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INVARIANT SUBSPACES IN UNBOUNDED DOMAINS

Abstract. We study subspaces of functions analytic in an un-
bounded convex domain of the complex plane and invariant with
respect to the differentiation operator. This paper is devoted to
the study of the problem of representing all functions from an in-
variant subspace by series of exponential monomials. These expo-
nential monomials are eigenfunctions and associated functions of
the differentiation operator in the invariant subspace. A simple
geometric criterion of the fundamental principle is obtained. It is
formulated just in terms of the Krisvosheev condensation index for
the sequence of exponents of the mentioned exponential monomials.
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1. Introduction. Let Λ = {𝜆𝑘,𝑛𝑘}∞𝑘=1 be a sequence of different
complex numbers 𝜆𝑘 and their multiplicities 𝑛𝑘. We assume that |𝜆𝑘|
are non-decreasing and |𝜆𝑘| → ∞, 𝑘 → ∞. By Ξ(Λ) we denote the set

of limits of converging sequences of the form
{︂

𝜆𝑘𝑗

|𝜆𝑘𝑗
|

}︂∞

𝑗=1

(𝜆 is a complex

conjugate of 𝜆). The set Ξ(Λ) is closed and it is contained in the unit
circle 𝑆(0,1). We introduce a family of exponential monomials

ℰ(Λ) = {𝑧𝑛𝑒𝜆𝑘𝑧}∞, 𝑛𝑘−1
𝑘=1, 𝑛=0.

Let 𝐷 ⊂ C be a convex domain and

𝐻𝐷(𝜙) = sup
𝑧∈𝐷

Re(𝑧𝑒−𝑖𝜙), 𝜙 ∈ [0, 2𝜋]

be its support function. Let

𝐽(𝐷) = {𝑒𝑖𝜙 ∈ 𝑆(0, 1) : 𝐻𝐷(𝜙) = +∞}.

If 𝐷 is bounded, then 𝐽(𝐷) = ∅. In the case of an unbounded domain,
the following situation is possible:
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1) 𝐽(𝐷) = 𝑆(0, 1), i. e. 𝐷 = C;
2) 𝐷 is the half-plane {𝑧∈C : Re(𝑧𝑒−𝑖𝜙) < 𝑎} and 𝐽(𝐷)=𝑆(0, 1)∖{𝑒𝑖𝜙};
3) 𝐷 is a strip {𝑧∈C :𝑏<Re(𝑧𝑒−𝑖𝜙)<𝑎} and 𝐽(𝐷)=𝑆(0, 1)∖{𝑒𝑖𝜙, 𝑒𝑖(𝜙+𝜋)};
4) in all other cases, 𝐽(𝐷) is an arc of the unit circle that subtends an

angle of at least 𝜋.

By int 𝐽(𝐷) and 𝜕𝐽(𝐷) we denote the set of interior points and boundary
points, respectively, (in the topology of the circle 𝑆(0, 1)) of the set 𝐽(𝐷).

Let 𝐻(𝐷) be a space of analytic functions on the domain 𝐷 with
the topology of uniform convergence on compact sets 𝐾 ⊂ 𝐷, and let
𝑊 ⊂ 𝐻(𝐷) be a nontrivial (𝑊 ̸= {0}, 𝐻(𝐷)) closed subspace with re-
spect to the differentiation operator. The spectrum of this operator in
the subspace 𝑊 is an at most countable set {𝜆𝑘} [1, Chap. II, Sec. 7].
Let Λ = {𝜆𝑘, 𝑛𝑘} be a multiple spectrum of the differentiation operator
on 𝑊 . Then ℰ(Λ) is the family of its eigenfunctions and generalized eigen-
functions on 𝑊 . We say that 𝑊 admits spectral synthesis, if it coincides
with the closure 𝑊 (Λ, 𝐷) (in 𝐻(𝐷)) of the linear span of system ℰ(Λ).
We mention that the problem of spectral synthesis was completely solved
in [2] and [3]. If 𝐷 is an unbounded convex domain, then the identity
𝑊 = 𝑊 (Λ, 𝐷) holds, that is, 𝑊 admits the spectral synthesis [3, Theo-
rem 8.2].

Particular cases of invariant subspaces are the spaces of solutions of lin-
ear homogeneous differential, difference, and differential-difference equa-
tions with constant coefficients both of finite and infinite orders, as well
as of more general convolution equations and their systems.

The main problem in the theory of invariant subspaces is the problem
of fundamental principle. The fundamental principle is said to hold in a
subspace 𝑊 with the spectrum Λ, if for each function 𝑔 ∈ 𝑊 the following
representation holds:

𝑔(𝑧) =

∞, 𝑛𝑘−1∑︁
𝑘=1, 𝑛=0

𝑑𝑘, 𝑛𝑧
𝑛𝑒𝜆𝑘𝑧, 𝑧 ∈ 𝐷, (1)

and this series converges uniformly on compact sets in 𝐷. The name «fun-
damental principle» arises in relation with a particular case of the invariant
subspace; namely, the space of solutions to a linear homogeneous differen-
tial equation with constant coefficients. It is known that each solution to
such equation is a linear combination of elementary solutions, exponential
monomials 𝑧𝑛𝑒𝜆𝑘𝑧, with exponents being zeroes (probably, multiple) of a
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characteristic polynomial. The presence of this representation is called
Euler fundamental principle.

By means of the Laplace transform, the fundamental principle problem
is reduced to a dual problem of multiple Interpolation in the space of en-
tire functions of exponential type. The study of both problems has a rich
history. Initially, they were studied independently. The main milestones
of this study are reflected in works [4] and [5]. In the case of a bounded
convex domain, the fundamental principle problem was completely solved
in [5]– [8]. There a simple geometric criterion of fundamental principle was
obtained [8, Theorem 3.2] for invariant subspaces admitting the spectral
synthesis. It was formulated only in terms of the Krivosheev’s conden-
sation index 𝑆Λ (it will be introduced below), of the maximal angular
density of the sequence Λ, and of the length of an arc of the boundary of
𝐷.

The situation with unbounded convex domains is much worse. In work
[5], a criterion of fundamental principle for arbitrary convex domains was
obtained. It, however has, two disadvantages. It involves some restriction
for the multiplicity 𝑛𝑘 of the points 𝜆𝑘. Moreover, it involves the following
condition, which is equivalent to the validity of the fundamental principle.
Namely, it requires the existence of a family of entire functions vanishing
at the points 𝜆𝑘 with multiplicities at least 𝑛𝑘, the growth of which is close
to a regular one and is related with 𝐷. There remained an open question:
under which conditions for Λ and 𝐷 such family exists. The problem on
constructing such family is rather complicated.

