = 0, 𝜇 = 𝑧. The proof of Lemma 1 is now
complete. �

Lemma 2. Let 𝑡 = (𝑡1, . . . , 𝑡𝑛−1) ∈ C𝑛−1, 𝑧 > 0 and

I𝑛
2

(︀
𝑟
√
𝑧
)︀

= 0. (9)

Then the function ℎ(𝑥, 𝑧, 𝑡) is in the class 𝑉𝑟(R𝑛).

Proof. We set 𝜁𝑗 = 𝑡𝑗 for 𝑗 ∈ {1, . . . , 𝑛− 1} and

𝜁𝑛 =

⎯⎸⎸⎷𝑧 −
𝑛−1∑︁
𝑗=1

𝑡2𝑗 .

Then 𝜁 = (𝜁1, . . . , 𝜁𝑛) ∈ C𝑛 and (𝜁, 𝜁) = 𝑧. Consider the function

𝑢𝜁(𝑥) = 𝑒𝑖(𝑥,𝜁), 𝑥 ∈ R𝑛.

For each 𝑦 ∈ R𝑛, one has∫︁
|𝑥|6𝑟

𝑢𝜁(𝑥 + 𝑦)𝑑𝑥 = 𝑒𝑖(𝑦,𝜁)
∫︁
|𝑥|6𝑟

𝑒𝑖(𝑥,𝜁)𝑑𝑥 = (2𝜋)
𝑛
2 𝑟𝑛I𝑛

2
(𝑟
√
𝑧)𝑒𝑖(𝑦,𝜁)

(see [3, Ch. 7, Sect. 7.12 (7)]). Together with (9), this shows that
𝑢𝜁 ∈ 𝑉𝑟(R𝑛). Taking into account that

ℎ(𝑥, 𝑧, 𝑡) =
1

2
(𝑢𝜁(𝑥1, . . . , 𝑥𝑛) + 𝑢𝜁(𝑥1, . . . ,−𝑥𝑛))

we obtain the required assertion. �

4. Proof of Theorem 1. Bearing in mind that the points 𝑎1, . . . , 𝑎𝑞
are pairwise different, we infer that there exists 𝜉 ∈ S𝑛−1 such that

(𝜉, 𝑎𝑖 − 𝑎𝑗) ̸= 0 for all 𝑖, 𝑗 ∈ {1, . . . , 𝑞}, 𝑖 ̸= 𝑗. (10)

Since the group 𝑆𝑂(𝑛) acts transitively on S𝑛−1, one has

𝜏𝜉 = (1, 0, . . . , 0) for some 𝜏 ∈ 𝑆𝑂(𝑛). (11)

We set
𝑤𝑘 = 𝜏𝑎𝑘 = (𝑤𝑘,1, . . . , 𝑤𝑘,𝑛) ∈ R𝑛, 𝑘 ∈ {1, . . . , 𝑞}. (12)
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Condition (10) shows that

(𝜏𝜉, 𝑤𝑖 − 𝑤𝑗) ̸= 0, 𝑖, 𝑗 ∈ {1, . . . , 𝑞}, 𝑖 ̸= 𝑗.

Together with (11), this yields

𝑤𝑖,1 ̸= 𝑤𝑗,1 for all 𝑖, 𝑗 ∈ {1, . . . , 𝑞}, 𝑖 ̸= 𝑗.

Assume now that 0 < 𝑎 < 𝑏, 𝜁 > 0, and 𝐽𝑛
2
(𝑟𝜁) = 0. Consider the

functions
𝑔𝑘(𝑡) = ℎ(𝑤𝑘, 𝜁

2, 𝑡), 𝑡 ∈ 𝑈𝑎,𝑏,

where 𝑘 = 1, . . . , 𝑞 and ℎ are defined by (5). Due to Lemma 1, the
functions 𝑔𝑘 are linearly independent on 𝑈𝑎,𝑏. For each 𝑚 ∈ {1, . . . , 𝑞},
let 𝐿𝑚 denote the linear subspace of 𝐿2(𝑈𝑎,𝑏) generated by the functions
𝑔𝑘, such that 𝑘 ̸= 𝑚. Since 𝑔𝑚 /∈ 𝐿𝑚, we obtain, by the Hahn-Banach
theorem, that there exists a continuous linear functional Φ𝑚 on 𝐿2(𝑈𝑎,𝑏),
such that

