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BOUNDARY-VALUE PROBLEMS FOR THE
INHOMOGENEOUS SCHRÖDINGER EQUATION WITH
VARIATIONS OF ITS POTENTIAL ON NON-COMPACT

RIEMANNIAN MANIFOLDS

Abstract. We study solutions of the inhomogeneous Schrödinger
equation Δ𝑢 − 𝑐(𝑥)𝑢 = 𝑔(𝑥), where 𝑐(𝑥), 𝑔(𝑥) are Hölder func-
tions, with variations of its potential 𝑐(𝑥) > 0 on a noncompact
Riemannian manifold 𝑀 . Our technique essentially relies on an
approach from the papers by E. A. Mazepa and S. A. Korol’kov
connected with introduction of equivalency classes of functions.
It made it possible to formulate boundary-value problems on 𝑀
independently from a natural geometric compactification. In the
present work, we obtain conditions under which the solvability of
boundary-value problems of the inhomogeneous Schrödinger equa-
tion is preserved for some variations of the coefficient 𝑐(𝑥)>0 on 𝑀 .
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1. Introduction. In the studies of recent decades, a strong connec-
tion was often noted between the classical problems of function theory
and the theory of solutions of elliptic partial differential equations of the
second order, in particular, the Laplace-Beltrami equation and the sta-
tionary Schrödinger equation. This connection found its development in
the works of such Russian and foreign mathematicians as M. Anderson,
A. Grigorian, S. Korolkov, V. Kesselman, A. Losev, E. Mazepa, V. Mik-
lyukov, N. Nadirashvili, D. Sullivan, V. Tkachev, and a number of others.

In modern mathematics, the study of elliptic equations on non-compact
Riemannian manifolds covers a fairly significant part of the research, the
origins of which go back to the classification theory of non-compact Rie-
mann surfaces and manifolds. This theory is based on the study of some
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functional classes on these geometric objects. Sufficiently complete un-
derstanding of the history of development and the current state of this
scientific field can be obtained, for example, from the paper [3]. An im-
portant class of problems of this direction is related to obtaining theorems
of the Liouville type, which assert triviality of spaces of bounded solutions
of some elliptic equations on a manifold. So, the classical formulation of
Liouville’s theorem asserts that every bounded harmonic function in 𝑅𝑛 is
constant (two-sided Liouville’s theorem). In some studies, there is another
approach to Liouville’s theorem — it is argued that the space of positive
superharmonic functions on a noncompact manifold is trivial (one-sided
Liouville’s theorem). This property was used as the basis for the concept
of the parabolicity of a manifold. Thus, in 𝑅𝑛 for 𝑛 = 2, the one-sided
Liouville’s theorem holds (𝑅2 is a parabolic manifold), but for 𝑛 > 3
this does not hold. In works of a number of the authors, the conditions
ensuring the validity of the Liouville’s theorems of these types on non-
compact Riemannian manifolds are adduced in terms of volume growth,
or isoperimetric inequalities, or capacity, and so on (see [3], [4], [6]).

However, as was shown in the 80s of the last century, there is a suf-
ficiently large class of manifolds on which nontrivial bounded solutions
of elliptic differential equations exist, in particular, the Laplace-Beltrami
equation. For example, M. Anderson [1] and D. Sullivan [18] showed that
on a simply connected manifold with negative sectional curvature there
is an infinite-dimensional set of nontrivial bounded harmonic functions.
Moreover, they showed the solvability of the Dirichlet problem on recov-
ering a harmonic function on such manifolds from continuous boundary
data at "infinity".

A number of authors (see, for example, [4], [5], [8], [10]) considered so-
lutions of elliptic equations more general than the Laplace-Beltrami equa-
tion, on non-compact Riemannian manifolds. For example, the solutions
of the stationary Schödinger equation were studied:

𝐿𝑢 ≡ ∆𝑢− 𝑐(𝑥)𝑢 = 0, (1)

where 𝑐(𝑥) > 0 is a continuous function on the manifold.
In the paper [4], a certain estimate for the dimension of the space of

solutions of this equation was obtained. In the papers [8], [10], various
conditions were found for the solvability of boundary-value problems for
bounded solutions of equation (1) on non-compact Riemannian manifolds.

For equation (1), it is also possible to formulate both one-sided and
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two-sided Liouville’s theorems, taking into account the fact that only the
zero constant is a solution to this equation.

An important result was obtained in [5]: the relationship between the
validity of the one-sided and two-sided Liouville’s theorems and the unique
solvability of some exterior boundary problems was studied. In addition,
this paper investigates the question of preserving Liouville’s property for
bounded solutions of the equation (1) for some variations of the coefficient
𝑐(𝑥) > 0. The following theorem is proved in [5]:
Theorem. [5] Let 0 6 𝑐1(𝑥) 6 𝐴𝑐(𝑥), where 𝐴 = 𝑐𝑜𝑛𝑠𝑡 > 0, 𝑐1(𝑥) ̸≡ 0.
If the two-sided Liouville’s theorem holds for the equation ∆𝑣−𝑐1(𝑥)𝑣 = 0,
then it also does for the equation ∆𝑢− 𝑐(𝑥)𝑢 = 0.

Both problems — the solvability of the Dirichlet problem and the va-
lidity of Liouville’s theorem — are quite interesting from the point of
view of their study on non-compact Riemannian manifolds. Note that
the formulation of boundary-value problems on an arbitrary non-compact
Riemannian manifold may be problematic. In some cases, geometric com-
pactification of the manifold makes it possible to formulate problems sim-
ilarly to the classical Dirichlet problem in bounded domains of 𝑅𝑛 (for
example, [10], [17]).