A complete solution of fundamental principle problem for nontrivial
invariant subspaces of entire functions was obtained in work [9]. It was
proved that the validity of the fundamental principle in each such subspace
is equivalent to the finiteness of the condensation index 𝑆Λ. Invariant
subspaces in a half-plane were studied in the case of a simple positive
spectrum (i. e., 𝑛𝑘 = 1, 𝑘 > 1), having a finite upper density. In work [10],
this problem was solved completely for an arbitrary convex domain 𝐷.
The solution was given in terms of simple geometric characteristics of the
sequence Λ and the domain 𝐷. This involves a principally new aspect.
It turned out that the measurability of the sequence Λ is not necessary
for the validity of the fundamental principle in the case of a vertical half-
plane; even the finiteness of its maximal density is not necessary, despite
the support function of the half-plane is bounded in the positive direction.
A necessary and sufficient condition in this situation is the vanishing of
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the characteristics 𝑆Λ. In work [11], this result was extended for the case
of invariant subspaces with almost real spectrum Λ (i. e., Ξ(Λ) = {1}).
Significant difficulties related to multiplicities 𝑛𝑘 of the points 𝜆𝑘 were
overcome. We note that the result of the work [11] it easily extended for
the case of invariant subspaces with the spectrum Λ, for which Ξ(Λ) is a
one-point set. In the work [12], by decomposing an invariant subspace into
the sum of two invariant subspaces and basing on the results in [9] and [11],
a criterion of fundamental principle for invariant subspaces in a half-plane
with an arbitrary spectrum was obtained. It is formulated only in terms of
condensation index 𝑆Λ. The same applies to the result from the work [13].
It provides a fundamental principle criterion for invariant subspaces in an
arbitrary convex domain under the condition Ξ(Λ) ⊆ 𝐽(𝐷).

In this work, the result from [13] extends for the case when Ξ(Λ) lies in
the closure 𝐽(𝐷) of the set 𝐽(𝐷). We note that this case is fundamentally
different from the case Ξ(Λ) ⊆ 𝐽(𝐷). A simple geometric criterion of
the fundamental principle is obtained; it is based only on the concept of
the condensation index of the sequence that makes up the spectrum of an
invariant subspace.

2. Preliminaries. We begin with recalling some notions and facts
related with interpolating Leont’ev functions.

Let Λ = {𝜆𝑘, 𝑛𝑘} and 𝑓 be an entire function of exponential type, i. e.,

ln |𝑓(𝜆)| 6 𝐴 + 𝐵|𝜆|, 𝜆 ∈ C, 𝐴,𝐵 > 0.

We write 𝑓(Λ) = 0, if 𝑓 vanishes at the points 𝜆𝑘 with multiplicity at least
𝑛𝑘. By definition, an indicator of function 𝑓 is the function

ℎ𝑓 (𝜙) = lim
𝑡→∞

ln |𝑓(𝑡𝑒𝑖𝜙)|
𝑡

, 𝜙 ∈ [0, 2𝜋].

It coincides with the support function of some convex compact set 𝑇 ⊂ C
called an indicator diagram of 𝑓 . By 𝛾(𝑡, 𝑓) we denote the function asso-
ciated with 𝑓 in the Borel sense [1, Chap. I, Sec. 5]. An adjoint diagram
𝐾 of the function 𝑓 is a convex hull of the set of singular points 𝛾(𝑡, 𝑓).
Thus, 𝛾(𝑡, 𝑓) is analytic outside some compact set 𝐾. By the Polya theo-
rem [1, Chap. I, Sec. 5, Theorem 5.4],

ℎ𝑓 (𝜙) = 𝐻𝑇 (𝜙) = 𝐻𝐾(−𝜙), 𝜙 ∈ [0, 2𝜋]. (2)

Therefore, 𝐾 is a compact set, complex conjugate with the compact set
𝑇 .
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Let 𝐷 be a convex domain, 𝑔 ∈ 𝐻(𝐷), 0 ∈ 𝐾, and 𝜎 ∈ C be such that
the shift 𝐾 + 𝜎 of the conjugate diagram 𝐾 of the function 𝑓 lies in the
domain 𝐷. The function

𝜔𝑓 (𝜆, 𝜎, 𝑔) = 𝑒−𝜎𝜆 1

2𝜋𝑖

∫︁
Ω

𝛾(𝑡, 𝑓)

(︂ 𝑡∫︁
0

𝑔(𝑡 + 𝜎 − 𝜂)𝑒𝜆𝜂𝑑𝜂

)︂
𝑑𝑡, (3)

is called the interpolation function for the function 𝑔 [14, Chap. I, Sec. 2],
where Ω is a contour: a simple closed continuous rectifiable curve, en-
veloping the compact set 𝐾 and located in the domain 𝐷 − 𝜎.

We are going to omit the restriction 0 ∈ 𝐾. We choose an arbitrary
point 𝑤 ∈ 𝐾. Conjugate diagram of the function 𝑓𝑤(𝑧) = 𝑓(𝑧)𝑒−𝑤𝑧 coin-
cides with the compact set 𝐾𝑤 = 𝐾−𝑤, which contains the origin. Then,
by formula (3), we define the function 𝜔𝑓𝑤(𝜆, 𝜎, 𝑔) for all 𝜎 ∈ C, such that
the compact set 𝐾𝑤 + 𝜎 lies in the domain 𝐷.

Let us mention some properties of the function 𝜔𝑓𝑤(𝜆, 𝜎, 𝑔). It follows
from (3), that this function is entire and linear in the third independent
variable. Let 𝐾(𝜀) = 𝐾 + 𝐵(0, 𝜀) be an 𝜀-expansion of the compact set
𝐾, Ω(𝜀) = 𝜕(𝐾(𝜀)) − 𝑤 and Ω𝜎(𝜀) = Ω(𝜀) + 𝜎 ⊂ 𝐺. By (3), we have:

|𝜔𝑓𝑤(𝜆, 𝜎, 𝑔)| 6 1

2𝜋
|𝑒−𝜎𝜆| max

𝑧∈Ω(𝜀)
|𝑒𝜆𝑧| max

𝑧∈Ω𝜎(𝜀)
|𝑔(𝑧)|

∫︁
Ω(𝜀)

|𝛾(𝑡, 𝑓𝑤)||𝑡||𝑑𝑡| 6

6 𝜏𝜀 exp
(︀
𝑟𝐻Ω(𝜀)(−𝜙) − Re(𝜎𝜆)

)︀
max

𝑧∈Ω𝜎(𝜀)
|𝑔(𝑧)|

∫︁
𝜕𝐾(𝜀)

|𝛾(𝑡, 𝑓)||𝑑𝑡| =

= 𝐴(𝑓, 𝜀) exp (𝑟𝐻𝐾(−𝜙) + 𝜀𝑟 − Re(𝑤𝜆) − Re(𝜎𝜆)) sup
𝑧∈Ω𝜎(𝜀)

|𝑔(𝑧)|, 𝜆 = 𝑟𝑒𝑖𝜙,

where 𝐴(𝑓, 𝜀) = (2𝜋)−1𝜏𝜀(𝑓)𝑑𝜀, 𝑑𝜀 is the diameter of the domain 𝐾(𝜀),
and 𝜏𝜀(𝑓) is the latter integral. In view of identity (2) for all 𝜆 ∈ C, we
have:

|𝜔𝑓𝑤(𝜆, 𝜎, 𝑔)| 6 𝐴(𝑓, 𝜀) exp((ℎ𝑓 (𝜙)+𝜀)𝑟−Re((𝑤+𝜎)𝜆)) max
𝑧∈Ω𝜎(𝜀)

|𝑔(𝑧)|. (4)

