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1. Introduction. Let 𝐻 be a radial functional Hilbert space of entire
functions, stable with respect to dividing, i. e.:

1) all evaluation functionals 𝛿𝑧 : 𝑓 → 𝑓(𝑧) are continuous;
2) if 𝐹 ∈ 𝐻, then ‖𝐹‖ = ‖𝐹 (𝑧𝑒𝑖𝜙)‖ for any 𝜙 ∈ R;
3) if 𝐹 ∈ 𝐻, 𝐹 (𝑧0) = 0, then 𝐹 (𝑧)(𝑧 − 𝑧0)

−1 ∈ 𝐻.

The first condition means that 𝐻 is a reproducing kernel Hilbert space.
Let 𝑘(𝜆, 𝑧) be its reproducing kernel at 𝑧 ∈ C, that is

𝑓(𝑧) = (𝑓(𝜆), 𝑘(𝜆, 𝑧)), ∀𝑧 ∈ C, ∀𝑓 ∈ 𝐻.

By 𝐾(𝑧) we denote 𝑘(𝑧, 𝑧). Then the Bergman function of the space 𝐻 is
‖𝛿𝑧‖𝐻 = (𝐾(𝑧))

1
2 .

A basis {𝑒𝑘, 𝑘 = 1, 2, . . .} in a Hilbert space is an unconditional basis if

there exist numbers 𝑐, 𝐶 > 0, such that for each element 𝑥 =
∞∑︀
𝑘=1

𝑥𝑘𝑒𝑘 ∈ 𝐻,

the identity holds:

𝑐

∞∑︁
𝑗=1

|𝑐𝑘|2‖𝑒𝑘‖2 6
⃦⃦⃦⃦ ∞∑︁

𝑗=1

𝑐𝑘𝑒𝑘

⃦⃦⃦⃦2

6 𝐶

∞∑︁
𝑗=1

|𝑐𝑘|2‖𝑒𝑘‖2.
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An unconditional basis {𝑒𝑗, 𝑗 = 1, 2, . . . } becomes the Riesz basis if and
only if 0 < inf

𝑘
‖𝑒𝑘‖ 6 sup

𝑘
‖𝑒𝑘‖ < ∞. Equivalently, a Riesz basis is a linear

isomorphic image of an orthonormal basis in a separable Hilbert space.
The problem of existence and construction of unconditional bases of

reproducing kernels {𝑘(𝜆, 𝑧𝑗)}∞𝑗=1 (or Riesz bases of normalized reproduc-
ing kernels {𝑘(𝜆, 𝑧𝑗)/‖𝑘(·, 𝜆𝑗)‖}∞𝑗=1) in Hilbert spaces of analytic functions
has been actively studied during the recent years. This problems goes
back to closely related classical problems: representation of the functions
by exponential series and interpolation by entire functions. Namely, an
unconditional basis of exponentials in a Hilbert space is an isomorphic
image of a basis of reproducing kernels in some Hilbert space of (entire)
functions.

Absence of unconditional bases of reproducing kernels in the classical
Bargmann space and Fock-type spaces

ℱ𝜙 =
{︁
𝑓 ∈ 𝐻(C) : ||𝑓 ||2 :=

∫︁
C

|𝑓(𝜆)|2𝑒−2𝜙(𝜆)𝑑𝑚(𝜆) < ∞
}︁
,

with radial weights 𝜙 growing faster than |𝜆|2 was shown in works [1–3],
in terms of the interpolation by entire functions. The authors of [4]
proved absence of unconditional bases of reproducing kernels in spaces
with weights obeying the conditions (ln+ 𝑟)2 = 𝑜(𝜙(𝑟)), 𝑟 → ∞ and pos-
sessing some regularity of the growth. In the same work, an unexpected re-
sult was obtained: existence of unconditional bases of reproducing kernels
in the Fock spaces ℱ𝜙𝛼 with the weights 𝜙𝛼(𝜆) = (ln+ |𝜆|)𝛼 as 𝛼 ∈ (1; 2].
Later, in paper [5], existence of unconditional bases of reproducing ker-
nels in the Fock spaces with radial weights of essentially more general form
was proved. Note that all these papers deal with Fock spaces with radial
weights. As far as the authors know, unconditional bases in non-radial
spaces have been considered only in [6–8].