Φ𝑚|𝐿𝑚
= 0 and Φ𝑚(𝑔𝑚) = 1. (13)

Using the Riesz theorem, we see that Φ𝑚 has the form

Φ𝑚(𝑢) =

∫︁
𝑈𝑎,𝑏

𝑢(𝑡)𝜙𝑚(𝑡)𝑑𝑡, 𝑢 ∈ 𝐿2(𝑈𝑎,𝑏)

for some function 𝜙𝑚 ∈ 𝐿2(𝑈𝑎,𝑏). We now define the function 𝐺 by the
formula

𝐺(𝑥) =

𝑞∑︁
𝑚=1

𝑏𝑚

∫︁
𝑈𝑎,𝑏

ℎ(𝑥, 𝜁2, 𝑡)𝜙𝑚(𝑡)𝑑𝑡, 𝑥 ∈ R𝑛. (14)

Formula (14) guarantees that

𝐺(𝑤𝑘) =

𝑞∑︁
𝑚=1

𝑏𝑚

∫︁
𝑈𝑎,𝑏

ℎ(𝑤𝑘, 𝜁
2, 𝑡)𝜙𝑚(𝑡)𝑑𝑡 =

=

𝑞∑︁
𝑚=1

𝑏𝑚Φ𝑚(𝑔𝑘) = 𝑏𝑘 (15)

for all 𝑘 ∈ {1, . . . , 𝑞}. Next, for each 𝑦 ∈ R𝑛 we have∫︁
|𝑥|6𝑟

𝐺(𝑥 + 𝑦)𝑑𝑥 =

𝑞∑︁
𝑚=1

𝑏𝑚

∫︁
𝑈𝑎,𝑏

∫︁
|𝑥|6𝑟

ℎ(𝑥 + 𝑦, 𝜁2, 𝑡)𝑑𝑥𝜙𝑚(𝑡)𝑑𝑡 = 0 (16)
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because of Lemma 2. Setting 𝐹 (𝑥) = 𝐺(𝜏𝑥), we see, from (15) and (12),
that

𝐹 (𝑎𝑘) = 𝐺(𝜏𝑎𝑘) = 𝐺(𝑤𝑘) = 𝑏𝑘 for all 𝑘.

In addition, (16) shows that 𝐹 ∈ 𝑉𝑟(R𝑛). Since the function 𝐹 is real
analytic, this completes the proof of Theorem 1.

5. Proof of Theorem 2. We set

𝛼𝑘 = exp |𝑎𝑘|, 𝑘 ∈ N.

By the hypotheses on {𝑎𝑘}, the numbers 𝛼𝑘 are pairwise different positive
numbers such that

lim
𝑘→∞

𝛼𝑘 = +∞.

Owing to the classical Hadamard theorem, there exists an entire function
𝐻 : C → C satisfying the conditions{︃

𝐻(𝑗)(𝛼𝑘) = 0 for 𝑗 ∈ {0, . . . ,𝑚𝑘}, 𝑘 ∈ N,
𝐻(𝑗)(𝛼𝑘) ̸= 0 if 𝑗 = 𝑚𝑘 + 1, 𝑘 ∈ N.

(17)

Then the functions

𝐻𝑘,𝜈(𝑧) =
𝐻(𝑧)

(𝑧 − 𝛼𝑘)𝜈
, 𝑘 ∈ N, 𝜈 ∈ {1, . . . ,𝑚𝑘 + 1} (18)

are entire and {︃
𝐻

(𝑗)
𝑘,𝜈(𝛼𝑘) = 0 if 0 6 𝑗 6 𝑚𝑘 − 𝜈,

𝐻
(𝑗)
𝑘,𝜈(𝛼𝑘) ̸= 0 for 𝑗 = 𝑚𝑘 + 1 − 𝜈.

