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SMIRNOV’S INEQUALITY FOR POLYNOMIALS HAVING
ZEROS OUTSIDE THE UNIT DISC

Abstract. In 1887, the famous chemist D. I. Mendeleev posed the
following problem: to estimate |𝑓 ′(𝑥)| for a real polynomial 𝑓(𝑥),
satisfying the condition |𝑓(𝑥)| 6 𝑀 on [𝑎, 𝑏]. This question arose
when Mendeleev was studying aqueous solutions. The problem was
solved by the famous mathematician A. A. Markov, and over the
following 100 years was repeatedly modified and extended. For
complex polynomials, important inequalities were obtained by S.
N. Bernstein and V. I. Smirnov. Many other well-known mathe-
maticians, such as Ch. Pommerenke, G. Szegö, Q. I. Rahman,
G. Schmeisser, worked in this subject. Almost all results in this
direction significantly use the following condition: all zeros of a
majorizing polynomial belong to the closed unit disc. In this pa-
per, we remove this condition. Here a majorizing polynomial may
have zeros outside the unit disc. This allows to extend the inequali-
ties of Bernstein and Smirnov.
Key words: polynomial, the Smirnov inequality, the Bernstein
inequality
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1. Introduction. The subject discussed in this article can be traced
back to the problem posed by the famous chemist D. I. Mendeleev in
1887: for a polynomial 𝑓 , deg 𝑓 = 2, with |𝑓(𝑥)| 6 𝑀 for 𝑥 ∈ [𝑎, 𝑏], give
an estimate for |𝑓 ′(𝑥)| on [𝑎, 𝑏] [12, S 86]. Over the following 100 years, the
Mendeleev problem was repeatedly modified and extended. For example,
in the book by V. I. Smirnov and N. A. Lebedev [16, p. 340], this problem
was formulated in a more general form:

Let 𝐵 ⊂ C be a compact set, 𝑓(𝑧) be a polynomial with deg 𝑓 = 𝑛 > 1,
and suppose that |𝑓(𝑧)| 6 𝑀 for all 𝑧 ∈ 𝐵. Give an estimate for |𝑓 ′(𝑧)|
for 𝑧 ∈ 𝐵.
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The original problem posed by Mendeleev [12, S 86] was solved by
A. A. Markov in 1889 for a polynomial 𝑓 with deg 𝑓 = 𝑛.

Theorem A. [9], [10, p. 51–75]. Let 𝑓 be a polynomial with deg 𝑓 = 𝑛
and suppose that |𝑓(𝑥)| 6𝑀 on [−1, 1]. Then, for 𝑥 ∈ [−1, 1]:

|𝑓 ′(𝑥)| 6 𝑛2𝑀. (1)

Equality is attained only for the functions

𝑓(𝑥) = ±𝑀𝑇𝑛 (𝑥)

where 𝑇𝑛(𝑥) = cos(𝑛 arccos𝑥) are the Chebyshev polynomials.
Inequality (1) was refined by S. N. Bernstein in 1912 in the following

way:

Theorem B. [1, p. 25]. Let 𝑓 be a polynomial from Theorem A. Then,
for 𝑥 ∈ [−1, 1]

|𝑓 ′(𝑥)| 6 𝑛𝑀√
1 − 𝑥2

.

Theorem B was of a considerable use for answering the following ques-
tion of the best approximation: is it possible to approximate the function
|𝑥| by polynomials of degree 𝑛 with an error 𝑜(1/𝑛) as 𝑛 → ∞? This
question was posted in 1903 as a competition by the Belgian Academy of
Science on a suggestion by Ch. J. de Vallée-Poussin. S. N. Bernstein gave
the negative answer to this question in [1], which was published by the
Belgian Academy as the prize-winning treatise. For more mathematical
and historical details see, for example, [6, p. 157–161], [17, p. 182–186].

V. A. Markov obtained a result analogous to Theorem A for the 𝑘−th
derivative of a polynomial 𝑓 , 1 6 𝑘 6 𝑛, [11]. Note that Mendeleev and
Markovs dealt only with real polynomials. For more details concerning
this question, we also refer the reader to the historical survey in [7].

In this paper, we consider complex polynomials. Let D denote the unit
disc {𝑧 ∈ C : |𝑧| < 1}. V. I. Smirnov found the following solution to the
Mendeleev problem for complex polynomials with 𝐵 = 𝜕D:

Theorem C. [15], [16, ch.V, § 1, 20, p. 346] Let 𝑓 be a polynomial with
deg 𝑓 = 𝑛 and suppose that |𝑓(𝑧)| 6𝑀 on 𝜕D. Then, for 𝑧 ∈ 𝜕D:

|𝑓 ′(𝑧)| 6𝑀𝑛.
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Equality holds only if 𝑓(𝑧) = 𝑒𝑖𝛾𝑧𝑛, 𝛾 ∈ R.
Similar results have been obtained for some other classes of compact

sets 𝐵 ⊂ C, for example, by Ch. Pommerenke [13] and G. Szegö [18] (see
also [16, pp. 351, 352]). We shall not dwell on these results, since we are
interested in the case 𝐵 = 𝜕D only.

It is convenient to rewrite Theorem C as follows:

Theorem C′. Let 𝑓 be a polynomial with deg 𝑓 = 𝑛 and suppose that
|𝑓(𝑧)| 6 |𝑀𝑧𝑛| on 𝜕D. Then

|𝑓 ′(𝑧)| 6 |(𝑀𝑧𝑛)′|, 𝑧 ∈ 𝜕D.

Equality holds only if 𝑓(𝑧) = 𝑒𝑖𝛾𝑧𝑛, 𝛾 ∈ R.

In 1930, S. N. Bernstein obtained a generalization of Theorem C′,
replacing the polynomial 𝑀𝑧𝑛 with an arbitrary polynomial 𝐹 of degree
𝑛, and obtained the following result:

Theorem D. [2] (see also [3, p. 497], [14, p. 510]) Let 𝑓 and 𝐹 be
polynomials, such that:

1) deg 𝑓 6 deg𝐹 = 𝑛,
2) |𝑓(𝑧)| 6 |𝐹 (𝑧)| on 𝜕D,
3) 𝐹 has all its zeros in D.