It was proved in [9] (see Theorem 1) that if 𝐻 is a radial functional
Hilbert space stable with respect to dividing, admitting a Riesz basis of
normalized reproducing kernels, and monomials are complete in 𝐻, then
there exists a convex sequence 𝑢(𝑛), 𝑛 ∈ N ∪ {0}, such that ‖𝑧‖𝑛 ≍ 𝑒𝑢(𝑛),
𝑛 ∈ N ∪ {0}. The convexity of {𝑢(𝑛)} means

𝑢(𝑛+ 1) + 𝑢(𝑛− 1)− 2𝑢(𝑛) > 0, 𝑛 ∈ N. (1)

If 𝑢(𝑡) is a convex piece-wise linear function with integer nonnegative
breakpoints, and 𝑢(𝑡) ≡ 𝑢(0) as 𝑡 < 0, then the convexity condition (1)
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can be written in a more compact form

𝑢′
+(𝑛+ 1)− 𝑢′

+(𝑛) > 0.

Here 𝑢′
+ is the right derivative of 𝑢. This simple statement leads to the

idea of considering spaces of entire functions more general than weighted
Hilbert spaces with integral norm, using the sequence of monomial norms
as a research tool. In this case, it is natural to assume the fulfillment of one
more property for the space. Let us assume that the space 𝐻 contains the
system of monomials 𝑧𝑛, 𝑛 ∈ N ∪ {0}, and this system is complete in 𝐻.
The beginning of the implementation of this idea was laid in [10]. In [11],
the authors proved a sufficient condition for the existence of unconditional
bases of reproducing kernels.
Theorem A. [11] Let the system of monomials {𝑧𝑛, 𝑛 ∈ N ∪ {0}} be
complete in a radial functional Hilbert space 𝐻 stable with respect to
dividing. If the convex sequence 𝑢(𝑛) = ln ‖𝑧𝑛‖ satisfies the condition

sup
𝑝∈N

inf
𝑛∈N∪{0}

(𝑢′
+(𝑛+ 𝑝)− 𝑢′

+(𝑛)) > 0, (2)

then the space 𝐻 possesses unconditional bases of reproducing kernels.
Taking into account the results presented in [6], we assume that for

some regularity of the sequence of norms of monomials, condition (2) is
very close to the necessary one.

In this paper, we intend to formulate three conditions for the sequence
of monomial norms, each of which is equivalent to condition (2).

2. Sufficient condition in terms of matrix norms.

Theorem 1. Let 𝑢𝑛, 𝑘 = 𝑢(𝑛) − 𝑢(𝑘) − (𝑢(𝑛) − 𝑢(𝑛 − 1))(𝑛 − 𝑘). If
𝒰 is a matrix with elements 𝑒2𝑢𝑛, 𝑘 , 𝑛, 𝑘 ∈ N ∪ {0}, then condition (2) is
equivalent to

‖𝒰‖ := sup
𝑛

(︁∑︁
𝑘

𝑒2𝑢𝑛, 𝑘

)︁ 1
2
< ∞. (3)

Proof. Let us prove that condition (2) implies condition (3). Condition
(2) means that for some 𝑝 ∈ N and 𝛿 > 0 we have

𝑢′
+(𝑛+ 𝑝)− 𝑢′

+(𝑛) > 𝜎, 𝑛 ∈ N ∪ {0}. (4)

Take 𝑛 ∈ N ∪ {0} and let 𝑘 > 𝑛. For a piece-wise linear function 𝑢:
𝑢′
+(𝑛) = 𝑢(𝑛+ 1)− 𝑢(𝑛). Then

𝑢(𝑘)− 𝑢(𝑛) =
𝑘−𝑛−1∑︁
𝑗=0

(𝑢(𝑛+ 𝑗 + 1)− 𝑢(𝑛+ 𝑗)) =
𝑘−𝑛−1∑︁
𝑗=0

𝑢′
+(𝑛+ 𝑗).
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Hence,

𝑢𝑛, 𝑘 =
𝑘−𝑛−1∑︁
𝑗=0

(𝑢′
+(𝑛− 1)− 𝑢′

+(𝑛+ 𝑗)). (5)

By condition (4),

𝑢′
+(𝑛+ 𝑗) > 𝑢′

+(𝑛− 1) +
[︁𝑗
𝑝

]︁
𝜎, 𝑛 = 1, 2, . . . , 𝑗 = 0, 1, . . . ,

where [𝑥] denotes the integer part of 𝑥. Hence,

𝑢𝑛, 𝑘 6 −𝜎
𝑘−𝑛−1∑︁
𝑗=0

[︁𝑗
𝑝

]︁
6 −𝜎𝑝

2

(︂[︁𝑘 − 𝑛− 1

𝑝

]︁
− 1

)︂[︁𝑘 − 𝑛− 1

𝑝

]︁
.