On the other hand, the paper [14] proposes an approach based on
the concept classes of equivalent functions. Later, this approach was
developed, for example, in [7], [8]. It made it possible to formulate
boundary-value problems on manifolds in the absence of a natural geo-
metric compactification and to study the question of preserving the solv-
ability of boundary-value problems for the equation (1) when the coef-
ficient 𝑐(𝑥) varies. In [14], a condition was obtained, under which the
solvability of boundary-value problems on the manifold 𝑀 for the equa-
tions ∆𝑢 − 𝑐(𝑥)𝑢 = 0 and ∆𝑢 = 0 implies the solvability of the similar
boundary-value problem for equations ∆𝑣−𝑐1(𝑥)𝑣 = 0 if 0 6 𝑐1(𝑥) 6 𝑐(𝑥)
and 𝑐1(𝑥) ̸≡ 0.

All the results indicated above consider solutions of linear homoge-
neous equations on non-compact manifolds without boundary or with com-
pact boundary. Naturally, the questions about formulation and solvability
of boundary-value problems for inhomogeneous linear elliptic equations
on non-compact Riemannian manifolds arise. In recent years, a sufficient
number of papers have appeared on this topic (for example, [9], [12], [13],
[16]). In these papers, the asymptotic behavior of solutions of the Poisson
equation was studied, as well as the solvability of boundary and exterior
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boundary-value problems for the inhomogeneous Schrödinger equation

𝐿𝑢 ≡ ∆𝑢− 𝑐(𝑥)𝑢 = 𝑔(𝑥), (2)

where 𝑐(𝑥) > 0, on non-compact Riemannian manifolds.
The aim of the paper is to obtain conditions under which the solv-

ability of boundary-value problems for the inhomogeneous equation (2)
is preserved under variations of the coefficient 𝑐(𝑥) on 𝑀 . The research
is based on the study of the asymptotic behavior of bounded solutions
𝑢 ∈ 𝐶2(𝑀) of equation (2) on non-compact Riemannian manifolds 𝑀
without boundary. In the sequel, we assume that 𝑐(𝑥), 𝑔(𝑥) ∈ 𝐶0,𝛼(𝐺) for
all precompact subset 𝐺 ⊂ 𝑀 , 0 < 𝛼 < 1.

Note that if 𝑔(𝑥) ≡ 0, then the equation (2) is the stationary Schrödin-
ger equation, for which this problem has been studied in detail in [14].
Therefore, we assume that 𝑔(𝑥) ̸≡ 0.

2. The main concepts and auxiliaries. Let 𝑀 be an arbitrary
smooth connected non-compact Riemannian manifold without a bound-
ary, 𝐺 ⊂ 𝑀 be an arbitrary precompact subset with a smooth boundary,
𝐿 be a second-order linear elliptic operator on 𝑀 defined in (2). Denote
by 𝜆(𝑥), Λ(𝑥), respectively, the smallest and largest eigenvalues of the
operator 𝐿 in 𝐺. Recall that if 𝜆 > 𝜆0 > 0, where 𝜆0 is a constant, then
the operator 𝐿 is called strictly elliptic in 𝐺. The operator 𝐿 is called
uniformly elliptic in 𝐺 if the ratio Λ(𝑥)

𝜆(𝑥)
is bounded in 𝐺. It is known that

if the coefficients of the operator 𝐿 are continuous in 𝐺, then in any subset
𝐺′ ⊂ 𝐺 it is a uniformly elliptic operator (see, for example, [2, c. 38–39]).
Compactness lemma. Let 𝐺 ⊂ 𝑀 be a precompact open connected
subset on 𝑀 , the operator 𝐿 be strictly elliptic, and its coefficients belong
to the class 𝐶0,𝛼(𝐺). Let, also, the family of solutions {𝜙𝑖}∞𝑖=1 of the
equation (2) be uniformly bounded on 𝐺, and 𝜙𝑖 ∈ 𝐶2,𝛼(𝐺) for any 𝑖.
Then the family of functions {𝜙𝑖}∞𝑖=1 is compact in the class 𝐶2(𝐺′) for
any compact subset 𝐺′ ⊂ 𝐺.

Proof. For each point 𝑥 ∈ 𝑀 , there is a neighborhood 𝑂(𝑥) ⊂ 𝑀 , home-
omorphic to 𝑅𝑛. Since 𝐺

′ is a compact subset of 𝐺, there exists a finite
number of neighborhoods 𝑂𝑠, such that

𝐺
′ ⊂

𝑚⋃︁
𝑠=1

𝑂𝑠 ⊂ 𝐺.

In addition, the operator 𝐿 is strictly elliptic, and its coefficients belong
to the class 𝐶0,𝛼(𝐺). Then, for any precompactor subset of 𝑂′

𝑠 ⊂ 𝑂𝑠,
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such that 𝑑𝑖𝑠𝑡(𝑂′
𝑠, 𝜕𝑂𝑠) > 𝑑𝑠 > 0 for all functions 𝜙𝑖, Schauder’s internal

estimates are fulfilled when 𝑥 ̸= 𝑦 ( [2, p. 94–95]):

𝑑𝑠 sup
𝑘

sup
𝑂′

𝑠

|𝜕𝜙𝑖

𝜕𝑥𝑘

(𝑥)| + 𝑑𝑠
2 sup

𝑘,𝑝
sup
𝑂′

𝑠

| 𝜕2𝜙𝑖

𝜕𝑥𝑘𝜕𝑥𝑝

(𝑥)|+

+𝑑𝑠
2+𝛼 sup

𝑘,𝑝
sup

𝑥,𝑦∈𝑂′
𝑠

| 𝜕2𝜙𝑖

𝜕𝑥𝑘𝜕𝑥𝑝
(𝑥) − 𝜕2𝜙𝑖

𝜕𝑥𝑘𝜕𝑥𝑝
(𝑦)|

|𝑥− 𝑦|𝛼
6

6 𝐶𝑠(sup
𝑂𝑠

|𝜙𝑖(𝑥)| + sup
𝑥,𝑦∈𝑂𝑠

|𝑔(𝑥) − 𝑔(𝑦)|
|𝑥− 𝑦|𝛼

),

where 𝐶𝑠 is a constant that depends on the properties of the operator 𝐿, 𝑛
and the domain 𝑂𝑠, 0 < 𝛼 < 1.