We now remind the main property of the interpolation function. Let
Λ = {𝜆𝑘, 𝑛𝑘} be a multiple zero set of the function 𝑓 and

𝑃 (𝑧) =

𝑝∑︁
𝑘=1

𝑛𝑘−1∑︁
𝑛=0

𝑎𝑘, 𝑛𝑧
𝑛𝑒𝜆𝑘𝑧.
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Then the following identities hold [14, Chap. I, Sec. 2, Theorem 1.2.4]:

1

2𝜋𝑖

∫︁
𝜕𝐵(𝜆𝑘, 𝑏𝑘)

𝜔𝑓𝑤(𝜆, 𝜎, 𝑃 )

𝑓𝑤(𝜆)
𝑒𝜆𝑧𝑑𝜆 =

𝑛𝑘−1∑︁
𝑛=0

𝑎𝑘, 𝑛𝑧
𝑛𝑒𝜆𝑘𝑧, (5)

where 𝜎 ∈ C, 𝑘 = 1, 𝑝 and 𝜕𝐵(𝜆𝑘, 𝑏𝑘) is a circumference containing no
points 𝜆𝑠, 𝑠 ̸= 𝑘.

The following statements are particular cases of, respectively, Theo-
rems 2.1.1 and 2.1.2 from the book [14].

Lemma 1. Let Λ = {𝜆𝑘, 𝑛𝑘}, 𝐷 be a convex domain and the system
ℰ(Λ) be incomplete in the space 𝐻(𝐷). Assume that

𝑔(𝑧) = lim
𝜇→∞

𝑃𝜇(𝑧), 𝑃𝜇(𝑧) =

𝜇∑︁
𝑘=1

𝑛𝑘−1∑︁
𝑛=0

𝑎𝑘, 𝑛, 𝜇𝑧
𝑛𝑒𝜆𝑘𝑧, (6)

where the convergence is uniform on compact sets in the domain 𝐷. Then
there exist limits

𝑎𝑘, 𝑛 = lim
𝜇→∞

𝑎𝑘, 𝑛, 𝜇, 𝑛 = 0, 𝑛𝑘 − 1, 𝑘 > 1.

Lemma 2. Let Λ = {𝜆𝑘, 𝑛𝑘}, 𝐷 be a convex domain and the system
ℰ(Λ) be incomplete in the space 𝐻(𝐷). Assume that (6) holds and

𝑔(𝑧) = lim
𝜇→∞

𝑄𝜇(𝑧), 𝑄𝜇(𝑧) =

𝜇∑︁
𝑘=1

𝑛𝑘−1∑︁
𝑛=0

𝑏𝑘, 𝑛, 𝜇𝑧
𝑛𝑒𝜆𝑘𝑧,

where the convergence is uniform on compact sets in the domain 𝐷. Then
we have

lim
𝜇→∞

𝑎𝑘, 𝑛, 𝜇 = lim
𝜇→∞

𝑏𝑘, 𝑛, 𝜇, 𝑛 = 0, 𝑛𝑘 − 1, 𝑘 > 1.

3. Fundamental principle. Let Λ = {𝜆𝑘, 𝑛𝑘}, 𝑛(𝑟,Λ) be the
number of the points 𝜆𝑘, counted with their multiplicities 𝑛𝑘, in the open
disk 𝐵(0, 𝑟), and

𝑛(Λ) = lim
𝑟→+∞

𝑛(𝑟,Λ)

𝑟

be the upper density of the sequence Λ. According to Lindelöf’s well-
known theorem [15, Chap. I, Sec. 11, Theorem 15] 𝑛(Λ) < +∞ if and
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only if there exists an entire function 𝑓 of exponential type, such that
𝑓(Λ) = 0.

Let 𝐷 be an unbounded convex domain and 𝑊 be a nontrivial closed
invariant with respect to the differentiation operator subspace in 𝐻(𝐷).
As noted above, in this case 𝑊 admits spectral synthesis, i. e., the identity
𝑊 = 𝑊 (Λ, 𝐷) holds, where Λ is the multiple spectrum of the differentia-
tion operator in the subspace 𝑊 .

The subspace𝑊 (Λ, 𝐷) is nontrivial if and only if the system ℰ(Λ) is not
complete in the space 𝐻(𝐷). Therefore, in studying invariant subspaces
𝑊 ⊂ 𝐻(𝐷) for unbounded convex domain, it suffices to consider the case
where 𝑊 = 𝑊 (Λ, 𝐷) and ℰ(Λ) is not complete in 𝐻(𝐷).

The system ℰ(Λ) is not complete in the space 𝐻(𝐷) if and only if
[1, Chap. I, Sec. 7, Theorem 7.2 and Sec. 5, Theorem 5.2] there exist
an entire function 𝑓 of exponential type such that 𝑓(Λ) = 0, and some
translate 𝐾 + 𝜎 of its conjugate diagram 𝐾 lies in 𝐷.

The completeness problem of the system ℰ(Λ) in the space 𝐻(𝐷) has
a simple solution in the case where the domain 𝐷 is not contained in
any strip. Such domains are called large convex domains. They contain
translates of any convex compact set. Therefore, in view of Lindelöf’s
theorem, in the case of a large domain, the system ℰ(Λ) is not complete in
𝐻(𝐷) if and only if 𝑛(Λ) < +∞. In the case when𝐷 lies in a strip, a simple
criterion of completeness of the system ℰ(Λ) was obtained in [16, 17]. It
was formulated in terms of the logarithmic block-density of the sequence
Λ.

According to [5], we introduce the index of condensation

𝑆Λ = lim
𝛿→0

lim
𝑘→∞

ln |𝑞𝑘Λ(𝜆𝑘, 𝛿)|
|𝜆𝑘|

, 𝑞𝑘Λ(𝑧, 𝛿) =
∏︁

𝜆𝑚∈𝐵(𝜆𝑘, 𝛿|𝜆𝑘|, 𝜆𝑚 ̸=𝜆𝑘)

(︂
𝑧 − 𝜆𝑚

3𝛿|𝜆𝑚|

)︂𝑛𝑚

.