Then
|𝑓 ′(𝑧)| 6 |𝐹 ′(𝑧)| for 𝑧 ∈ C ∖ D. (2)

For 𝑧 ∈ C ∖ D, equality holds only for 𝑓 = 𝑒𝑖𝛾𝐹 , 𝛾 ∈ R.

Let 𝑅 > 1; denote by Ω𝑅 the image of the disc {𝑧 ∈ C : |𝑧| 6 𝑅}
under the mapping 𝜓(𝑧) = 𝑡(1 + 𝑡)−1. For a polynomial 𝑓 of degree at
most 𝑛 put

𝑆𝛼[𝑓 ](𝑧) = 𝑧𝑓 ′(𝑧) − 𝑛𝛼𝑓(𝑧),

where 𝛼 is a complex constant.
V. I. Smirnov gave the following generalization of Theorem D:

Theorem E. [16, ch. V, § 1, p. 356] Let 𝑅 > 1, 𝑓 and 𝐹 be polynomials
from Theorem D. Then, for |𝑧| = 𝑅,

|𝑆𝛼[𝑓 ](𝑧)| 6 |𝑆𝛼[𝐹 ](𝑧)| (3)

for all 𝛼 ∈ Ω𝑅.



74 E. G. Kompaneets, V. V. Starkov

For 𝛼 ∈ int Ω𝑅 and 𝑧 ∈ C ∖D, equality in (3) holds only for 𝑓 = 𝑒𝑖𝛾𝐹 ,
𝛾 ∈ R.

From the maximum modulus principle it follows that it is possible
to replace condition 2) in Theorem D and Theorem E by the equivalent
condition: |𝑓(𝑧)| 6 |𝐹 (𝑧)| for 𝑧 ∈ C ∖ D.

Putting 𝛼 = 0 in Theorem E, we obtain Theorem D. From Theorem D
and Theorem E, we see that the differentiation operator and the Smirnov
differential operator 𝑆𝛼 preserve inequality between polynomials. Saying
this, we mean the following: the inequality |𝑓(𝑧)| 6 |𝐹 (𝑧)| on 𝜕D remains
valid if we apply one of these operators to polynomials 𝑓 and 𝐹 , with
the conditions of Theorem D satisfied. Such type of operators was widely
investigated (see, for example, [14], [4], [5], [19] and references therein).
Almost all results concerning such operators significantly use condition 3)
from Theorem D. We waived this condition allowing the polynomial 𝐹 to
have one zero outside the unit disc (see [8]): we proved the following

Theorem F. [8] Let 𝑅 > 1. Let 𝑓 and 𝐹 be polynomials, such that
1) deg 𝑓 6 deg𝐹 = 𝑛,
2) |𝑓(𝑧)| 6 |𝐹 (𝑧)| for 𝑧 ∈ C ∖ D,
3) 𝑧0 is a unique zero of 𝐹 lying in C∖D, 𝑘 is order of 𝑧0, 1 6 𝑘 6 𝑛−1.

Then
|𝑆𝛼[𝑓 ](𝑧)| 6 |𝑆𝛼[𝐹 ](𝑧)| (4)

for |𝑧| = 𝑅 and for 𝛼 ∈ 𝐷𝑅, where 𝐷𝑅 is one of the sets

a) complement to the disc{︂
𝛼∈C :

⃒⃒⃒
𝛼−𝑛− 𝑘

𝑛

𝑅2

𝑅2 − 1
−𝑅

2

𝑛

𝑘

𝑅2 − |𝑧0|2
⃒⃒⃒
<
𝑛− 𝑘

𝑛

𝑅

𝑅2 − 1
+
𝑅

𝑛

𝑘|𝑧0|
|𝑅2 − |𝑧0|2|

}︂
if 𝑅 > 1 and |𝑧0| ≠ 𝑅;

b) complement to the strip{︂
𝛼 ∈ C :

⃒⃒⃒⃒
Re𝛼− 𝑛− 𝑘

𝑛

𝑅2

𝑅2 − 1
− 𝑘

2𝑛

⃒⃒⃒⃒
<
𝑛− 𝑘

𝑛

𝑅

𝑅2 − 1

}︂
if 𝑅 > 1, |𝑧0| = 𝑅;

c) the half-plane{︁
𝛼 ∈ C : Re𝛼 6

𝑘

𝑛

(︁ 1

1 − |𝑧0|
+

1

2

(︁
1 − 𝑘

𝑛

)︁)︁}︁
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if 𝑅 = 1.
For 𝑧 = 𝑧0, 𝑘 > 1, equality in (4) holds for every 𝛼 ∈ C and every 𝑓

and 𝐹 satisfying conditions of Theorem F.
For the case 𝑧 = 𝑧0, 𝑘 = 1, 𝛼 ∈ C and the case 𝑧 ̸= 𝑧0, 𝑧 ∈ C ∖ D,

𝛼 ∈ int𝐷𝑅, in (4) equality holds only if 𝑓 = 𝑒𝑖𝛾𝐹 , 𝛾 ∈ R.
In this paper, we consider the case when the polynomial 𝐹 has an

arbitrary number of zeros outside the closed unit disc.

2. Refinement of the Smirnov inequality.

Theorem 1. Suppose that 𝑅 > 1. Let 𝑓 and 𝐹 be polynomials, such
that

1) deg 𝑓 6 deg𝐹 = 𝑛,
2) |𝑓(𝑧)| 6 |𝐹 (𝑧)| for 𝑧 ∈ C ∖ D,
3) 𝑧1, . . . , 𝑧𝑝 are all the zeros of 𝐹 lying in C ∖ D; 𝑘1, . . . , 𝑘𝑝 are their

orders, correspondingly, 1 6 𝑘 = 𝑘1 + · · · + 𝑘𝑝 6 𝑛− 1.