Note that the sets 𝑂′
𝑠 can be chosen so that 𝐺′ ⊂

⋃︀𝑚
𝑠=1𝑂

′
𝑠 ⊂ 𝐺. Indeed,

we take an increasing sequence of open subsets of

𝑂1
𝑠 ⊂⊂ 𝑂2

𝑠 ⊂⊂ ... ⊂⊂ 𝑂𝑠,

such that 𝑂𝑠 =
⋃︀∞

𝑘=1𝑂
𝑘
𝑠 in each domain 𝑂𝑠. Then

𝐺
′ ⊂

𝑚⋃︁
𝑠=1

𝑂𝑠 =
𝑚⋃︁
𝑠=1

∞⋃︁
𝑘=1

𝑂𝑘
𝑠 =

∞⋃︁
𝑘=1

𝑚⋃︁
𝑠=1

𝑂𝑘
𝑠 ⊂ 𝐺,

that is, the sets 𝑂𝑘 =
𝑚⋃︀
𝑠=1

𝑂𝑘
𝑠 form an open covering of the set 𝐺

′ . And

the following relation holds: 𝑂1 ⊂⊂ 𝑂2 ⊂⊂ . . . ⊂⊂
⋃︀𝑚

𝑠=1𝑂𝑠. Since 𝐺
′ is

a compact subset in 𝐺, we can choose the finite subcovering 𝑂1, 𝑂2, . . . , 𝑂𝑟

from this open covering. Given the increasing sequence 𝑂𝑘, we get
𝐺

′ ⊂ 𝑂𝑟 =
⋃︀𝑚

𝑠=1𝑂
𝑟
𝑠 ⊂ 𝐺. So, we can take 𝑂

′
𝑠 = 𝑂𝑟

𝑠.
Next, select 𝑑 = min𝑠=1,...,𝑚 𝑑𝑠, 𝐶 = max𝑠=1,...,𝑚 𝐶𝑠. Then on 𝐺

′ the
Schauder’s internal estimates are fulfilled with the constants 𝑑 and 𝐶,
where 𝐶 depends on 𝐿, 𝑛, and 𝐺.

These estimates, given the uniform boundedness of the family of func-
tions {𝜙𝑖}∞𝑖=1 on 𝐺 and Hölder continuity of function 𝑔(𝑥), imply the
equicontinuity of this family, as well as the uniform boundedness and
equicontinuity of the families of the first and second derivatives of these
functions on 𝐺

′ . Hence, we obtain compactness of this family in the class
𝐶2(𝐺′). The lemma is proved. �
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Remark 1. The Compactness lemma for the stationary Schrödinger equa-
tion was proved in [11].

Further, denote by {𝐵𝑘}∞𝑘=1 the exhaustion of the manifold𝑀 , i. e., the
sequence of open connected nonempty subsets of the Riemannian manifold
𝑀 , such that 𝐵𝑘 ⊂ 𝐵𝑘+1, M =

⋃︀∞
𝑘=1 𝐵𝑘.

Existence lemma. Let {𝐵𝑘}∞𝑘=1 be an exhaustion of 𝑀 with smooth
boundaries 𝜕𝐵𝑘, the operator 𝐿 be strictly elliptic, and its coefficients
belong to the class 𝐶0,𝛼(𝐺) for all compact subset 𝐺 ⊂ 𝑀 . Let also the
family of functions {𝜙𝑘}∞𝑘=1 be uniformly bounded on 𝑀, and for each 𝑘
the function 𝜙𝑘 ∈ 𝐶2,𝛼(𝐵𝑘) be a solution of the boundary-value problem

𝐿𝜙𝑘 = 𝑔(𝑥) in 𝐵𝑘, 𝜙𝑘|𝜕𝐵𝑘
= 𝑓 |𝜕𝐵𝑘

,

where 𝑓 is some continuous function on 𝑀 . Then this family has a limit
function that is a bounded solution of the equation (2) on 𝑀 .

Proof. The uniform boundedness of the family {𝜙𝑘}∞𝑘=1 on 𝑀 implies its
uniform boundedness on the set 𝐵𝑘 for any 𝑘, i. e., there exists a constant
𝐶 > 0, such that |𝜙𝑘(𝑥)| 6 𝐶 for any 𝑘 and 𝑥 ∈ 𝑀 . Next, we apply
the Compactness lemma to this family of solutions. Take the sets 𝐵𝑘 for
𝑘 = 1, 2, . . . for the set 𝐺. We have the compactness of the family {𝜙𝑘}∞𝑘=1

in the class 𝐶2(𝐵1), which implies the existence of the limit function

𝜙1
𝑓 = lim

𝑘→∞
𝜙1
𝑘

on the set 𝐵1: it is a solution of the equation (2). Here {𝜙1
𝑘} is a convergent

subsequence of the sequence {𝜙𝑘}. It is clear that |𝜙1
𝑓 | 6 𝐶 on 𝐵1.