Let Λ = {𝜆𝑘, 𝑛𝑘}, Λ1 = {𝜉𝑝,𝑚𝑝} and Λ2 = {𝜍𝑗, 𝑙𝑗}. We write Λ1 ⊆ Λ,
if 𝜉𝑝 = 𝜆𝑘𝑝 and 𝑚𝑝 6 𝑛𝑘𝑝 , 𝑝 > 1. We write Λ = Λ1 ∪ Λ2, if for any 𝑘 > 1
there exists either 𝑝 > 1, such that 𝜆𝑘 = 𝜉𝑝, or 𝑗 > 1, such that 𝜆𝑘 = 𝜍𝑗,
and the following conditions hold:

1. if there exists 𝑝 > 1 such that 𝜆𝑘 = 𝜉𝑝 and 𝜆𝑘 ̸= 𝜍𝑗 for any 𝑗 > 1,
then 𝑛𝑘 = 𝑚𝑝;

2. if there exists 𝑗 > 1 such that 𝜆𝑘 = 𝜍𝑗 and 𝜆𝑘 ̸= 𝜉𝑝 for any 𝑝 > 1,
then 𝑛𝑘 = 𝑙𝑗;
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3. if there exists 𝑝 > 1 and 𝑗 > 1 such that 𝜆𝑘 = 𝜉𝑝 = 𝜍𝑗, then
𝑛𝑘 = 𝑚𝑝 + 𝑙𝑗.

We put

𝑓(𝑧,Λ) = 𝑧𝑛1

∞∏︁
𝑘=2

(︂
1 − 𝑧2

𝜆2
𝑘

)︂𝑛𝑘

.

If 𝜆𝑘 ̸= 0, then the multiplier 𝑧𝑛1 is missing, and the product starts with
𝑘 = 1.

Let 𝜙 ∈ R and 𝑎 6 +∞. Let

Π(𝑎, 𝜙) = {𝑧 ∈ C : Re(𝑧𝑒−𝑖𝜙) < 𝑎}.

The set Π(𝑎, 𝜙) is a half-plane, when 𝑎 ∈ R. If 𝑎 = +∞, then Π(𝑎,𝜙) = C.
Let 𝐷 be an unbounded convex domain and 𝐷 ̸= Π(𝑎, 𝜙), 𝜙 ∈ R,

𝑎 6 +∞. Then 𝜕𝐽(𝐷) = {𝑒𝑖𝜙1 , 𝑒𝑖𝜙2} is a two-element set.
By symbol 𝐽0(𝐷), we denote a subset of the set 𝐽(𝐷) that consists of

all points 𝑒𝑖𝜙, such that

{𝑒𝑖𝛼 : 𝛼 ∈ (𝜙− 𝜋/2, 𝜙 + 𝜋/2)} ⊂ 𝐽(𝐷).

Lemma 3. Let Λ = {𝜆𝑘, 𝑛𝑘}, 𝐷 be an unbounded convex domain,
𝐷 ̸= Π(𝑎, 𝜙), 𝜙 ∈ R, 𝑎 6 +∞, and the system ℰ(Λ) be not complete
in 𝐻(𝐷). Suppose that Ξ(Λ) = Λ1 ∪ Λ2, Ξ(Λ𝑗) ⊆ {𝑒𝑖𝜙𝑗}, 𝑗 = 1, 2, where
{𝑒𝑖𝜙1 , 𝑒𝑖𝜙2} = 𝜕𝐽(𝐷). Then, for each function 𝑔 ∈ 𝑊 (Λ, 𝐷), the represen-
tation 𝑔 = 𝑔1 + 𝑔2 is true, where 𝑔𝑗 ∈ 𝑊 (Λ𝑗,Π(𝐻𝐷(𝜙𝑗), 𝜙𝑗)), 𝑗 = 1, 2.

Proof. Let 𝑔 ∈ 𝑊 (Λ, 𝐷). Then we have

𝑔(𝑧) = lim
𝜇→∞

𝑃𝜇(𝑧), 𝑃𝜇(𝑧) =

𝜇∑︁
𝑘=1

𝑛𝑘−1∑︁
𝑛=0

𝑎𝑘, 𝑛, 𝜇𝑧
𝑛𝑒𝜆𝑘𝑧,

and the convergence is uniform on the compacts set in the domain 𝐷. Let

𝑃𝜇,𝑗(𝑧) =

𝜇∑︁
𝑘=1,𝜆𝑘, 𝑛𝑘∈Λ𝑗

𝑛𝑘−1∑︁
𝑛=0

𝑎𝑘, 𝑛, 𝜇𝑧
𝑛𝑒𝜆𝑘𝑧, 𝑗 = 1, 2.

We show that a certain subsequence of the sequence {𝑃𝜇, 𝑗} converges
uniformly on the compact sets in the domain Π(𝐻𝐷(𝜙𝑗), 𝜙𝑗), 𝑗 = 1, 2.
Then we have 𝑔 ∈ 𝑊 (Λ,C). To do this, it is sufficient to estimate the
modules of exponential polynomials 𝑃𝜇, 𝑗 uniformly on compact sets in the
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domain Π(𝐻𝐷(𝜙𝑗), 𝜙𝑗). To get these estimates, we use a method based
on the use of an interpolating function. First of all, we define an entire
function 𝑓0 of exponential type with suitable growth estimates and such
that 𝑓0(Λ) = 0, which will be used to construct the interpolating function.

Consider two cases:
Case 1. 𝑒𝑖𝜙1 ̸= −𝑒𝑖𝜙2 . In this case, we can assume that 𝐽(𝐷) is an arc

of the circle 𝑆(0, 1), 𝜋 < 𝜙2 − 𝜙1 < 2𝜋 and 𝐽(𝐷) ⊆ {𝑒𝑖𝜙 : 𝜙 ∈ [𝜙1, 𝜙2]}.
Let 𝑗 = 1, 2. Since ℰ(Λ) is not complete in 𝐻(𝐷), then 𝑛(Λ𝑗) 6

6 𝑛(Λ) < +∞. And, according to Theorem 2.3 in [12], for any 𝜀 > 0 and
𝛿 ∈ (0, 1) there exist 𝛾𝑗 > 0, the sequence Λ0

𝑗 , and a strictly increasing
unbounded sequence of positive integers {𝜏𝑠, 𝑗}∞𝑠=1, such that

𝜏𝑠+1, 𝑗 6 (1 + 𝛿)𝜏𝑠, 𝑗, 𝑠 > 1, Λ𝑗 ⊆ Λ0
𝑗 . (7)⃒⃒

ln |𝑓𝑗(𝑟𝑒𝑖𝜙)| − 𝜋𝛾𝑗𝑟| sin(𝜙 + 𝜙𝑗)|
⃒⃒
6 𝜀𝑟,

𝑟𝑒𝑖𝜙 ∈ (C ∖ (Γ(𝛿, 𝜙𝑗) ∪𝐵(0,𝜏1, 𝑗))) ∪
(︂ ∞⋃︁

𝑗=1

𝑆(0, 𝜏𝑠, 𝑗)

)︂
, (8)

ℎ𝑓𝑗(𝜙) < 𝜋𝛾𝑗| sin(𝜙 + 𝜙𝑗)| + 𝜀, 𝜙 ∈ [0, 2𝜋], (9)

where 𝑓𝑗(𝑧) = 𝑓(𝑧,Λ0
𝑗) and Γ(𝛿, 𝜙𝑗) = {𝑡𝜆 : 𝜆 ∈ 𝐵(𝑒−𝑖𝜙𝑗 , 𝛿),𝑡 ∈ R}.