Then
|𝑆𝛼[𝑓 ](𝑧)| 6 |𝑆𝛼[𝐹 ](𝑧)| (5)

for |𝑧| = 𝑅 and for 𝛼 ∈ 𝐷(𝑅, 𝑝, 𝑛), where 𝐷(𝑅, 𝑝, 𝑛) is one of the sets:

a) complement to the disc

{𝛼 ∈ C : |𝛼− 𝑐𝑝| < 𝑟𝑝}

where

𝑐𝑝 =
𝑛− 𝑘

𝑛

𝑅2

𝑅2 − 1
+
𝑅2

𝑛

𝑝∑︁
𝑗=1

𝑘𝑗
𝑅2 − |𝑧𝑗|2

,

𝑟𝑝 =
𝑛− 𝑘

𝑛

𝑅

𝑅2 − 1
+
𝑅

𝑛

𝑝∑︁
𝑗=1

𝑘𝑗|𝑧𝑗|
|𝑅2 − |𝑧𝑗|2|

,

if 𝑅 > 1 and all the zeros 𝑧1, . . . , 𝑧𝑝 do not belong to the circle |𝑧| = 𝑅;

b) complement to the strip{︂
𝛼 ∈ C : |Re𝛼− 𝑠𝑝| <

𝑛− 𝑘

𝑛

𝑅

𝑅2 − 1

}︂
,

where
𝑠𝑝 =

𝑛− 𝑘

𝑛

𝑅2

𝑅2 − 1
+

𝑘

2𝑛
,
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if 𝑅 > 1 and |𝑧1| = · · · = |𝑧𝑝| = 𝑅;

c) complement to the strip

{𝛼 ∈ C : |Re𝛼− 𝑥𝑞, 𝑝| < 𝜌𝑞, 𝑝} ,

where

𝑥𝑞, 𝑝 =
𝑛− 𝑘

𝑛

𝑅2

𝑅2 − 1
+
𝑅2

𝑛

𝑞∑︁
𝑗=1

𝑘𝑗
𝑅2 − |𝑧𝑗|2

+
1

2𝑛

𝑝∑︁
𝑗=𝑞+1

𝑘𝑗,

𝜌𝑞, 𝑝 =
𝑛− 𝑘

𝑛

𝑅

𝑅2 − 1
+
𝑅

𝑛

𝑞∑︁
𝑗=1

𝑘𝑗|𝑧𝑗|
|𝑅2 − |𝑧𝑗|2|

,

if 𝑅>1, |𝑧1|, . . . ,|𝑧𝑞| ̸=𝑅; |𝑧𝑞+1|= . . .= |𝑧𝑝|=𝑅; 𝑞∈N, 16𝑘1+. . .+𝑘𝑞6𝑛−2;

d) the half-plane{︂
𝛼 ∈ C : Re𝛼 6

1

𝑛

𝑝∑︁
𝑗=1

𝑘𝑗
1 − |𝑧𝑗|

+
1

2

(︂
1 − 𝑘

𝑛

)︂}︂
if 𝑅 = 1.

For 𝑧 = 𝑧𝑗, 𝑗 = 1, . . . , 𝑝, 𝑘𝑗 > 1 in (5), equality holds for every 𝛼 ∈ C
and all pairs 𝑓 and 𝐹 satisfying the theorem conditions.

If 𝑧 = 𝑧𝑗, 𝑗 = 1, . . . , 𝑝, 𝑘𝑗 = 1, 𝛼 ∈ C or 𝑧 ∈ C∖D, 𝑧 ̸= 𝑧𝑗, 𝑗 = 1, . . . , 𝑝,
𝛼 ∈ int𝐷(𝑅, 𝑝, 𝑛), then equality in (5) takes place only if 𝑓 = 𝑒𝑖𝛾𝐹 , 𝛾 ∈ R.

Remark. From the proof of Theorem 1, we see that item a) does not
describe the whole set of values of 𝛼, for which (5) is true. The set
𝐷(𝑅, 𝑝, 𝑛) from item a) can be extended, but this extension requires much
more complicated description.

Proof. By condition 3) of Theorem 1, we see that the polynomial 𝐹 can
be written in the form

𝐹 (𝑧) = (𝑧 − 𝑧1)
𝑘1 . . . (𝑧 − 𝑧𝑝)

𝑘𝑝𝐹1(𝑧); (6)

here 𝐹1(𝑧) ̸= 0 in C ∖ D. By condition 2), the polynomial 𝑓 has the
representation

𝑓(𝑧) = (𝑧 − 𝑧1)
𝑘1 . . . (𝑧 − 𝑧𝑝)

𝑘𝑝𝑓1(𝑧). (7)
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We prove items a), b), and d) of Theorem 1 by mathematical induction.
For 𝑝 = 1, we obtain the statement of Theorem F.

Suppose that the theorem statement is true for 𝑝 − 1, 1 6 𝑘1 + . . . +
+𝑘𝑝−16𝑛−2. Prove that Theorem 1 is valid for 𝑝, 26𝑘=𝑘1+. . .+𝑘𝑝6𝑛−1.

Denote (see (6) and (7))

𝐹2(𝑧) = (𝑧 − 𝑧1)
𝑘1 . . . (𝑧 − 𝑧𝑝−1)

𝑘𝑝−1𝐹1(𝑧),

𝑓2(𝑧) = (𝑧 − 𝑧1)
𝑘1 . . . (𝑧 − 𝑧𝑝−1)

𝑘𝑝−1𝑓1(𝑧).

Then 𝐹 (𝑧) = (𝑧 − 𝑧𝑝)
𝑘𝑝𝐹2(𝑧), 𝑓(𝑧) = (𝑧 − 𝑧𝑝)

𝑘𝑝𝑓2(𝑧), and, by item 2) of
Theorem 1, |𝑓2(𝑧)| 6 |𝐹2(𝑧)|, |𝑧| > 1.