Next, consider the subsequence {𝜙1
𝑘} as a sequence of solutions to the

equation (2) on the set 𝐵2. Then there is a limit function

𝜙2
𝑓 = lim

𝑘→∞
𝜙2
𝑘

on this set, which is a solution of the equation (2), and 𝜙2
𝑓 is the bounded

function on 𝐵2. Here {𝜙2
𝑘} is a convergent subsequence of the sequence

{𝜙1
𝑘}. Moreover, due to the uniqueness of the existence of the limit of a

convergent subsequence, the function 𝜙2
𝑓 is the continuation of the function

𝜙1
𝑓 on the set 𝐵2, i. e., 𝜙2

𝑓 |𝐵1
= 𝜙1

𝑓 .
We continue the process for any 𝑛 and get existence of a limit function

𝜙𝑛
𝑓 = lim

𝑘→∞
𝜙𝑛
𝑘
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on the set𝐵𝑛, which is the bounded solution of the equation (2). Moreover,
the function 𝜙𝑛

𝑓 is a continuation of the function 𝜙𝑛−1
𝑓 on the set 𝐵𝑛, i. e.,

𝜙𝑛
𝑓 |𝐵𝑛−1

= 𝜙𝑛−1
𝑓 , and |𝜙𝑛

𝑓 | 6 𝐶 for any 𝑛.
Next, consider the function

𝜙𝑓 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜙1
𝑓 in 𝐵1,

𝜙2
𝑓 in 𝐵2 ∖𝐵1,

. . . . . . . . . . . . . . . . .
𝜙𝑛
𝑓 in 𝐵𝑛 ∖𝐵𝑛−1,

. . . . . . . . . . . . . . . . .

Now choose the diagonal sequence 𝜙1
1, 𝜙

2
2, . . . , 𝜙

𝑘
𝑘, . . . It is clear that

|𝜙𝑘
𝑘| 6 𝐶, i. e., the diagonal sequence is uniformly bounded on 𝑀 and

converges to the function 𝜙𝑓 at each point 𝑥 ∈ 𝑀 . The uniform bounded-
ness implies the compactness of the family of functions {𝜙𝑘

𝑘} in the class
𝐶2(𝐺) on an arbitrary compact subset of 𝐺 ⊂ 𝑀 . The latter implies the
existence of a limit function for this sequence, which is the solution of the
equation (2) on 𝐺. Due to the uniqueness of the existence of the limit
function, it coincides with the function 𝜙𝑓 . Thus, the 𝜙𝑓 function is the
solution of the equation (2) on 𝑀 and |𝜙𝑓 | 6 𝐶. The lemma is proved. �

A similar approximative approach to determining solutions to boundary-
value problems for elliptic equations on manifolds has been used ear-
lier [15].

The following definitions and auxiliary statements from [14] will play a
fundamental role in obtaining the results of this paper. We present them
below. Let 𝑓1 and 𝑓2 be arbitrary continuous functions on 𝑀 .

Definition 1. [14] Say that 𝑓1 and 𝑓2 are equivalent on 𝑀 and write
𝑓1

𝑀∼ 𝑓2 if for some exhaustion {𝐵𝑘}∞𝑘=1 of 𝑀 we have

lim
𝑘→∞

‖𝑓1(𝑥) − 𝑓2(𝑥)‖𝐶0(𝑀∖𝐵𝑘)
= 0,

where ‖𝑓(𝑥)‖𝐶0(𝐺) = sup
𝐺

|𝑓(𝑥)|.

It is easy to verify that the relation 𝑀∼ is an equivalence relation, which
does not depend on the choice of the exhaustion of the manifold and so
partitions the set of all continuous functions on 𝑀 into equivalence classes
(see also [12]). Denote the equivalence class of a function 𝑓 by [𝑓 ].
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Definition 2. [14] We call a function 𝜔 asymptotically nonnegative on
𝑀 if there exists a continuous function 𝑓 > 0 on 𝑀 , such that 𝜔

𝑀∼ 𝑓 .

Let 𝐵 ⊂ 𝑀 be an arbitrary connected compact subset with a smooth
boundary and 𝐵 ⊂ 𝐵𝑘 for all 𝑘. Everywhere in the sequel we assume that
{𝐵𝑘}∞𝑘=1 is the exhaustion of the manifold 𝑀 with smooth boundaries
𝜕𝐵𝑘.

Denote by 𝑣𝑘 the solution of the equation (1) in 𝐵𝑘 ∖𝐵, satisfying the
conditions

𝑣𝑘|𝜕𝐵 = 1, 𝑣𝑘|𝜕𝐵𝑘
= 0.

In [14], it is shown that the sequence 𝑣𝑘 is uniformly bounded on
𝑀 ∖ 𝐵 and, therefore, the sequence is compact in the class 𝐶2(𝐺) for
every compact subset 𝐺 ⊂ 𝑀 ∖𝐵. Moreover, as 𝑘 → ∞, this sequence in-
creases monotonically and converges on 𝑀 ∖𝐵 to a solution of equation (1)
𝑣 = lim

𝑘→∞
𝑣𝑘, 0 < 𝑣 6 1, 𝑣|𝜕𝐵 = 1. Note, also, that the function 𝑣 does

not depend on the choice of exhaustion {𝐵𝑘}∞𝑘=1. We call 𝑣 the 𝐿-potential
of the compact set 𝐵 relative to 𝑀 . For the Laplace-Beltrami equation,
the function 𝑣 is nothing else but the capacity potential of the compact
set 𝐵 relative to the manifold 𝑀 .

Definition 3. [14] Call the manifold 𝑀 𝐿-strict if for some compact set
𝐵 ⊂ 𝑀 there is an 𝐿-potential 𝑣 of 𝐵, such that 𝑣 ∈ [0] (if 𝐿 = ∆; then
call the manifold 𝑀 ∆-strict).

Using the described approach, a number of statements, presented be-
low, for solutions and super solutions of the stationary Schrödinger equa-
tion were obtained in [14]. These statements play an essential role in
obtaining the main and auxiliary results of this paper.

Lemma 1. [14] Suppose that 𝐿𝜔 6 0 on 𝑀 ∖ 𝐵, 𝜔|𝜕𝐵 > 0, and 𝜔 is
asymptotically nonnegative. Then 𝜔 > 0 on 𝑀 ∖𝐵.
Suppose that 𝐿𝜔 6 0 on 𝑀 , and 𝜔 is asymptotically nonnegative. Then
𝜔 > 0 on 𝑀.