Thus,

∞∑︁
𝑘=𝑛+1

𝑒2𝑢𝑛, 𝑘 6
∞∑︁
𝑗=0

exp

(︂
−𝜎𝑝

(︁[︁𝑗
𝑝

]︁
− 1

)︁[︁𝑗
𝑝

]︁)︂
:= 𝐶(𝜎, 𝑝), 𝑛 ∈ N. (6)

Let 𝑘 < 𝑛; then

𝑢𝑛, 𝑘 = 𝑢(𝑛)− 𝑢(𝑘)− 𝑢′
+(𝑛− 1)(𝑛− 𝑘) =

=
𝑛−𝑘∑︁
𝑗=1

(𝑢(𝑛− 𝑗 +1)− 𝑢(𝑛− 𝑗)− 𝑢′
+(𝑛− 1)) =

𝑛−𝑘∑︁
𝑗=1

(𝑢′
+(𝑛− 𝑗)− 𝑢′

+(𝑛− 1)).

Since 𝑗 = 𝑠𝑝+ 1, . . . , (𝑠+ 1)𝑝, 𝑠 = 0, 1, 2, . . . , the inequality holds:

𝑢′
+(𝑛− 𝑗)− 𝑢′

+(𝑛− 1) 6 −𝑠𝜎.

Then
𝑢𝑛, 𝑘 6 −𝑝𝜎

2

[︁𝑛− 𝑘

𝑝

]︁(︁[︁𝑛− 𝑘

𝑝

]︁
− 1

)︁
, 𝑘 < 𝑛.

Hence,

𝑛−1∑︁
𝑘=0

𝑒2𝑢𝑛, 𝑘 6
∞∑︁
𝑗=0

exp

(︂
−𝑝𝜎

[︁𝑗
𝑝

]︁(︁[︁𝑗
𝑝

]︁
− 1

)︁)︂
= 𝐶(𝜎, 𝑝), 𝑛 ∈ N.

By (6), this implies condition (3).
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Conversely, let us prove that condition (3) implies condition (2). As-
sume that (3) holds, but (2) does not. Then, for every 𝜀 > 0 and for every
𝑝 ∈ N, there exists a sequence of natural numbers 𝑛𝑚 → ∞, such that

𝑢′
+(𝑛𝑚 − 1 + 𝑝)− 𝑢′

+(𝑛𝑚 − 1) 6 𝜀, 𝑚 ∈ N.

By (5), for 𝑛 = 𝑛𝑚, 𝑛𝑚 < 𝑘 6 𝑛𝑚 + 𝑝 we have

𝑢𝑛𝑚, 𝑘 =
𝑘−𝑛𝑚−1∑︁

𝑗=0

(𝑢′
+(𝑛𝑚 − 1)− 𝑢′

+(𝑛𝑚 + 𝑗)).

Hence, since 𝑢′
+ is nondecreasing,

𝑢𝑛𝑚, 𝑘 > −(𝑘 − 𝑛𝑚)𝜀, 𝑘 − 𝑛𝑚 = 1, . . . , 𝑝,

and, therefore,

∞∑︁
𝑘=0

𝑒2𝑢𝑛𝑚, 𝑘 >
𝑛𝑚+𝑝∑︁

𝑘=𝑛𝑚+1

𝑒−2(𝑘−𝑛𝑚)𝜀 =

𝑝∑︁
𝑗=1

𝑒−2𝑗𝜀.

Then for every 𝜀 > 0 and for every 𝑝 ∈ N we have

sup
𝑛∈N∪{0}

∞∑︁
𝑘=0

𝑒2𝑢𝑛, 𝑘 >
𝑝∑︁

𝑗=1

𝑒−2𝑗𝜀,

Hence, ‖𝒰‖ = ∞, which contradicts to (3). �

By Theorem 1, Theorem A can be reformulated as

Theorem A1. If the system of monomials {𝑧𝑛, 𝑛 ∈ N ∪ {0}} is complete
in a radial functional Hilbert space 𝐻, stable with respect to dividing,
and for 𝑢(𝑛) = ln ‖𝑧𝑛‖, 𝑢𝑛, 𝑘 = 𝑢(𝑛)− 𝑢(𝑘)− (𝑢(𝑛)− 𝑢(𝑛− 1))(𝑛− 𝑘) the
matrix 𝒰 with elements 𝑒2𝑢𝑛, 𝑘 , 𝑛, 𝑘 ∈ N∪{0}, satisfies condition (3), then
the space 𝐻 possesses unconditional bases of reproducing kernels.