Let us find the set of constants 𝛼, such that (5) takes place for all 𝑧
on the circle |𝑧| = 𝑅. Write (5) as

|𝑧𝑓 ′(𝑧) − 𝛼𝑛𝑓(𝑧)| 6 |𝑧𝐹 ′(𝑧) − 𝛼𝑛𝐹 (𝑧)|, |𝑧| = 𝑅,

or ⃒⃒
𝑧
(︀
𝑘𝑝(𝑧 − 𝑧𝑝)

𝑘𝑝−1𝑓2(𝑧) + (𝑧 − 𝑧𝑝)
𝑘𝑝𝑓 ′

2(𝑧)
)︀
− 𝛼𝑛(𝑧 − 𝑧𝑝)

𝑘𝑝𝑓2(𝑧)
⃒⃒
6

6
⃒⃒
𝑧
(︀
𝑘𝑝(𝑧 − 𝑧𝑝)

𝑘𝑝−1𝐹2(𝑧) + (𝑧 − 𝑧𝑝)
𝑘𝑝𝐹 ′

2(𝑧)
)︀
− 𝛼𝑛(𝑧 − 𝑧𝑝)

𝑘𝑝𝐹2(𝑧)
⃒⃒
. (8)

For 𝑧 = 𝑧𝑝, (8) takes place for all 𝛼 ∈ C. If 𝑧 = 𝑧𝑝 and 𝑘𝑝 > 1, then
equality in (8) holds for every 𝑓2 and 𝐹2. Therefore, equality in (5) takes
place for every pair of the polynomials 𝑓 and 𝐹 satisfying the conditions
of the theorem.

If 𝑧 = 𝑧𝑝 and 𝑘𝑝 = 1, then, by (8), equality in (5) holds only if 𝑓(𝑧) =
= 𝑒𝑖𝛾𝐹 (𝑧), 𝛾 ∈ R.

Obviously, we can change the index 𝑝 with any 𝑗, 𝑗 = 1, . . . , 𝑝 − 1,
arguing as above about equality in (5).

Assuming, further, 𝑧 ̸= 𝑧𝑝, we rewrite (8) in the form⃒⃒⃒
𝑧𝑓 ′

2(𝑧)−
(︁
𝛼𝑛−𝑘𝑝

𝑧

𝑧 − 𝑧𝑝

)︁
𝑓2(𝑧)

⃒⃒⃒
6
⃒⃒⃒
𝑧𝐹 ′

2(𝑧)−
(︁
𝛼𝑛−𝑘𝑝

𝑧

𝑧 − 𝑧𝑝

)︁
𝐹2(𝑧)

⃒⃒⃒
, |𝑧| = 𝑅.

(9)
By the induction assumption, Theorem 1 is true for the polynomials

𝑓2 and 𝐹2 with 𝑛 replaced by 𝑛− 𝑘𝑝. Hence, we can rewrite (9) as

|𝑆𝛽[𝑓2](𝑧)| 6 |𝑆𝛽[𝐹2](𝑧)|, |𝑧| = 𝑅, (10)

where
𝛽 =

1

𝑛− 𝑘𝑝

(︂
𝛼𝑛− 𝑘𝑝

𝑧

𝑧 − 𝑧𝑝

)︂
∈ 𝐷(𝑅, 𝑝− 1, 𝑛− 𝑘𝑝). (11)
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Then
𝛼 =

(︁
1 − 𝑘𝑝

𝑛

)︁
𝛽 +

𝑘𝑝
𝑛

𝑧

𝑧 − 𝑧𝑝
, |𝑧| = 𝑅, (12)

and for a fixed 𝑧, |𝑧| = 𝑅, the set 𝐺𝑧 of values of 𝛼 is the set(︁
1− 𝑘𝑝

𝑛

)︁
𝐷(𝑅, 𝑝−1, 𝑛−𝑘𝑝) shifted by

𝑘𝑝
𝑛

𝑧

𝑧 − 𝑧𝑝
. Therefore, the set of the

values 𝛼, such that (5) is true, is the set
⋂︀

|𝑧|=𝑅

𝐺𝑧.

First, we consider the case R > 1.
a) Let |zj| ≠ R for all j = 1, . . . ,p. By the inductive assumption,

inequality (10) is true for 𝛽 that belong to 𝐷(𝑅, 𝑝− 1, 𝑛− 𝑘𝑝). This set is
the complement to the open disc

𝐶 = {𝛽 ∈ C : |𝛽 − 𝑐𝑝−1| < 𝑟𝑝−1},

where

𝑐𝑝−1 =
(𝑛− 𝑘𝑝) − 𝑘1 − · · · − 𝑘𝑝−1

𝑛− 𝑘𝑝

𝑅2

𝑅2 − 1
+

𝑅2

𝑛− 𝑘𝑝

𝑝−1∑︁
𝑗=1

𝑘𝑗
𝑅2 − |𝑧𝑗|2

,

𝑟𝑝−1 =
(𝑛− 𝑘𝑝) − 𝑘1 − · · · − 𝑘𝑝−1

𝑛− 𝑘𝑝

𝑅

𝑅2 − 1
+

𝑅

𝑛− 𝑘𝑝

𝑝−1∑︁
𝑗=1

𝑘𝑗|𝑧𝑗|
|𝑅2 − |𝑧𝑗|2|

.