Lemma 2. [14] Suppose that 𝐿𝜔 6 𝐿𝑢 on 𝑀∖𝐵, 𝜔|𝜕𝐵 > 𝑢|𝜕𝐵, and
𝜔

𝑀∼ 𝑢. Then 𝜔 > 𝑢 on 𝑀∖𝐵. In particular, if 𝐿𝜔 = 𝐿𝑢 on 𝑀∖𝐵,
𝜔|𝜕𝐵 = 𝑢|𝜕𝐵, and 𝜔

𝑀∼ 𝑢, then 𝜔 = 𝑢 on 𝑀∖𝐵.

Lemma 3. [14] Suppose that 𝐿𝜔 6 𝐿𝑢 on 𝑀 and 𝜔
𝑀∼ 𝑢. Then 𝜔 > 𝑢

on 𝑀 . In particular, if 𝐿𝜔 = 𝐿𝑢 on 𝑀 and 𝜔
𝑀∼ 𝑢, then 𝜔 = 𝑢 on 𝑀.
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The paper [14] introduces the concepts of solvability of the boundary-
value and external boundary-value problems for the homogeneous Schrödin-
ger equation with boundary conditions from the equivalence class [𝑓 ]. In
a similar way, we can formulate boundary-value problems for the inhomo-
geneous equation (2) (see also [12]).

Definition 4. [12] We say that the boundary-value problem for equation
(2) is solvable on 𝑀 with boundary data from the class [𝑓 ] if (2) has a
solution 𝑢 ∈ [𝑓 ] on 𝑀 .

Definition 5. [12] Let Φ(𝑥) ∈ 𝐶(𝜕𝐵) be any continuous function on
𝜕𝐵. We say that the exterior boundary problem for equation (2) is solv-
able on 𝑀 ∖ 𝐵 with boundary data from the class [𝑓 ] if for any function
Φ(𝑥) ∈ 𝐶(𝜕𝐵) equation (2) has a solution 𝑢(𝑥) on 𝑀 ∖𝐵, such that 𝑢 ∈ [𝑓 ]
and 𝑢|𝜕𝐵 = Φ|𝜕𝐵.

The approach based on introduction of classes of equivalent functions
allows to formulate boundary and exterior boundary-value problems on
arbitrary noncompact Riemannian manifolds without taking into account
their geometric compactification. Using this approach, the following rela-
tionship between the solvability of boundary-value and exterior boundary
problems on the manifold 𝑀 was established in [12]:

Theorem 1. [12] Let the exterior boundary problem for equation (2) be
solvable on 𝑀 ∖ 𝐵 with boundary data 𝑢|𝜕𝐵 = Φ(𝑥) and 𝑢 ∈ [𝑓 ] for any
continuous function Φ(𝑥) ∈ 𝐶(𝜕𝐵). Then the boundary-value problem for
equation (2) with boundary data from the class [𝑓 ] is solvable on 𝑀 too.

Theorem 2. [12] Let 𝑀 be an 𝐿-strict manifold and the boundary-value
problem for equation (2) be solvable on 𝑀 with boundary data from the
class [𝑓 ]. Then the exterior boundary problem for equation (2) is solvable
on 𝑀 ∖𝐵 with boundary data 𝑢|𝜕𝐵 = Φ(𝑥) and 𝑢 ∈ [𝑓 ] for any continuous
function Φ(𝑥) ∈ 𝐶(𝜕𝐵).

Remark 2. Similar results for the stationary Schrödinger equation can
be found, for example, in [8] and [14].

It is known that any constant, in particular, the function 𝑢 ≡ 1, is a
harmonic function, i. e., it satisfies the equation (1) for 𝑐(𝑥) ≡ 0 on any
manifold 𝑀 . In this case, 𝑢 ∈ [1]. However, for the stationary Schrödinger
equation, where 𝑐(𝑥) ̸≡ 0, a nonzero constant is not a solution. It is known
that the existence of the solution 𝑢 ∈ [1] on 𝑀 of the equation (1), where
𝑐(𝑥) ̸≡ 0, depends on the properties of the noncompact manifold 𝑀 (see,
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for example, [10]). For manifolds, on which such solutions exist, a special
definition has been introduced in [14].

Definition 6. [14] Say that a manifold 𝑀 is 𝐿-exact if there is a solution
𝑢 to equation (1) on 𝑀 , satisfying the condition 𝑢 ∈ [1].

Further, alongside with the Schrödinger operator 𝐿, we consider the
Schrödinger operator

𝐿1 ≡ ∆ − 𝑐1(𝑥),

where 0 6 𝑐1(𝑥) 6 𝑐(𝑥), 𝑐1(𝑥) ̸≡ 0, and 𝑐1(𝑥) ∈ 𝐶0,𝛼(𝐺) for all precompact
subset 𝐺 ⊂ 𝑀 , 0 < 𝛼 < 1. The following statement is true:

Lemma 4. If the manifold 𝑀 is 𝐿-exact, then the manifold 𝑀 is
𝐿1-exact, i. e., there exists a solution 𝑢1 of the equation 𝐿1𝑢 = 0 on 𝑀 ,
such that 𝑢1 ∈ [1].

Proof. By the condition of the lemma, there exists a solution 𝑢 of the
equation (1) on 𝑀 , such that 𝑢 ∈ [1]. By Lemma 1, the inequality 𝑢 > 0
holds on 𝑀 . Consider a sequence of functions {𝑤𝑘}∞𝑘=1 in 𝐵𝑘 that are the
solutions to the problems{︃

𝐿1𝑤𝑘 = 0 in 𝐵𝑘,

𝑤𝑘|𝜕𝐵𝑘
= 1.