3. Sufficient condition in terms of conjugate function and
geometric characteristic. Let {𝑢𝑛}∞𝑛=0, 𝑢0 = 0, be a convex increasing
sequence of nonnegative numbers. And let 𝑢(𝑡), 𝑡 > 0, be a piece-wise
linear function with integer nonnegative breakpoints, 𝑢(𝑛) = 𝑢𝑛. By ̃︀𝑢 we
denote the Young conjugate function of 𝑢:

̃︀𝑢(𝑥) = sup
𝑡>0

(𝑥𝑡− 𝑢(𝑡)), 𝑥 ∈ R.



46 K. P. Isaev, R. S. Yulmukhametov

It is easy to see that the Young conjugate function ̃︀𝑢 is also piece-wise
linear convex, which is equal to 0 as 𝑥 6 0, and the derivative ̃︀𝑢′

+ is a
piece-wise constant nondecreasing function with unit jumps at the points
𝑢′
+(𝑘), 𝑘 ∈ N.

Theorem 2. Condition (2) is equivalent to the following condition:

sup
𝑥∈R+

(̃︀𝑢′
+(𝑥+ 𝑑)− ̃︀𝑢′

+(𝑥)) 6 2𝑝+
𝑝𝑑

𝜎
, 𝑑 > 0 (7)

for some 𝜎 > 0 and some 𝑝 ∈ N.

Proof. Let condition (2) hold. Then we have (4). Take 𝑑 > 0. If an
interval [𝑥, 𝑥+ 𝑑) does not contain the points 𝑢′

+(𝑘), 𝑘 ∈ N, then

̃︀𝑢′
+(𝑥+ 𝑑)− ̃︀𝑢′

+(𝑥) = 0,

and (7) holds. Otherwise, let

𝑘+ := max{𝑘 ∈ N : 𝑢′
+(𝑘) ∈ [𝑥, 𝑥+ 𝑑)},

𝑘− := min{𝑘 ∈ N : 𝑢′
+(𝑘) ∈ [𝑥, 𝑥+ 𝑑)}.

Then
𝑘+ − 𝑘− + 1 = ̃︀𝑢′

+(𝑥+ 𝑑)− ̃︀𝑢′
+(𝑥).

Let 𝑘+ − 𝑘− + 1 > 2𝑝 and 𝑠 =
[︁
𝑘+−𝑘−+1

𝑝

]︁
. Then 𝑠 > 2. Obviously,

𝑑 > 𝑢′
+(𝑘+)− 𝑢′

+(𝑘−) >

>
𝑠−2∑︁
𝑗=0

(︀
𝑢′
+(𝑘− + (𝑗 + 1)𝑝)− 𝑢′

+(𝑘− + 𝑗𝑝)
)︀
> 𝜎(𝑠− 1),

that is 𝑠 6 𝑑
𝜎
+ 1 and ̃︀𝑢′

+(𝑥+ 𝑑)− ̃︀𝑢′
+(𝑥) 6 2𝑝+ 𝑝𝑑

𝜎
.

Conversely, let us prove that condition (7) implies condition (2). Let
(7) hold, but (2) do not hold. This means that there is a sequence of
natural numbers 𝑛𝑗 ↗ ∞, such that

𝑢′
+(𝑛𝑗 + 𝑗)− 𝑢′

+(𝑛𝑗) <
1

𝑗
.

Then, for the unbounded sequence 𝑥𝑗 = 𝑢′
+(𝑛𝑗), we have

̃︀𝑢′
+(𝑥𝑗 + 1)− ̃︀𝑢′

+(𝑥𝑗) > 𝑗,
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and we obtain a contradiction. �

Condition (7) can be written more compactly.

Theorem 2′. Condition (7) is equivalent to

sup
𝑥∈R+

(̃︀𝑢′
+(𝑥+ 1)− ̃︀𝑢′

+(𝑥)) < ∞. (8)

Proof. Obviously, condition (7) implies condition (8). If (8) holds, then,
by monotonicity of 𝑢′

+, we have

sup
𝑥∈R+

(̃︀𝑢′
+(𝑥+ 𝑑)− ̃︀𝑢′

+(𝑥)) := 𝑀 < ∞, 𝑑 ∈ (0, 1].