The function
𝑧

𝑧 − 𝑧𝑝
maps |𝑧| = 𝑅 to the circle with center

𝑅2

𝑅2 − |𝑧𝑝|2

and radius
𝑅|𝑧𝑝|

|𝑅2 − |𝑧𝑝|2|
. Hence, the set of all centers of the discs

𝐶𝑧 =
(︁

1 − 𝑘𝑝
𝑛

)︁
𝐶 +

𝑘𝑝
𝑛

𝑧

𝑧 − 𝑧𝑝
, |𝑧| = 𝑅,

is the circle with center(︂
1 − 𝑘𝑝

𝑛

)︂
𝑐𝑝−1 +

𝑘𝑝
𝑛

𝑅2

𝑅2 − |𝑧𝑝|2
=

=
𝑛− 𝑘𝑝
𝑛

(︃
𝑛− 𝑘

𝑛− 𝑘𝑝

𝑅2

𝑅2 − 1
+

𝑅2

𝑛− 𝑘𝑝

𝑝−1∑︁
𝑗=1

𝑘𝑗
𝑅2 − |𝑧𝑗|2

)︃
+
𝑘𝑝
𝑛

𝑅2

𝑅2 − |𝑧𝑝|2
=

=
𝑛− 𝑘

𝑛

𝑅2

𝑅2 − 1
+
𝑅2

𝑛

𝑝∑︁
𝑗=1

𝑘𝑗
𝑅2 − |𝑧𝑗|2

= 𝑐𝑝
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and radius
𝑘𝑝
𝑛

𝑅|𝑧𝑝|
|𝑅2 − |𝑧𝑝|2|

. Note that

⋂︁
|𝑧|=𝑅

𝐺𝑧 =
⋂︁

|𝑧|=𝑅

(C ∖ 𝐶𝑧)

contains the complement to the disc

{𝛼 ∈ C : |𝛼− 𝑐𝑝| < 𝐴},

where
𝐴 =

𝑘𝑝
𝑛

𝑅|𝑧𝑝|
|𝑅2 − |𝑧𝑝|2|

+
(︁

1 − 𝑘𝑝
𝑛

)︁
𝑟𝑝−1 =

=
𝑘𝑝
𝑛

𝑅|𝑧𝑝|
|𝑅2 − |𝑧𝑝|2|

+
𝑛− 𝑘𝑝
𝑛

(︃
𝑛− 𝑘

𝑛− 𝑘𝑝

𝑅

𝑅2 − 1
+

𝑅

𝑛− 𝑘𝑝

𝑝−1∑︁
𝑗=1

𝑘𝑗|𝑧𝑗|
|𝑅2 − |𝑧𝑗|2|

)︃
=

=
𝑛− 𝑘

𝑛

𝑅

𝑅2 − 1
+
𝑅

𝑛

𝑝∑︁
𝑗=1

𝑘𝑗|𝑧𝑗|
|𝑅2 − |𝑧𝑗|2|

= 𝑟𝑝.

Hence, 𝐷(𝑅, 𝑝, 𝑛) ⊂
⋂︀

|𝑧|=𝑅

𝐺𝑧 and a) is proved.

b) Let |zj| = R for all j = 1, . . . ,p. By the induction assumption, 𝛽
belongs to the set

𝐷(𝑅, 𝑝−1, 𝑛−𝑘𝑝)=
{︁
𝛽∈C : |Re 𝛽−𝑠𝑝−1|>

(𝑛−𝑘𝑝)−𝑘1 −. . .−𝑘𝑝−1

𝑛− 𝑘𝑝

𝑅

𝑅2 − 1

}︁
,

where

𝑠𝑝−1 =
(𝑛− 𝑘𝑝) − 𝑘1 − · · · − 𝑘𝑝−1

𝑛− 𝑘𝑝

𝑅2

𝑅2 − 1
+
𝑘1 + · · · + 𝑘𝑝−1

2(𝑛− 𝑘𝑝)
.

The function
𝑧

𝑧 − 𝑧𝑝
maps the circle |𝑧|=𝑅 to the straight line Re 𝑧=

1

2
.

Therefore, in this case we have

𝐷(𝑅, 𝑝, 𝑛) =
⋂︁

|𝑧|=𝑅

𝐺𝑧 =
(︁

1 − 𝑘𝑝
𝑛

)︁
𝐷(𝑅, 𝑝− 1, 𝑛− 𝑘𝑝) +

𝑘𝑝
2𝑛
.

This implies that 𝐷(𝑅, 𝑝, 𝑛) = {𝛼 ∈ C : |Re𝛼−𝐵| > 𝐷}, where

𝐵 =
(︁

1 − 𝑘𝑝
𝑛

)︁
𝑠𝑝−1 +

𝑘𝑝
2𝑛

=
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=
𝑛−𝑘𝑝
𝑛

(︂
𝑛− 𝑘

𝑛− 𝑘𝑝

𝑅2

𝑅2 − 1
+
𝑘1 +. . .+ 𝑘𝑝−1

2(𝑛− 𝑘𝑝)

)︂
+
𝑘𝑝
2𝑛

=
𝑛− 𝑘

𝑛

𝑅2

𝑅2 − 1
+
𝑘

2𝑛
= 𝑠𝑝

and
𝐷 =

(︁
1 − 𝑘𝑝

𝑛

)︁ 𝑛− 𝑘

𝑛− 𝑘𝑝

𝑅

𝑅2 − 1
=
𝑛− 𝑘

𝑛

𝑅

𝑅2 − 1
.

d) Consider the case R = 1. By the induction assumption, 𝛽 belongs
to the half-plane

𝐷(𝑅, 𝑝− 1, 𝑛− 𝑘𝑝) =

=

{︂
𝛽 ∈ C : Re 𝛽6

1

𝑛− 𝑘𝑝

𝑝−1∑︁
𝑗=1

𝑘𝑗
1 − |𝑧𝑗|

+
1

2

(︂
1 − 𝑘1 + · · · + 𝑘𝑝−1

𝑛− 𝑘𝑝

)︂}︂
.

Since the function
𝑧

𝑧 − 𝑧𝑝
maps 𝜕D to the circle with diameter[︁ 1

1 − |𝑧𝑝|
,

1

1 + |𝑧𝑝|

]︁
, we learn that the parameter 𝛼 (see (12)) belongs to

the set
𝐷(1, 𝑝, 𝑛) =

⋂︁
|𝑧|=1

𝐺𝑧,

where
𝐺𝑧 =

(︁
1 − 𝑘𝑝

𝑛

)︁
𝐷(1, 𝑝− 1, 𝑛− 𝑘𝑝) +

𝑘𝑝
𝑛

𝑧

𝑧 − 𝑧𝑝
.