Denote 𝑤𝑘
* = 𝑤𝑘 − 1 in 𝐵𝑘. Then 𝐿1𝑤𝑘

* = 𝐿1𝑤𝑘 − 𝐿11 = 𝑐1(𝑥) > 0 in
𝐵𝑘 and 𝑤𝑘

*|𝜕𝐵𝑘
= 𝑤𝑘|𝜕𝐵𝑘

− 1 = 0. Then, using the comparison principle
for solutions of the Schrödinger equation in 𝐵𝑘, we get 𝑤𝑘

* 6 0 in 𝐵𝑘. It
follows that 0 6 𝑤𝑘 6 1 in 𝐵𝑘, for any 𝑘, i. e., the sequence of solutions
{𝑤𝑘}∞𝑘=1 is uniformly bounded on 𝑀 .

The uniform boundedness of the sequence {𝑤𝑘}∞𝑘=1 on 𝑀 implies the
compactness of the family of functions {𝑤𝑘} in the class 𝐶2(𝐺) for an
arbitrary compact subset 𝐺 ⊂ 𝑀 , by the Compactness lemma. Next, by
the Existence lemma for the family {𝑤𝑘}, we obtain the existence of a
limit function 𝑢1, which is the solution of the equation 𝐿1𝑢1 = 0 on 𝑀
and satisfies the inequality 0 6 𝑢1 6 1.

In addition, the following conditions hold in 𝐵𝑘 for the sequence of
functions {𝑤𝑘}∞𝑘=1: {︃

𝐿𝑤𝑘 6 𝐿𝑢 in 𝐵𝑘,

𝑤𝑘|𝜕𝐵𝑘
> 𝑢|𝜕𝐵𝑘

.
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Then, according to the comparison principle for solutions of the Schrödin-
ger equation in 𝐵𝑘, we have 𝑤𝑘 > 𝑢 and, consequently, 1 > 𝑢1 > 𝑢. Given
𝑢 ∈ [1], we get 𝑢1 ∈ [1], i. e., the manifold 𝑀 is 𝐿1-exact. �

3. The main results. The following theorem establishes the relation-
ship between solvability of boundary-value problems in a given equivalence
class for the inhomogeneous Schrödinger equation (2) with some variations
of its coefficient 𝑐(𝑥), and generalizes the result obtained earlier in [14] for
the homogeneous Schrödinger equation (1) for the inhomogeneous case.

Theorem 3. Suppose that the boundary-value problems with boundary
data in the class [𝑓 ] are solvable on 𝑀 for the inhomogeneous equa-
tions 𝐿𝑢 = 𝑔(𝑥) and ∆𝑢 = 𝑔(𝑥) on 𝐿-exact manifold 𝑀 . Then the
boundary-value problem is solvable on 𝑀 for the inhomogeneous equation
𝐿1𝑢 = 𝑔(𝑥) with boundary data in the class [𝑓 ].

Proof. Let 𝑣 and 𝑤 be bounded solutions on 𝑀 to the boundary-value
problems for the equations 𝐿𝑢 = 𝑔(𝑥) and ∆𝑢 = 𝑔(𝑥), respectively, such
that 𝑣 ∈ [𝑓 ], 𝑤 ∈ [𝑓 ]. Since 𝑓 is a bounded continuous function on 𝑀 , the
solutions 𝑣 and 𝑤 are also bounded on𝑀 , i. e., the inequalities are satisfied:
|𝑓(𝑥)| 6 𝐴, |𝑣(𝑥)| 6 𝐴 and |𝑤(𝑥)| 6 𝐴, where 𝐴 > 0 is a constant. Also,
let 𝑢 be the solution of the stationary Schrödinger equation, i. e., 𝑢 ∈ [1]
(it exists because the manifold is 𝐿-exact).

Consider the functions 𝑓𝐴 = 𝑓 + 𝐴, 𝑣𝐴 = 𝑣 + 𝐴 · 𝑢, 𝑤𝐴 = 𝑤 + 𝐴.
It is clear that all functions are non-negative: 𝑓𝐴 > 0, 𝑣𝐴 > 0, 𝑤𝐴 > 0;
that 𝑣𝐴 ∈ [𝑓𝐴], 𝑤𝐴 ∈ [𝑓𝐴]; and that 𝐿𝑣𝐴 = 𝐿𝑣 + 𝐴 · 𝐿𝑢 = 𝑔(𝑥),
∆𝑤𝐴 = ∆𝑤 = 𝑔(𝑥). We show that the theorem is true in the class of
nonnegative functions 𝑓𝐴.

As before, let {𝐵𝑘}∞𝑘=1 be an exhaustion of 𝑀 with smooth boundaries
𝜕𝐵𝑘. Consider the sequence of functions {𝑢𝑘}∞𝑘=1 that are solutions to the
problems {︃

𝐿1𝑢𝑘 = 𝑔(𝑥) in 𝐵𝑘,

𝑢𝑘|𝜕𝐵𝑘
= 𝑤𝐴|𝜕𝐵𝑘

.
(3)

Denote by 𝑢𝑘
* = 𝑢𝑘 − 𝑤𝐴 in 𝐵𝑘. Then we have

𝐿1𝑢𝑘
* = 𝐿1𝑢𝑘 − 𝐿1𝑤𝐴 = 𝑔(𝑥) − ∆𝑤𝐴 + 𝑐1(𝑥)𝑤𝐴 = 𝑐1(𝑥)𝑤𝐴

and 𝑢𝑘
*|𝜕𝐵𝑘

= 𝑢𝑘|𝜕𝐵𝑘
− 𝑤𝐴|𝜕𝐵𝑘

= 0. Since 𝑐1(𝑥)𝑤𝐴 > 0 in 𝐵𝑘, 𝐿1𝑢𝑘
* > 0

in 𝐵𝑘 and 𝑢𝑘
*|𝜕𝐵𝑘

= 0. Then, by the comparison principle (see [2, pp. 39–
40]), we have 𝑢𝑘

* 6 0 in 𝐵𝑘. It follows that

𝑢𝑘 6 𝑤𝐴 in 𝐵𝑘. (4)
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Further, consider the sequence of functions {𝑣𝑘}∞𝑘=1 that are solutions
to the problems {︃