Let

𝑓0(𝑧) = 𝑓(𝑧,Λ0
1)𝑓(𝑧,Λ0

2)𝑒
𝑎1+𝑎2𝑧, 𝑎1 = 𝛾1𝑒

𝑖(𝜙1+𝜋/2), 𝑎2 = 𝛾2𝑒
𝑖(𝜙2−𝜋/2).

Find the estimates for the function |𝑓0|. Let 𝑇 be a parallelogram with
vertices 0, 2𝜋𝑎1, 2𝜋𝑎2 and 2𝜋(𝑎1 + 𝑎2). The convex compact set 𝑇 is the
sum of the segments 𝐼1 = [0, 2𝜋𝑎1] and 𝐼2 = [0, 2𝜋𝑎2] (if, for example,
𝛾1 = 0, then 𝑇 = 𝐼2; similarly in the other case). Therefore, for the
support function of this compact set, the following equalities are true:

𝐻𝑇 (𝜙) = 𝐻𝐼1(𝜙) + 𝐻𝐼2(𝜙) = 𝜋𝛾1(| sin(𝜙 + 𝜙1)| − sin(𝜙 + 𝜙1))+

+ 𝜋𝛾2(| sin(𝜙 + 𝜙2)| + sin(𝜙 + 𝜙2)). (10)

Choose a number 𝛿0 > 0, such that Γ(𝛿0, 𝜙1)∩Γ(𝛿0, 𝜙2) = {0}, and let
𝜀 > 0, 𝛿 ∈ (0, 𝛿0). By (8)–(10), we have

ln |𝑓0(𝑟𝑒𝑖𝜙)| > (𝐻𝑇 (𝜙) − 𝜀)𝑟,

𝑟𝑒𝑖𝜙 ∈ (𝜕Γ(𝛿, 𝜙𝑗) ∖𝐵(0, 𝜏1, 𝑗)) ∪
(︂

Γ(𝛿, 𝜙𝑗) ∩
∞⋃︁
𝑗=1

𝑆(0, 𝜏𝑠, 𝑗)

)︂
, (11)
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where 𝑗 = 1, 2.
ℎ𝑓0(𝜙) < 𝐻𝑇 (𝜙) + 𝜀, 𝜙 ∈ [0, 2𝜋]. (12)

By (11), the inequality follows:

ℎ𝑓0(𝜙) > 𝐻𝑇 (𝜙) − 𝜀, 𝜙 ∈ [0,2𝜋]. (13)

Let

Γ𝑠, 𝑗 = Γ(𝛿, 𝜙𝑗) ∩ {𝑧 : 𝜏𝑠, 𝑗 < |𝑧| < 𝜏𝑠+1, 𝑗}, 𝑠 > 1, 𝑗 = 1, 2.

Let 𝐾 be the conjugate diagram of the function 𝑓0 and 𝑤 be the point
of the compact set 𝐾 closest to the origin. By (12) and (13), there exists
a constant 𝑐 > 0 (it depends only on the number 2𝜋 − (𝜙2 − 𝜙1)), such
that |𝑤| 6 𝑐𝜀.

The interpolating function 𝜔𝑓𝑤(𝜆, 𝜎, 𝑃𝜇) is determined by formula (3)
for any 𝜇 > 1 and 𝜎 ∈ C. Now, using this function, we find the upper
estimates on |𝑃𝜇, 𝑗|.

Let 𝑎𝑘, 𝑛, 𝜇 = 0, 𝑘 > 𝜇. By (5) and by the residue theorem:

1

2𝜋𝑖

∫︁
𝜕Γ𝑠, 𝑗

𝜔𝑓𝑤(𝜆, 𝜎, 𝑃𝜇)

𝑓𝑤(𝜆)
𝑒𝜆𝑧𝑑𝜆 =

∑︁
𝜆𝑘∈Γ𝑠, 𝑗

𝑎𝑘, 𝑛, 𝜇𝑧
𝑛𝑒𝜆𝑘𝑧, (14)

where 𝜎 ∈ C, 𝑘 > 1 and 𝑓𝑤(𝜆) = 𝑓0(𝜆)𝑒−𝑤𝜆.
Let 𝐾0 be the compact set complex conjugate to the compact set 𝑇 .

By (2) and (12), it follows that 𝐾 ⊂ 𝐾0 + 𝐵(0, 𝜀).
Since 𝑒𝑖(𝜙1+𝜋/2), 𝑒𝑖(𝜙2−𝜋/2) ∈ 𝐽0(𝐷), then, by Lemma 3.1 in [12], for

each 𝛼 ∈ 𝐷 the rays 𝛼 + {𝑡𝑒𝑖(𝜙1+𝜋/2), 𝑡 > 0} and 𝛼 + {𝑡𝑒𝑖(𝜙2−𝜋/2), 𝑡 > 0}
lie in the domain 𝐷. Then, according to its convexity, for each 𝛼 ∈ 𝐷 the
embedding 𝛼 + 𝐾0 ⊂ 𝐷 is also true.

Choose 𝜀(𝛼)>0 such that 𝛼+𝐾0+𝐵(0, 3𝜀(𝛼))⊂𝐷 and let 𝜀∈(0, 𝜀(𝛼)).
By (4), (11), (12) and the definition of the function 𝑓𝑤, we have:⃒⃒⃒⃒ ∫︁

𝜕Γ𝑠, 𝑗

𝜔𝑓𝑤(𝑟𝑒𝑖𝜙, 𝜎, 𝑃𝜇)

𝑓𝑤(𝑟𝑒𝑖𝜙)
𝑒𝜆𝑧𝑑𝜆

⃒⃒⃒⃒
6

6 𝑄 max
𝑟𝑒𝑖𝜙∈𝜕Γ𝑠, 𝑗

(︂
exp(𝑟(𝐻𝑇 (𝜙) + 2𝜀− Re((𝑤 + 𝜎 − 𝑧)𝑒𝑖𝜙)))

exp((𝐻𝑇 (𝜙) − 𝜀− Re(𝑤𝑒𝑖𝜙))𝑟)