(19)

Let 𝑤 : C → C be an arbitrary entire function. It is easy to see that for
each 𝑙 ∈ Z+ there exist algebraic polynomials 𝑝𝑙,𝑗, 𝑗 ∈ {0, . . . , 𝑙} such that(︂

𝑑

𝑑𝑡

)︂𝑙

(𝑤(𝑒𝑡)) =
𝑙∑︁

𝑗=0

𝑤(𝑗)(𝑒𝑡)𝑝𝑙,𝑗(𝑒
𝑡), 𝑡 ∈ C. (20)

Moreover, the polynomials 𝑝𝑙,𝑗 are independent of 𝑤 and 𝑝𝑙,𝑙(𝑧) = 𝑧𝑙.
This shows that for each 𝑘 ∈ N there exist the constants 𝛽𝑘,𝑗 ∈ C,
𝑗 ∈ {0, . . . ,𝑚𝑘}, such that

𝑙∑︁
𝑗=0

𝛽𝑘,𝑗𝑝𝑙,𝑗(𝛼𝑘) = 𝑏𝑘,𝑙 for all 𝑙 ∈ {0, . . . ,𝑚𝑘}. (21)
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Using now (19), we see that there exist the constants 𝛾𝑘,𝜈 ∈ C (𝑘 ∈ N,
𝜈 ∈ {1, . . . ,𝑚𝑘 + 1}), such that the functions

𝐻𝑘(𝑧) =

𝑚𝑘+1∑︁
𝜈=1

𝛾𝑘,𝜈𝐻𝑘,𝜈(𝑧) (22)

satisfy the conditions

𝐻
(𝑗)
𝑘 (𝛼𝑘) = 𝛽𝑘,𝑗, 𝑗 ∈ {0, . . . ,𝑚𝑘}. (23)

In addition, it follows from (17), (18) and (22) that

𝐻
(𝑗)
𝑘 (𝛼𝑝) = 0 if 𝑝 ∈ N, 𝑝 ̸= 𝑘, 𝑗 ∈ {0, . . . ,𝑚𝑝}. (24)

Assume that
𝑀𝑘 = max

|𝑧|6𝛼𝑘/4
|𝐻𝑘(𝑧)|, 𝜆𝑘 ∈ N

and
𝜆𝑘 > 2𝑚𝑘 + 𝑘 + 𝑀𝑘 for all 𝑘 ∈ N. (25)

We now define the function 𝑔𝑘 by the formula

𝑔𝑘(𝑧) = 𝜂𝑘

𝑧∫︁
0

(1 − 𝜁)𝑚𝑘𝜁𝜆𝑘𝑑𝜁, 𝑧 ∈ C, (26)

where
𝜂𝑘 =

Γ(𝑚𝑘 + 𝜆𝑘 + 2)

Γ(𝑚𝑘 + 1)Γ(𝜆𝑘 + 1)
, 𝑘 ∈ N. (27)

Relation (27) yields

𝜂𝑘 6 (𝑚𝑘 + 𝜆𝑘 + 1)

𝑚𝑘+𝜆𝑘∑︁
𝑗=0

(︂
𝑚𝑘 + 𝜆𝑘

𝑗

)︂
6 (𝑚𝑘 + 𝜆𝑘 + 1)2𝑚𝑘+𝜆𝑘 .

Hence,

|𝑔𝑘(𝑧)| 6 (𝑚𝑘 + 𝜆𝑘 + 1)2𝑚𝑘+𝜆𝑘(1 + |𝑧|)𝑚𝑘 |𝑧|𝜆𝑘+1, 𝑧 ∈ C. (28)

In addition, it follows from (26) and (27) that{︃
𝑔𝑘(1) = 1,

𝑔
(𝑠)
𝑘 (1) = 0 if 1 6 𝑠 6 𝑚𝑘.