𝐿1𝑣𝑘 = 𝑔(𝑥) in 𝐵𝑘,

𝑣𝑘|𝜕𝐵𝑘
= 𝑣𝐴|𝜕𝐵𝑘

.
(5)

Denote by 𝑣𝑘
* = 𝑣𝑘 − 𝑣𝐴 in 𝐵𝑘. As above, we have

𝐿1𝑣𝑘
* = 𝐿1𝑣𝑘 −𝐿1𝑣𝐴 = 𝑔(𝑥)−∆𝑣𝐴 + 𝑐1(𝑥)𝑣𝐴 6 𝑔(𝑥)−∆𝑣𝐴 + 𝑐(𝑥)𝑣𝐴 = 0,

𝑣*𝑘|𝜕𝐵𝑘
= 𝑣𝑘|𝜕𝐵𝑘

− 𝑣𝐴|𝜕𝐵𝑘
= 0. Hence, 𝐿1𝑣

*
𝑘 6 0 in 𝐵𝑘 and 𝑣*𝑘|𝜕𝐵𝑘

= 0.
Moreover, by the comparison principle (see [2, pp. 39–40]), we obtain
𝑣𝑘

* > 0 in 𝐵𝑘 and, therefore,

𝑣𝑘 > 𝑣𝐴 in 𝐵𝑘. (6)

Compare solutions 𝑣𝐴 and 𝑤𝐴. By the condition of the theorem, it is
fulfilled on 𝑀 : 𝐿𝑣𝐴 = 𝑔(𝑥) and ∆𝑤𝐴 = 𝑔(𝑥). Then, for the operator 𝐿
we have

𝐿𝑤𝐴 = ∆𝑤𝐴 − 𝑐(𝑥)𝑤𝐴 6 ∆𝑤𝐴 = 𝑔(𝑥),

since 𝑐(𝑥)𝑤𝐴 > 0. It follows that 𝐿𝑤𝐴 6 𝑔(𝑥) on 𝑀 . Further, given
that 𝐿𝑣𝐴 = 𝑔(𝑥), we obtain 𝐿𝑤𝐴 6 𝐿𝑣𝐴 on 𝑀 and 𝑤𝐴

𝑀∼ 𝑣𝐴
𝑀∼ 𝑓𝐴. So,

applying Lemma 3, we have 𝑤𝐴 > 𝑣𝐴 on 𝑀 .
Now we compare solutions 𝑢𝑘 and 𝑣𝑘. From conditions (3), (5) we have

the equality 𝐿1𝑢𝑘 = 𝐿1𝑣𝑘 in 𝐵𝑘, and, therefore, 𝐿1(𝑢𝑘−𝑣𝑘) = 0. Assuming
that 𝑤𝐴 > 𝑣𝐴 on 𝑀 , we obtain 𝑢𝑘|𝜕𝐵𝑘

> 𝑣𝑘|𝜕𝐵𝑘
. Then, by the comparison

principle for the solution of the Schrödinger equation (see [2, pp. 39–40]),
we have

𝑢𝑘 > 𝑣𝑘 in 𝐵𝑘. (7)

Combining the conditions (4), (6), and (7), gives the following inequali-
ty for all 𝑘 in 𝐵𝑘:

𝑤𝐴 > 𝑢𝑘 > 𝑣𝑘 > 𝑣𝐴 > 0. (8)

Since the functions 𝑣𝐴 and 𝑤𝐴 are bounded solutions of the corre-
sponding equations on 𝑀 , condition (8) implies the uniform boundedness
of the family of functions {𝑢𝑘}∞𝑘=1 and {𝑣𝑘}∞𝑘=1 on 𝑀 .

Uniform boundedness of the sequences {𝑢𝑘}∞𝑘=1 and {𝑣𝑘}∞𝑘=1 on 𝑀 im-
plies, by the Compactness lemma, compactness of the families of functions
{𝑢𝑘} and {𝑣𝑘} in the class 𝐶2(𝐺) for an arbitrary compact subset 𝐺 ⊂ 𝑀 .
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In turn, according to the Existence lemma, the compactness of the fami-
lies {𝑢𝑘} and {𝑣𝑘} implies the existence of limit functions 𝑢 = lim

𝑖→∞
𝑢𝑘𝑖 and

𝑢 = lim
𝑖→∞

𝑣𝑘𝑖 , which are solutions of the equation 𝐿1𝑢 = 𝑔(𝑥).
Passing to the limit in (8) as 𝑘 → ∞, we find that on 𝑀

𝑤𝐴 > 𝑢 > 𝑢 > 𝑣𝐴 > 0. (9)

From (9) and the fact that 𝑤𝐴 ∼ 𝑣𝐴 ∼ 𝑓𝐴, we get 𝑢
𝑀∼ 𝑢

𝑀∼ 𝑓𝐴; so,
according to Lemma 3, we get 𝑢 = 𝑢 = 𝑢𝐴 and 𝑢𝐴 > 0.

We have proved solvability of the boundary problem for equation
𝐿1𝑢 = 𝑔(𝑥) with boundary data in the class [𝑓𝐴] and function 𝑢𝐴 is the
corresponding solution.

Then, by Lemma 4, we get its 𝐿1-exactness from the 𝐿-exactness of
the manifold. Finally, consider the function 𝑢 = 𝑢𝐴 − 𝐴 · 𝑢1, where 𝑢1

is the function from the definition of 𝐿1-exactness. It is obvious that the
following equalities are fulfilled on 𝑀 :

𝐿1𝑢 = 𝐿1𝑢𝐴 − 𝐴 · 𝐿1𝑢1 = 𝑔(𝑥), 𝑢
𝑀∼ 𝑓𝐴 − 𝐴 = 𝑓 + 𝐴− 𝐴 = 𝑓.