)︂
=

= 𝑄 max
𝑟𝑒𝑖𝜙∈𝜕Γ𝑠, 𝑗

exp(𝑟(3𝜀− Re((𝜎 − 𝑧)𝑒𝑖𝜙))), 𝑠, 𝜇 > 1, (15)
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where 𝑄 = 𝐴(𝑓0, 𝜀)𝑏𝑠, 𝑗 max
𝑥∈Ω𝜎(𝜀)

|𝑃𝜇(𝑥)|, 𝑏𝑠, 𝑗 is the length of the boundary

𝜕Γ𝑠, 𝑗, 𝜎 = 𝑤 + 𝛼, 𝛼 ∈ 𝐷.
Let 𝑗 = 1, 2. By (7) there exist 𝑐1, 𝑐0 > 0, such that

𝑏𝑠, 𝑗 6 𝑐1𝛿𝜏𝑠, 𝑗 6 𝑐0𝑒
𝜀𝜏𝑠, 𝑗 , 𝑠 > 1. (16)

Let 𝐿 be an arbitrary compact set in the domain Π(𝐻𝐷(𝜙𝑗), 𝜙𝑗). Then,
by (7), there exists 𝑐2 > 0, such that

max
𝑟𝑒𝑖𝜙∈𝜕Γ𝑠, 𝑗

exp(𝑟(3𝜀 + Re(𝑧𝑒𝑖𝜙))) 6 exp(𝜏𝑠, 𝑗(𝐻𝐿(𝜙𝑗) + 𝑐2(𝜀 + 𝛿))) (17)

for each 𝑧 ∈ 𝐿 and 𝑠 > 1. Let 𝜎 = 𝑤+𝛼, 𝛼 ∈ 𝐷. Since |𝑤| 6 𝑐𝜀, we have:

max
𝑟𝑒𝑖𝜙∈𝜕Γ𝑠, 𝑗

exp(𝑟(−Re(𝑤𝑒𝑖𝜙))) 6 exp(𝑐3𝜀𝜏𝑠, 𝑗), 𝑠 > 1, (18)

where 𝑐3 > 0. By definition of the function 𝐻𝐷(𝜙𝑗), we choose a point
𝛼 ∈ 𝐷 and a number 𝐴 > 0 such that

Re(𝛼𝑒−𝑖𝜙𝑗) > 𝐻𝐿(𝜙𝑗) + 𝐴.

Then, by (7), we have for some 𝑐4 > 0:

max
𝑟𝑒𝑖𝜙∈𝜕Γ𝑠, 𝑗

exp(𝑟(−Re(𝛼𝑒𝑖𝜙))) 6 exp(𝜏𝑠, 𝑗(−𝐻𝐿(𝜙𝑗) − 𝐴 + 𝑐4𝛿)). (19)

Given that the sequence 𝑃𝜇 converges uniformly on the compact set Ω𝜎(𝜀),
and by inequalities (15)–(19), we find 𝐶(𝑓0,𝜀) > 0 such that⃒⃒⃒⃒ ∫︁
𝜕Γ𝑠, 𝑗

𝜔𝑓𝑤(𝑟𝑒𝑖𝜙, 𝜎, 𝑃𝜇)

𝑓𝑤(𝜆)
𝑒𝜆𝑧𝑑𝜆

⃒⃒⃒⃒
6 𝐶(𝑓0, 𝜀) exp((𝜀+𝑐2(𝜀+𝛿)+𝑐3𝜀+𝑐4𝛿−𝐴)𝜏𝑠, 𝑗),

where 𝑧 ∈ 𝐿. Choose 𝜀 ∈ (0, 𝜀(𝛼)) and 𝛿 ∈ (0, 𝛿0) such that 𝛿 6 𝜀 and

𝜀 + 𝑐2(𝜀 + 𝛿) + 𝑐3𝜀 + 𝑐4𝛿 − 𝐴 6 −𝜀.

Then⃒⃒⃒⃒ ∫︁
𝜕Γ𝑠, 𝑗

𝜔𝑓𝑤(𝑟𝑒𝑖𝜙, 𝜎, 𝑃𝜇)

𝑓𝑤(𝜆)
𝑒𝜆𝑧𝑑𝜆

⃒⃒⃒⃒
6 𝐶(𝑓0, 𝜀)𝑒

−𝜀𝜏𝑠, 𝑗 , 𝑧 ∈ 𝐿, 𝑠, 𝜇 > 1. (20)
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Since Ξ(Λ𝑗) ⊆ {𝑒𝑖𝜙𝑗}, there exists a number 𝑠0, such that for each
𝑠 > 𝑠0 and 𝜆𝑘 ∈ Γ𝑠, 𝑗 the pair 𝜆𝑘, 𝑛𝑘 is an element of the sequence Λ𝑗.
Outside of the union of the sets

2⋃︁
𝑗=1

∞⋃︁
𝑠=𝑠0

Γ𝑠, 𝑗

there exists only a finite number of points 𝜆𝑘. We can assume that the
points 𝜆1, . . . , 𝜆𝑘0 exist. By (4) for each 𝜇 > 1, we have:

𝑘0∑︁
𝑘=1

⃒⃒⃒⃒
⃒ 1

2𝜋𝑖

∫︁
𝜕𝐵(𝜆𝑘,𝑏𝑘)

𝜔𝑓𝑤(𝑟𝑒𝑖𝜙, 𝜎, 𝑃𝜇)

𝑓𝑤(𝜆)
𝑒𝜆𝑧𝑑𝜆

⃒⃒⃒⃒
⃒ 6

𝑘0∑︁
𝑘=1

𝐴(𝑓0, 𝜀)2𝜋𝑏𝑘×

× max
𝑟𝑒𝑖𝜙∈𝜕𝐵(𝜆𝑘, 𝑏𝑘)

(︂
exp((ℎ𝑓 (𝜙) + 𝜀− Re((𝑤 + 𝜎 − 𝑧)𝑟𝑒𝑖𝜙))𝑟)

𝑓𝑤(𝑟𝑒𝑖𝜙)

)︂
max

𝑥∈Ω𝜎(𝜀)
|𝑃𝜇(𝑥)|

Since the sequence 𝑃𝜇 converges uniformly on the compact set Ω𝜎(𝜀),

𝑘0∑︁
𝑘=1

⃒⃒⃒⃒
⃒ 1

2𝜋𝑖

∫︁
𝜕𝐵(𝜆𝑘, 𝑏𝑘)

𝜔𝑓𝑤(𝑟𝑒𝑖𝜙, 𝜎, 𝑃𝜇)

𝑓𝑤(𝜆)
𝑒𝜆𝑧𝑑𝜆

⃒⃒⃒⃒
⃒ 6 𝐵, 𝑧 ∈ 𝐿, 𝜇 > 1. (21)

By (5), (14), and the definition of polynomials 𝑃𝜇, 𝑗, we have:

𝑃𝜇, 𝑗(𝑧) =

𝑘0∑︁
𝑘=1

1

2𝜋𝑖

∫︁
𝜕𝐵(𝜆𝑘, 𝑏𝑘)

𝜔𝑓𝑤(𝑟𝑒𝑖𝜙, 𝜎, 𝑃𝜇)

𝑓𝑤(𝜆)
𝑒𝜆𝑧𝑑𝜆+

+
∞∑︁

𝑠=𝑠0

∫︁
𝜕Γ𝑠, 𝑗

𝜔𝑓𝑤(𝑟𝑒𝑖𝜙, 𝜎, 𝑃𝜇)

𝑓𝑤(𝑟𝑒𝑖𝜙)
𝑒𝜆𝑧𝑑𝜆.