This intersection is the set 𝐷(1, 𝑝, 𝑛) = {𝛼 ∈ C : Re𝛼 6 𝐸}, where

𝐸=
(︁

1−𝑘𝑝
𝑛

)︁[︂ 1

𝑛− 𝑘𝑝

𝑝−1∑︁
𝑗=1

𝑘𝑗
1 − |𝑧𝑗|

+
1

2

(︂
1 − 𝑘1 + · · · + 𝑘𝑝−1

𝑛− 𝑘𝑝

)︂]︂
+
𝑘𝑝
𝑛

1

1−|𝑧𝑝|
=

=
1

𝑛

𝑝∑︁
𝑗=1

𝑘𝑗
1 − |𝑧𝑗|

+
1

2

(︁
1 − 𝑘

𝑛

)︁
.

Let us consider separately the case c) when R > 1, z1, . . . , zq do not
lie on the circle |z|=R, but |zq+1| = . . .= |zp|=R, 16𝑘1+. . .+𝑘𝑞6𝑛−2,
𝑞 ∈ N.

Apply the proved item a) of Theorem 1 to the polynomials

̃︀𝐹𝑞(𝑧) = (𝑧−𝑧1)𝑘1 . . . (𝑧−𝑧𝑞)𝑘𝑞𝐹1(𝑧), ̃︀𝑓𝑞(𝑧) = (𝑧−𝑧1)𝑘1 . . . (𝑧−𝑧𝑞)𝑘𝑞𝑓1(𝑧),
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where 𝑓1 and 𝐹1 are the polynomials from representations (6) and (7). We
obtain

|𝑆𝛼𝑞 [ ̃︀𝑓𝑞](𝑧)| 6 |𝑆𝛼𝑞 [ ̃︀𝐹𝑞](𝑧)| (13)

for |𝑧| = 𝑅 and 𝛼𝑞 from the set 𝐷(𝑅, 𝑞, 𝑛 − 𝑘𝑞+1 − · · · − 𝑘𝑝). This set
is the complement to the disc {𝛼𝑞 ∈ C : |𝛼𝑞 − 𝑐𝑞| < 𝑟𝑞}. Consider the
polynomials̃︀𝐹𝑞+1(𝑧) = (𝑧 − 𝑧𝑞+1)

𝑘𝑞+1 ̃︀𝐹𝑞(𝑧), ̃︀𝑓𝑞+1(𝑧) = (𝑧 − 𝑧𝑞+1)
𝑘𝑞+1 ̃︀𝑓𝑞(𝑧).

Similarly to how we previously rewrote inequality (5) in the form (10), we
rewrite the inequality

|𝑆𝛼𝑞+1 [
̃︀𝑓𝑞+1](𝑧)| 6 |𝑆𝛼𝑞+1 [ ̃︀𝐹𝑞+1](𝑧)|, |𝑧| = 𝑅,

in form (13), changing 𝑛 to 𝑛 − 𝑘𝑞+2 − · · · − 𝑘𝑝. Similarly to (12), the
parameters 𝛼𝑞+1 and 𝛼𝑞 are connected by the following relationship:

𝛼𝑞+1 =

(︂
1 − 𝑘𝑞+1

𝑛− 𝑘𝑞+2 − · · · − 𝑘𝑝

)︂
𝛼𝑞 +

𝑘𝑞+1

𝑛− 𝑘𝑞+2 − · · · − 𝑘𝑝

𝑧

𝑧 − 𝑧𝑞+1

.