Therefore, for every 𝑑 > 0 we have

sup
𝑥∈R+

(̃︀𝑢′
+(𝑥+ 𝑑)− ̃︀𝑢′

+(𝑥)) 6𝑀 +𝑀𝑑,

which implies (7). �

Let 𝑣 be a convex function on R, and 𝑝 be a positive number. Let

𝜌(𝑣, 𝑥, 𝑝) = sup

{︂
𝑡 > 0 :

𝑥+𝑡∫︁
𝑥−𝑡

⃒⃒
𝑣′+(𝜏)− 𝑣′+(𝑥)

⃒⃒
𝑑𝜏 6 𝑝

}︂
,

where 𝑣′+ is the right derivative of 𝑣. This characteristics was introduced
in [12].

Lemma 1. For the convex piece-wise linear function 𝑢(𝑡), 𝑡 ∈ R, condi-
tion (8) is equivalent to

inf
𝑥>1

𝜌(̃︀𝑢, 𝑥, 1) > 0. (9)

Proof. Let (8) hold. Then sup𝑥∈R+
(̃︀𝑢′

+(𝑥 + 1) − ̃︀𝑢′
+(𝑥)) := 𝑁 < ∞.

Without loss of generality, we can suppose that 𝑁 > 1. The monotonicity
of the function ̃︀𝑢′

+(𝑥) implies

𝑥+ 1
2𝑁∫︁

𝑥− 1
2𝑁

|̃︀𝑢′
+(𝜏)− ̃︀𝑢′

+(𝑥)|𝑑𝜏 6 1.
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By definition of 𝜌(̃︀𝑢, 𝑥, 1), this means that 𝜌(̃︀𝑢, 𝑥, 1) > 1
2𝑁

, 𝑥 > 1. Thus,
(9) holds.

Conversely, let 𝜌(̃︀𝑢, 𝑥, 1) > 2𝛿 > 0, 𝑥 > 1. By definition of 𝜌(̃︀𝑢, 𝑥, 1),
we have

2𝛿∫︁
𝛿

(̃︀𝑢′
+(𝑥+ 𝑡)− ̃︀𝑢′

+(𝑥))𝑑𝑡 6 1, 𝑥 > 1,

and, therefore, ̃︀𝑢′
+(𝑥 + 𝛿) − ̃︀𝑢′

+(𝑥) 6
1
𝛿
, 𝑥 > 1. Let 𝑁 =

[︀
1
𝛿

]︀
+ 1. Taking

into account that ̃︀𝑢′
+ is an increasing function, we get:

̃︀𝑢′
+(𝑥+ 1)− ̃︀𝑢′

+(𝑥) 6
𝑁−1∑︁
𝑘=0

(̃︀𝑢′
+(𝑥+ 𝑘𝛿 + 𝛿)− ̃︀𝑢′

+(𝑥+ 𝛿)) 6
𝑁

𝛿
6 𝑁2, 𝑥 > 0,

that is, (8) holds. �

Lemma 2. Condition (9) is equivalent to

sup
𝑡>0

𝜌(𝑢, 𝑡, 1) < ∞. (10)

Proof. Let 𝜌(𝑢, 𝑡, 1) 6 𝑁 , 𝑡 ∈ R+, for some constant 𝑁 > 0. Without loss
of generality, we can suppose that 𝑁 is integer. By definition of 𝜌(𝑢, 𝑡, 1),
this means that

𝑡+𝑁∫︁
𝑡−𝑁

|𝑢′
+(𝑦)− 𝑢′

+(𝑡)|𝑑𝑦 > 1, 𝑡 ∈ R+.

Hence, since 𝑢′
+(𝑦) is a monotonic function, we have

𝑢′
+(𝑛+𝑁)− 𝑢′

+(𝑛−𝑁) >
1

2𝑁
, 𝑛 ∈ N,

or
𝑢′
+(𝑛+ 2𝑁)− 𝑢′

+(𝑛) >
1

2𝑁
, 𝑛 ∈ N.

As we noted at the beginning of this section, the function ̃︀𝑢 is piece-
wise linear with breakpoints 𝑥𝑛 = 𝑢′

+(𝑛 − 1) = 𝑢(𝑛) − 𝑢(𝑛 − 1), and the
derivative ̃︀𝑢′

+ has unit jumps at the points 𝑥𝑛. Thus, the last estimate can
be written as

𝑥𝑛+2𝑁 − 𝑥𝑛 >
1

2𝑁
, 𝑛 ∈ N.
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This means that the quantity of jumps of ̃︀𝑢′
+ on an interval of length less

than
1

2𝑁
does not exceed 2𝑁 . Since there are unit jumps, we find that

for 𝜀 <
1

2𝑁 ̃︀𝑢′
+(𝑥+ 𝜀)− ̃︀𝑢′

+(𝑥) 6 2𝑁, 𝑥 > 1.