Note that in the right=hand side of this formula there exists only a finite
number of nonzero terms. Let 𝑠(𝑙), 𝑙 > 1, all be numbers 𝑠 > 𝑠0, such
that the domain Γ𝑠,𝑗 contains at least one point 𝜆𝑘. Then, by (20) and
(21),

|𝑃𝜇, 𝑗(𝑧)| 6 𝐵 + 𝐶(𝑓0, 𝜀)
∞∑︁
𝑙=1

𝑒−𝜀𝜏𝑠(𝑙), 𝑗 , 𝑧 ∈ 𝐿, 𝜇 > 1. (22)

Since Λ has finite upper density, the sequence {𝜏𝑠(𝑙), 𝑗} also has finite upper
density, by the choice of the numbers 𝑠(𝑙). It follows that the last series
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converges. Thus, by (22), the sequence {|𝑃𝜇, 1|} is uniformly bounded on
any compact set in the domain Π(𝐻𝐷(𝜙1), 𝜙1). Applying Montel’s theo-
rem, we find the subsequence {𝑃𝜇(𝑚), 1}∞𝑚=1 that converges uniformly on
each compact set in Π(𝐻𝐷(𝜙1), 𝜙1) to some function
𝑔1 ∈ 𝑊 (Λ1,Π(𝐻𝐷(𝜙1), 𝜙1)).

By (22), the sequence {𝑃𝜇(𝑚), 2} is uniformly bounded on any compact
set in the domain Π(𝐻𝐷(𝜙2), 𝜙2). According to Montel’s theorem, it is
possible to choose its subsequence that converges uniformly on each com-
pact set in Π(𝐻𝐷(𝜙2), 𝜙2) to some function 𝑔2 ∈ 𝑊 (Λ1,Π(𝐻𝐷(𝜙2), 𝜙2)).

It remains to note that 𝑃𝜇, 1 + 𝑃𝜇, 2 = 𝑃𝜇 converges uniformly on any
compact set in the domain 𝐷 to the function 𝑔. Therefore, we have 𝑔 =
= 𝑔1 + 𝑔2.

Case 2. 𝑒𝑖𝜙1 = −𝑒𝑖𝜙2 . Let us construct 𝑓0. By Λ2 denote the sequence
of all pairs −𝜆𝑘, 𝑛𝑘, such that (𝜆𝑘, 𝑛𝑘) ∈ Λ2. Let Λ3 = −Λ2 ∪ Λ1. Then
Ξ(Λ3) = {𝑒𝑖𝜙1} and 𝑛(Λ3) < +∞. By Theorem 2.3 in [12], for any 𝜀 > 0
and 𝛿 ∈ (0, 1) there exist 𝛾 > 0, Λ0, and a strictly increasing unbounded
sequence of positive integers {𝜏𝑠}∞𝑠=1, such that

𝜏𝑠+1 6 (1 + 𝛿)𝜏𝑠, 𝑠 > 1, Λ ⊆ Λ3 ⊆ Λ0,

| ln |𝑓0(𝑟𝑒𝑖𝜙)| − 𝜋𝛾𝑟| sin(𝜙 + 𝜙1)|| 6 𝜀𝑟,

𝑟𝑒𝑖𝜙 ∈ (C ∖ (Γ(𝛿, 𝜙1) ∪𝐵(0, 𝜏1))) ∪

(︃
∞⋃︁
𝑗=1

𝑆(0, 𝜏𝑠)

)︃
,

where 𝑓0(𝑧) = 𝑓(𝑧,Λ0). Let 𝑇 = 𝐼 = [0, 2𝜋𝑎], 𝑎 = 𝛾𝑒𝑖(𝜙1+𝜋/2). Further
reasoning is completely similar to the that carried out in the first case.
The lemma is proved. �

Let 𝜙 ∈ R and

𝑆Λ(𝜙) = min
{𝜆𝑘(𝑗)}

lim
𝛿→0

lim
𝑗→∞

ln |𝑞𝑘(𝑗)Λ (𝜆𝑘(𝑗), 𝛿)|
|𝜆𝑘(𝑗)|

,

where the minimum is taken over all subsequences {𝜆𝑘(𝑗)} of the sequence
{𝜆𝑘}, such that 𝜆𝑘(𝑗)/|𝜆𝑘(𝑗)| → 𝑒−𝑖𝜙, 𝑗 → ∞.

The sequence Λ = {𝜆𝑘, 𝑛𝑘} is called almost real if Ξ(Λ) = {1} and
Re𝜆𝑘 > 0, 𝑘 > 1. Finally, we formulate and proof the main result of this
work.

Theorem 1. Let Λ = {𝜆𝑘, 𝑛𝑘}, 𝐷 be a convex domain and the system
ℰ(Λ) be not complete in 𝐻(𝐷). The following statements are equivalent:
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1) Each function 𝑔∈𝑊 (Λ, 𝐷) is represented by the series (1) converging
uniformly on compact sets in 𝐷0 =Π(𝐻𝐷(𝜙1), 𝜙1) ∩ Π(𝐻𝐷(𝜙2), 𝜙2);

2) Ξ(Λ) ⊆ 𝐽(𝐷), 𝜕𝐽(𝐷) ⊆ {𝑒𝑖𝜙1 , 𝑒𝑖𝜙2}, 𝑆Λ > −∞ and 𝑆Λ(𝜙) = 0,
𝜙 ∈ 𝜕𝐽(𝐷) ∖ 𝐽(𝐷).

Proof. Assume that 1) holds. In particular, it means that each function
𝑔 ∈ 𝑊 (Λ, 𝐷) analytically continues to the domain 𝐷0 and it is approxi-
mated by linear combinations of elements of the system ℰ(Λ) in 𝐷0. Then,
by Lemma 1 in [18], the following embedding is true:

𝐷0 ⊆ {𝑧 ∈ C : Re (𝑧𝑒−𝑖𝜙) < 𝐻𝐷(𝜙), 𝑒−𝑖𝜙 ∈ Ξ(Λ)}.