Since the function
𝑧

𝑧 − 𝑧𝑞+1

maps the circle |𝑧| = 𝑅 to the straight line

Re 𝑧 =
1

2
and 𝛼𝑞 ∈ 𝐷(𝑅, 𝑞, 𝑛−𝑘𝑞+1−· · ·−𝑘𝑝), we learn that 𝛼𝑞+1 belongs

to the set
{𝛼𝑞+1 ∈ C : |Re𝛼𝑞+1 −𝐻| > 𝐼},

where

𝐻 =

(︂
1 − 𝑘𝑞+1

𝑛− 𝑘𝑞+2 − · · · − 𝑘𝑝

)︂
𝑐𝑞 +

𝑘𝑞+1

𝑛− 𝑘𝑞+2 − · · · − 𝑘𝑝

1

2
=

=
𝑛− 𝑘𝑞+1 − · · · − 𝑘𝑝
𝑛− 𝑘𝑞+2 − · · · − 𝑘𝑝

(︂
(𝑛− 𝑘𝑞+1 − · · · − 𝑘𝑝) − 𝑘1 − · · · − 𝑘𝑞

𝑛− 𝑘𝑞+1 − · · · − 𝑘𝑝

𝑅2

𝑅2 − 1
+

+
𝑅2

𝑛− 𝑘𝑞+1 − · · · − 𝑘𝑝

𝑞∑︁
𝑗=1

𝑘𝑗
𝑅2 − |𝑧𝑗|2

)︂
+

𝑘𝑞+1

𝑛− 𝑘𝑞+2 − · · · − 𝑘𝑝

1

2
=

=
𝑛− 𝑘

𝑛− 𝑘𝑞+2 − · · · − 𝑘𝑝

𝑅2

𝑅2 − 1
+

+
𝑅2

𝑛− 𝑘𝑞+2 − · · · − 𝑘𝑝

𝑞∑︁
𝑗=1

𝑘𝑗
𝑅2 − |𝑧𝑗|2

+
𝑘𝑞+1

𝑛− 𝑘𝑞+2 − · · · − 𝑘𝑝

1

2
= 𝑥𝑞, 𝑞+1
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and

𝐼 =

(︂
1 − 𝑘𝑞+1

𝑛− 𝑘𝑞+2 − · · · − 𝑘𝑝

)︂
𝑟𝑞 =

=
𝑛− 𝑘𝑞+1 − · · · − 𝑘𝑝
𝑛− 𝑘𝑞+2 − · · · − 𝑘𝑝

(︂
(𝑛− 𝑘𝑞+1 − · · · − 𝑘𝑝) − 𝑘1 − · · · − 𝑘𝑞

𝑛− 𝑘𝑞+1 − · · · − 𝑘𝑝

𝑅

𝑅2 − 1
+

+
𝑅

𝑛− 𝑘𝑞+1 − · · · − 𝑘𝑝

𝑞∑︁
𝑗=1

𝑘𝑗|𝑧𝑗|
|𝑅2 − |𝑧𝑗|2|

)︂
=

=
𝑛− 𝑘

𝑛− 𝑘𝑞+2 −. . .− 𝑘𝑝

𝑅

𝑅2 − 1
+

𝑅

𝑛− 𝑘𝑞+2 −. . .− 𝑘𝑝

𝑞∑︁
𝑗=1

𝑘𝑗|𝑧𝑗|
|𝑅2 − |𝑧𝑗|2|

=𝜌𝑞, 𝑞+1

in accordance with the definition of 𝜌𝑞, 𝑗 from the statement of Theorem 1.
Therefore, we have proved item c) of Theorem 1 in the case when only
one zero belongs to the circle |𝑧| = 𝑅, i. e., 𝑝 = 𝑞 + 1.

Further, we prove c) by mathematical induction. Suppose that c) takes
place for the polynomials

̃︀𝐹𝑝−1(𝑧) = (𝑧 − 𝑧𝑝−1)
𝑘𝑝−1 . . . (𝑧 − 𝑧1)

𝑘1𝐹1(𝑧),

̃︀𝑓𝑝−1(𝑧) = (𝑧 − 𝑧𝑝−1)
𝑘𝑝−1 . . . (𝑧 − 𝑧1)

𝑘1𝑓1(𝑧).

Prove that c) is true for the polynomials

𝐹 (𝑧) = (𝑧 − 𝑧𝑝)
𝑘𝑝 ̃︀𝐹𝑝−1(𝑧), 𝑓(𝑧) = (𝑧 − 𝑧𝑝)

𝑘𝑝 ̃︀𝑓𝑝−1(𝑧).

As above, we rewrite (5) in the form

|𝑆𝛼𝑝−1 [
̃︀𝑓𝑝−1](𝑧)| 6 |𝑆𝛼𝑝−1 [ ̃︀𝐹𝑝−1](𝑧)|, |𝑧| = 𝑅,

with

𝛼 =

(︂
1 − 𝑘𝑝

𝑛

)︂
𝛼𝑝−1 +

𝑘𝑝
𝑛

𝑧

𝑧 − 𝑧𝑝
, |𝑧| = 𝑅,

see (8)–(12) for details.

The function
𝑧

𝑧 − 𝑧𝑝
maps the circle |𝑧|=𝑅 to the straight line Re 𝑧=

1

2
.

By the assumption,

𝛼𝑝−1 ∈ 𝐷(𝑅, 𝑝− 1, 𝑛− 𝑘𝑝) = {𝛼𝑝−1 ∈ C : |Re𝛼𝑝−1 − 𝑥𝑞, 𝑝−1| > 𝜌𝑞, 𝑝−1}.
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Therefore, 𝛼 belongs to the set(︁
1 − 𝑘𝑝

𝑛

)︁
𝐷(𝑅, 𝑝− 1, 𝑛− 𝑘𝑝) +

𝑘𝑝
2𝑛

that is the set {𝛼 ∈ C : |Re𝛼− 𝐽 | > 𝐾}, where

𝐽 =

(︂
1 − 𝑘𝑝

𝑛

)︂
𝑥𝑞, 𝑝−1 +

𝑘𝑝
2𝑛

=

=
𝑛− 𝑘𝑝
𝑛

(︂
(𝑛− 𝑘𝑝) − 𝑘1 − · · · − 𝑘𝑝−1

𝑛− 𝑘𝑝

𝑅2

𝑅2 − 1
+

+
𝑅2

𝑛− 𝑘𝑝

𝑞∑︁
𝑗=1

𝑘𝑗
𝑅2 − |𝑧𝑗|2

+
1

2(𝑛− 𝑘𝑝)

𝑝−1∑︁
𝑗=𝑞+1

𝑘𝑗

)︂
+
𝑘𝑝
2𝑛

=

=
𝑛− 𝑘

𝑛

𝑅2

𝑅2 − 1
+
𝑅2

𝑛

𝑞∑︁
𝑗=1

𝑘𝑗
𝑅2 − |𝑧𝑗|2

+
1

2𝑛

𝑝∑︁
𝑗=𝑞+1

𝑘𝑗 = 𝑥𝑞, 𝑝

and
𝐾 =

(︁
1 − 𝑘𝑝

𝑛

)︁
𝜌𝑞, 𝑝−1 =

=
𝑛− 𝑘𝑝
𝑛

(︂
(𝑛− 𝑘𝑝) − 𝑘1 − · · · − 𝑘𝑝−1

𝑛− 𝑘𝑝

𝑅

𝑅2 − 1

𝑅

𝑛− 𝑘𝑝

𝑞∑︁
𝑗=1

𝑘𝑗|𝑧𝑗|
|𝑅2 − |𝑧𝑗|2|

)︂
=

=
𝑛− 𝑘

𝑛

𝑅

𝑅2 − 1
+
𝑅

𝑛

𝑞∑︁
𝑗=1

𝑘𝑗|𝑧𝑗|
|𝑅2 − |𝑧𝑗|2|

= 𝜌𝑞, 𝑝.