Put 𝜀 =
1

5𝑁
. Then

𝑡+𝜀∫︁
𝑡−𝜀

|̃︀𝑢′
+(𝑥)− ̃︀𝑢′

+(𝑡)|𝑑𝑥 6 2𝑁 · 2𝜀 = 4

5
< 1, 𝑡 > 1.

Hence,

𝜌(̃︀𝑢, 𝑡, 1) > 1

5𝑁
, 𝑡 > 1.

Conversely, let
𝜌(̃︀𝑢, 𝑡, 1) > 2𝜀, 𝑡 > 1

for some 𝜀 > 0. Then
𝑥+2𝜀∫︁
𝑥+𝜀

|̃︀𝑢′
+(𝑦)− ̃︀𝑢′

+(𝑥)|𝑑𝑦 6
𝑥+2𝜀∫︁

𝑥−2𝜀

|̃︀𝑢′
+(𝑦)− ̃︀𝑢′

+(𝑥)|𝑑𝑦 6 1.

Hence, for any 𝑥 > 1,

̃︀𝑢′
+(𝑥+ 𝜀)− ̃︀𝑢′

+(𝑥) 6
1

𝜀
.

Put 𝑁 =
[︁1
𝜀

]︁
. Then ̃︀𝑢′

+(𝑥+ 𝜀)− ̃︀𝑢′
+(𝑥) 6 𝑁 + 1, or

𝑢′
+(𝑛+𝑁 + 1)− 𝑢′

+(𝑛) > 𝜀, 𝑛 ∈ N ∪ {0}.

Thus,
𝑛+2(𝑁+1)∫︁
𝑛+𝑁+1

|𝑢′
+(𝑥)− 𝑢′

+(𝑛)|𝑑𝑥 > 𝜀(𝑁 + 1) > 1.

Hence, 𝜌(𝑢, 𝑛, 1) 6 2𝑁 + 2. It was proved in [13] (see Lemmas 3 and 4)
that the function 𝜌(𝑢, 𝑥, 1) satisfies the Lipschitz condition

|𝜌(𝑢, 𝑥, 1)− 𝜌(𝑢, 𝑦, 1)| 6 |𝑥− 𝑦|, 𝑥, 𝑦 ∈ R.
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Therefore, 𝜌(𝑢, 𝑡, 1) 6 2𝑁 + 3, 𝑡 ∈ R+. �

In conclusion, we present a theorem that follows from the results of [10].

Theorem 3. Let 𝐻 be a radial functional Hilbert space stable with
respect to dividing, in which the system of monomials is complete. If one
of conditions (2), (3), (8), (9) or (10) holds, then

1. the space 𝐻 as a Banach space is isomorphic to the space of entire
functions with the norm

‖𝐹‖2 = 1

2𝜋

∞∫︁
0

2𝜋∫︁
0

|𝐹 (𝑟𝑒𝑖𝜙)|2𝑒−2̃︀𝑢(ln 𝑟)𝑑𝜙 𝑑̃︀𝑢′
+(ln 𝑟); (11)

2. the Bergman function of the space 𝐻 satisfies the condition

𝐾(𝑧) ≍ 𝑒2̃︀𝑢(ln |𝑧|), 𝑧 ∈ C. (12)

Proof.
1. By Theorem 4 in [10], if condition (3) is satisfied, then the space 𝐻
as a Banach space is isomorphic to the space of entire functions with the
norm

‖𝐹‖20 :=
1

2𝜋

∞∑︁
𝑛=1

𝑒−2̃︀𝑢(ln𝑅𝑛)

2𝜋∫︁
0

|𝐹 (𝑅𝑛𝑒
𝑖𝜙)|2𝑑𝜙, (13)

where 𝑅𝑛 = 𝑒𝑢
′
+(𝑛−1). By Lemma 2 in [10], ̃︀𝑢′

+(ln 𝑟) is a piece-wise constant
nondecreasing function with unit jumps at the points 𝑅𝑛. Therefore, norm
(13) coincides with norm (11).
2. By Theorem 3 in [10], if condition (3) is satisfied, then (12) is true. �
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