It follows that Ξ(Λ) ⊆ 𝐽(𝐷) and 𝜕𝐽(𝐷) ⊆ {𝑒𝑖𝜙1 , 𝑒𝑖𝜙2}.
Assume that 𝑆Λ = −∞. Then, by Theorem 4.3 in [12], there exist

numbers {𝑑𝑘, 𝑛} and 𝑘𝑠, 1 = 𝑘1 < 𝑘2 < . . . such that the series

∞∑︁
𝑠=1

(︃
𝑘𝑠+1−1∑︁
𝑘=𝑘𝑠

𝑛𝑘−1∑︁
𝑛=0

𝑑𝑘, 𝑛𝑧
𝑛𝑒𝜆𝑘𝑧

)︃

converges uniformly on compact sets in the plane and the series (1) di-
verges at each point of the plane. Let 𝑔 be the sum of this converging
series. Then 𝑔 ∈ 𝑊 (Λ,C) ⊆ 𝑊 (Λ, 𝐷). According to the statement 1, we
have

𝑔(𝑧) =

∞, 𝑛𝑘−1∑︁
𝑘=1, 𝑛=0

𝑏𝑘, 𝑛𝑧
𝑛𝑒𝜆𝑘𝑧, 𝑧 ∈ 𝐷0,

and the series converges uniformly on compact sets in 𝐷0. By Lemma 1
and Lemma 2, it follows that 𝑑𝑘, 𝑛 = 𝑏𝑘, 𝑛, 𝑘 > 1, 𝑛 = 0, 𝑛𝑘 − 1. We get a
contradiction. Thus, we have 𝑆Λ > −∞.

Let 𝜙 ∈ 𝜕𝐽(𝐷) ∖ 𝐽(𝐷) and the sequence {𝜆𝑘(𝑗)} be such that
𝜆𝑘(𝑗)/|𝜆𝑘(𝑗)| → 𝑒−𝑖𝜙, 𝑗 → ∞. Let Λ0 ={𝑒𝑖𝜙𝜆𝑘(𝑗), 𝑛𝑘(𝑗)}. Then Ξ(Λ0)={1}.
Therefore, there exists a number 𝑚, such that Λ0, 0 = {𝑒𝑖𝜙𝜆𝑘(𝑗), 𝑛𝑘(𝑗)}∞𝑗=𝑚

is an almost real sequence. Let Λ0, 1 = {𝜆𝑘(𝑗), 𝑛𝑘(𝑗)}∞𝑗=𝑚. By 1), each
function 𝑔 ∈ 𝑊 (Λ, 𝐷0) ⊆ 𝑊 (Λ, 𝐷) is represented by the series (1), which
converges uniformly on compact sets in 𝐷0. Therefore, each function
𝑔0 ∈ 𝑊 (Λ, 𝑒−𝑖𝜙𝐷0) has the same property, but now on compact sets in
the domain 𝐷1 = 𝑒−𝑖𝜙𝐷0.

Since 𝜙 ∈ 𝜕𝐽(𝐷) ∖ 𝐽(𝐷), 1 ∈ 𝜕𝐽(𝐷1) and 𝐻𝐷1(𝜙) < +∞. Therefore,
by Theorem 3.8 in [11], the equality 𝑆Λ0, 0 = 0 holds. It follows that
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𝑆Λ0, 1 = 0. And, finally, according to the definition of the value 𝑆Λ(𝜙), we
have: 𝑆Λ(𝜙) = 0.

Assume that 2) holds and 𝑔 ∈ 𝑊 (Λ, 𝐷). If 𝐷 = C, then, according
to the corollary of Theorem 9.5 in [9], statement 1) holds. Let 𝐷 be the
half-plane. Since the system ℰ(Λ) is not complete in 𝐻(𝐷), 𝑛(Λ) < +∞.
Thus, statement 1) holds, by Theorem 4.4 in [12].

Let the domain 𝐷 be distinct from the plane and the half-plane. Then
𝜕𝐽(𝐷)={𝑒𝑖𝜙1 , 𝑒𝑖𝜙2} is a two-element set. By Theorem 3.4 in [12], there ex-
ist the sequences Λ1 and Λ2, such that Λ = Λ1 ∪ Λ2,
Ξ(Λ2) ⊂ 𝑆(0, 1) ∖ int 𝐽(𝐷), and the representation 𝑔 = 𝑔1 + 𝑔2 holds;
here 𝑔1 ∈ 𝑊 (Λ1,C) and 𝑔2 ∈ 𝑊 (Λ2, 𝐷).

Since 𝑆Λ > −∞, the function 𝑔1 is represented by the series (1), accord-
ing to the corollary of Theorem 9.5 in [9]; this series converges uniformly
on compact sets in the plane.

Since Ξ(Λ) ⊆ 𝐽(𝐷), Ξ(Λ2) ⊆ 𝜕𝐽(𝐷). If Ξ(Λ2) = ∅, then, by Lemma
3.3 in [12], the function 𝑔2 is an exponential polynomial, which is a special
case of the series (1). Let Ξ(Λ2) = {𝑒𝑖𝜙𝑗}. Then Λ2 can be represented
as Λ2 = Λ2, 1 ∪ Λ2, 2, where 𝑒𝑖𝜙𝑗Λ2, 1 is an almost real sequence, and Λ2, 2

consists of a finite number of elements. By Lemma 3.3 in [12], the repre-
sentation 𝑔2 = 𝑔2, 1 + 𝑔2, 2 holds, where 𝑔2, 2 is an exponential polynomial
and 𝑔2, 1 ∈ 𝑊 (Λ2, 1, 𝐷). If 𝐻𝐷(𝜙𝑗) = +∞, then, by Theorem 6 in [13], the
function 𝑔2, 1 is represented by the series (1), which converges uniformly
on compact sets in the plane. If 𝐻𝐷(𝜙𝑗) < +∞, then, by Theorem 3.8
in [11], the function 𝑔2, 1 is represented by the series (1), which converges
uniformly on compact sets in the half-plane Π(𝐻𝐷(𝜙𝑗), 𝜙𝑗).

Finally, let Ξ(Λ2) = {𝑒𝑖𝜙1 , 𝑒𝑖𝜙2}. Then Λ2 can be represented as Λ2 =
= Λ2, 1 ∪ Λ2, 2 ∪ Λ2, 3, where 𝑒𝑖𝜙𝑗Λ2, 𝑗, 𝑗 = 1, 2, is an almost real sequence,
and Λ2, 3 consists of finite number of elements. As above, applying Lemma
3.3 in [12], Theorem 6 in [13], and Theorem 3.8 in [11], we obtain the
statement 1). The theorem is proved. �

Remark 1. Special cases of Theorem 1 are the corollary of Theorem 9.5
in [9], Theorem 4.4 in [12], Theorem 6 in [13], and Theorem 3.8 in [11].

Remark 2. From the results of the works [5–8], it follows that in the
case when Ξ(Λ) does not lie in 𝐽(𝐷), the conditions of the fundamental
principle cannot be formulated just in terms of the condensation index 𝑆Λ.
In this case, it is necessary to take into account the relationship between
the maximum angular density of the sequence Λ, the multiplicities of the
points 𝜆𝑘, and the function of a length of an arc of the domain 𝐷.
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Thus, Theorem 1 describes all cases of mutual arrangement of Λ and
𝐷, in which the conditions of the fundamental principle can be formulated
just in terms of the condensation index 𝑆Λ.
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