(29)
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Consider the function

𝑤(𝑧) =
∞∑︁
𝑘=1

𝑔𝑘

(︂
𝑧

𝛼𝑘

)︂
𝐻𝑘(𝑧), 𝑧 ∈ C. (30)

We claim that the series in (30) converges locally uniformly in C. Let
𝑅 > 0, 𝛼𝑘 > 4𝑅 and assume that |𝑧| 6 𝑅. Then

|𝐻𝑘(𝑧)| 6 max
|𝑧|6𝑅

|𝐻𝑘(𝑧)| 6 max
|𝑧|6𝛼𝑘/4

|𝐻𝑘(𝑧)| = 𝑀𝑘.

This together with (28) implies that⃒⃒⃒
𝑔𝑘

(︁ 𝑧

𝛼𝑘

)︁
𝐻𝑘(𝑧)

⃒⃒⃒
6 (𝑚𝑘 + 𝜆𝑘 + 1)2𝑚𝑘+𝜆𝑘

(︁ 𝑅

𝛼𝑘

)︁𝜆𝑘+1(︁
1 +

𝑅

𝛼𝑘

)︁𝑚𝑘

𝑀𝑘.

Bearing in mind that

𝑚𝑘 <
𝜆𝑘

2
,

𝑅

𝛼𝑘

6
1

4
and 𝑀𝑘 < 𝜆𝑘,

we obtain ⃒⃒⃒
𝑔𝑘

(︁ 𝑧

𝛼𝑘

)︁
𝐻𝑘(𝑧)

⃒⃒⃒
6

(︁3𝜆𝑘

2
+ 1

)︁
𝜆𝑘

(︁5

8

)︁𝜆𝑘/2

.

Since 𝜆𝑘 > 𝑘 (see (25)), this shows that the series in (30) converges uni-
formly in |𝑧| 6 𝑅. Consequently, the series converges locally uniformly in
C and the function 𝑤 is entire.

Next, relations (23) and (29) show that

𝑤(𝑗)(𝛼𝑘) = 𝛽𝑘,𝑗, 𝑗 ∈ {0, . . . ,𝑚𝑘}, 𝑘 ∈ N. (31)

Assume that Taylor’s expansion of 𝑤 has the form

𝑤(𝑧) =
∞∑︁
𝑝=0

𝑐𝑝𝑧
𝑝, 𝑧 ∈ C. (32)

Then
∞∑︁
𝑝=0

|𝑐𝑝|𝑅𝑝 < +∞ (33)

for each 𝑅 > 0.
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Let 𝜈 > 0, I𝑛
2
(𝑟𝜈) = 0 and 𝑝 ∈ Z+. Take 𝜁 = (𝜁1, . . . , 𝜁𝑛) ∈ C𝑛 such

that 𝜁1 = −𝑖𝑝, 𝜁22 + · · · + 𝜁2𝑛 = 𝑝2 + 𝜈2 and define

𝑓𝑝(𝑥) = 𝑒𝑖(𝑥,𝜁), 𝑥 ∈ R𝑛.

The proof of Lemma 2 shows that 𝑓𝑝 ∈ 𝑉𝑟(R𝑛). Consider the function

𝑓(𝑥) =
∞∑︁
𝑝=0

𝑐𝑝𝑓𝑝(𝑥), 𝑥 ∈ R𝑛.

Condition (33) ensures us that the function 𝑓 is real analytic and
𝑓 ∈ 𝑉𝑟(R𝑛). It follows by the definition of 𝑓𝑝 and (32) that

𝑓(𝑥1, 0, . . . , 0) = 𝑤(𝑒𝑥1), 𝑥1 ∈ R.

Using now relations (31), (20) and (21) we see that 𝑓 satisfies (4). Thus
the proof of Theorem 2 is complete.
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