Thus, we have solvability of the boundary problem for equation
𝐿1𝑢 = 𝑔(𝑥) on 𝑀 with boundary data in the class [𝑓 ]. �

The next theorem establishes relationship between solvability of exte-
rior boundary-value problems on 𝑀 ∖ 𝐵 in a given equivalence class for
the inhomogeneous Schrödinger equation (2) with some variations of its
coefficient 𝑐(𝑥). As above, here 𝐵 ⊂ 𝑀 is any precompact subset with
smooth boundary; also assume that 0 6 𝑐1(𝑥) 6 𝑐(𝑥), 𝑐1(𝑥) ̸≡ 0 on 𝑀 ,
and so 𝑐(𝑥) ̸≡ 0 on 𝑀 . Without loss of generality, we can assume that
𝑐(𝑥) > 0 in some neighborhood of the compact subset 𝐵.

Theorem 4. Suppose that the exterior boundary problems with bound-
ary data in the class [𝑓 ] are solvable on 𝑀 ∖ 𝐵 for the inhomogeneous
equations 𝐿𝑢 = 𝑔(𝑥) and ∆𝑢 = 𝑔(𝑥) on an 𝐿-exact manifold 𝑀 . Then
the exterior boundary problem is solvable on 𝑀 ∖𝐵 for the inhomogeneous
equation 𝐿1𝑢 = 𝑔(𝑥) with boundary data in the class [𝑓 ].

Proof. It is shown in Theorem 1 (see also [12]) that solvability of exte-
rior boundary-value problems on 𝑀 ∖ 𝐵 with boundary data in the class
[𝑓 ] for the inhomogeneous equations 𝐿𝑢 = 𝑔(𝑥) and ∆𝑢 = 𝑔(𝑥) implies
solvability of boundary-value problems for these equations on 𝑀 with
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the same asymptotic boundary data. Further, from Theorem 3 solvabil-
ity of boundary-value problems on 𝑀 for the inhomogeneous equation
𝐿1𝑢 = 𝑔(𝑥) with boundary data in the class [𝑓 ] follows. Now it suffices to
show that under the conditions of Theorem 4 the manifold 𝑀 is 𝐿1-strict,
i. e., there is an 𝐿1-potential 𝑣𝐿1 of the compact set 𝐵, such that 𝑣𝐿1 ∈ [0]
(see Theorem 2 or [12]).

Consider some sequence of functions 𝑣𝑘 that are solutions of homoge-
neous Schrödinger equation 𝐿1𝑣𝑘 = 0 in 𝐵𝑘∖𝐵 and satisfy the conditions

𝑣𝑘|𝜕𝐵 = 1, 𝑣𝑘|𝜕𝐵𝑘
= 0.

As above, the sequence 𝑣𝑘 is uniformly bounded and monotone on 𝑀∖𝐵,
hence, it converges on 𝑀∖𝐵 to the function 𝑣𝐿1 = lim

𝑘→∞
𝑣𝑘, such that

𝐿1𝑣𝐿1 = 0, 0 < 𝑣𝐿1 6 1, 𝑣𝐿1|𝜕𝐵 = 1.

By definition, the function 𝑣𝐿1 is an 𝐿1-potential of the compact set 𝐵
relatively to the manifold 𝑀 . Let us show that 𝑣𝐿1 ∈ [0].

By the condition of the theorem, the exterior boundary-value problems
for the Poisson equation ∆𝑢 = 𝑔(𝑥) are solvable on 𝑀∖𝐵 with boundary
data in the class [𝑓 ]; that is, there exist solutions 𝑢1 and 𝑢2 of this equation,
such that 𝑢1|𝜕𝐵 = 1, 𝑢2|𝜕𝐵 = 2, and 𝑢1 ∈ [𝑓 ], 𝑢2 ∈ [𝑓 ]. Consider the
difference 𝑢 = 𝑢2 − 𝑢1. It is clear that the function 𝑢 is harmonic on
𝑀∖𝐵, satisfies the boundary conditions 𝑢|𝜕𝐵 = 1 and 𝑢 ∈ [0], as well as
the inequality 0 < 𝑢 6 1 due to the maximum principle.

From the definition of the function 𝑣𝑘 in 𝐵𝑘∖𝐵, we have

∆𝑣𝑘 = 𝐿1𝑣𝑘 + 𝑐1𝑣𝑘 = 𝑐1(𝑥)𝑣𝑘 > 0,

i. e., for each 𝑘 the function 𝑣𝑘 is subharmonic. Moreover, 𝑣𝑘 satisfies the
relations 𝑣𝑘|𝜕𝐵 = 𝑢|𝜕𝐵 and 𝑣𝑘|𝜕𝐵𝑘

6 𝑢|𝜕𝐵𝑘
. Then, applying the comparison

principle for harmonic functions in 𝐵𝑘∖𝐵, we obtain 0 6 𝑣𝑘 6 𝑢 for any 𝑘.
Passing to the limit as 𝑘 → ∞, we get 0 < 𝑣𝐿1 6 𝑢. Taking into account
that 𝑢 ∈ [0], we conclude that 𝑣𝐿1 ∈ [0], i. e, 𝑀 is an 𝐿1-strict manifold.

Thus, from solvability of the boundary-value problem on the manifold
𝑀 for the equation 𝐿1𝑢 = 𝑔(𝑥) with boundary data in the class [𝑓 ] and
the 𝐿1-strictness of the manifold, we obtain the solvability on 𝑀 ∖ 𝐵 of
the exterior boundary-value problem for the equation 𝐿1𝑢 = 𝑔(𝑥) with
boundary data in the class [𝑓 ] due to Theorem 2 (see also [12]). The
theorem is proved. �
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