To prove Theorem 1, it remains to establish when (5) turns into equal-
ity for 𝑧 ∈ C ∖ D, 𝑧 ̸= 𝑧𝑗, 𝑗 = 1, . . . , 𝑝, 𝛼 ∈ int𝐷(𝑅, 𝑝, 𝑛). For 𝑝 = 1,
see Theorem F. Suppose that the theorem statement is true for 𝑝 − 1,
1 6 𝑘1 + · · · + 𝑘𝑝−1 6 𝑛− 2. For the mentioned 𝑧 and 𝛼 ∈ int𝐷(𝑅, 𝑝, 𝑛),
(5) turns to equality if and only if (10) turns into equality for this 𝑧 and
𝛽 ∈ int𝐷(𝑅, 𝑝 − 1, 𝑛 − 𝑘𝑝). By the assumption, it is possible only in the
case 𝑓2 = 𝑒𝑖𝛾𝐹2, 𝛾 ∈ R. Thus, 𝑓 = 𝑒𝑖𝛾𝐹 . �

3. The Bernstein inequality inside the unit disc. As we have
seen above, the classical Bernstein inequality (Theorem D) can be obtained
from the Smirnov inequality (Theorem E), taking 𝛼 = 0. However, we can
not apply this reasoning to the polynomials with zeros in C ∖ D, because
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the domains 𝐷(𝑅, 𝑝, 𝑛) from Theorem 1 do not always contain the point
𝛼 = 0. Consequently, our first aim is to find a condition to guarantee that
the point 𝛼 = 0 belongs to the domain 𝐷(𝑅, 𝑝, 𝑛).

The case when the polynomial 𝐹 from Theorem 1 has a unique zero
outside D was considered in [8]. The following lemma was proved:

Lemma 1. [8] If the polynomial 𝐹 from Theorem 1 has a unique zero
𝑧0 of order 𝑘 in C ∖ D, 1 < 𝑅 < |𝑧0|, then the set 𝐷(𝑅, 1, 𝑛) con-
tains the point 𝛼 = 0 if and only if 𝑅 does not belong to the interval(︁(︁

1 − 𝑘

𝑛

)︁
|𝑧0| −

𝑘

𝑛
;
(︁

1 − 𝑘

𝑛

)︁
|𝑧0| +

𝑘

𝑛

)︁
.

Now we consider the case when 𝐹 has an arbitrary number of zeros
outside D.

Lemma 2. Let 𝐹 be the polynomial from Theorem 1, 𝑧1, . . . , 𝑧𝑝 be all
the zeros of 𝐹 in C ∖ D, 1 < 𝑅 < min

𝑗=1,..., 𝑝
|𝑧𝑗| = |𝑧𝑝|, 𝑘1 . . . , 𝑘𝑝 be orders of

these zeros, correspondingly, 𝑘 = 𝑘1 + · · · + 𝑘𝑝. If

𝑅 6
(︁

1 − 𝑘

𝑛

)︁
|𝑧𝑝| −

𝑘

𝑛
, (14)

then 0 ∈ 𝐷(𝑅, 𝑝, 𝑛), where 𝐷(𝑅, 𝑝, 𝑛) is the domain from Theorem 1.

Proof. Since |𝑧𝑗| > 𝑅 > 1 for 𝑗 = 1, . . . , 𝑝, we see that 𝐷(𝑅, 𝑝, 𝑛) is the
domain from item a) of Theorem 1. For 0 ∈ 𝐷(𝑅, 𝑝, 𝑛), it is sufficient to
prove that |𝑐𝑝| > 𝑟𝑝, where 𝑐𝑝 and 𝑟𝑝 are the constants from item a) of
Theorem 1.

Prove that 𝑐𝑝 > 0 under conditions of Lemma 2, i. e.,

𝑛− 𝑘

𝑛

𝑅2

𝑅2 − 1
>
𝑅2

𝑛

𝑝∑︁
𝑗=1

𝑘𝑗
|𝑧𝑗|2 −𝑅2

or
𝑛− 𝑘

𝑅2 − 1
>

𝑝∑︁
𝑗=1

𝑘𝑗
|𝑧𝑗|2 −𝑅2

.

The last inequality follows from the inequality

𝑛− 𝑘

𝑅2 − 1
>

𝑝∑︁
𝑗=1

𝑘𝑗
|𝑧𝑝|2 −𝑅2

=
𝑘

|𝑧𝑝|2 −𝑅2
. (15)
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Inequality (15) is equivalent to

𝑛− 𝑘 >
𝑅2 − 1

|𝑧𝑝|2 −𝑅2
𝑘 =

(︂
|𝑧𝑝|2 − 1

|𝑧𝑝|2 −𝑅2
− 1

)︂
𝑘

or
𝑛(|𝑧𝑝|2 −𝑅2) > 𝑘(|𝑧𝑝|2 − 1),

or
|𝑧𝑝|2

(︁
1 − 𝑘

𝑛

)︁
+
𝑘

𝑛
> 𝑅2. (16)

To prove (16), rewrite (14) in the form

𝑅2 6

(︂
1 − 𝑘

𝑛

)︂2

|𝑧𝑝|2 − 2
𝑘

𝑛

(︂
1 − 𝑘

𝑛

)︂
|𝑧𝑝| +

𝑘2

𝑛2
. (17)

Note that the left-hand side of (16) is greater than the right-hand side of
(17):

|𝑧𝑝|2
(︂

1 − 𝑘

𝑛

)︂
+
𝑘

𝑛
>

(︂
1 − 𝑘

𝑛

)︂2

|𝑧𝑝|2 − 2
𝑘

𝑛

(︂
1 − 𝑘

𝑛

)︂
|𝑧𝑝| +

𝑘2

𝑛2
,

because the last inequality is equivalent to

𝑘

𝑛

(︂
1 − 𝑘

𝑛

)︂
|𝑧𝑝|2 + 2

𝑘

𝑛

(︂
1 − 𝑘

𝑛

)︂
|𝑧𝑝| +

𝑘

𝑛

(︂
1 − 𝑘

𝑛

)︂
> 0

or
(|𝑧𝑝| + 1)2 > 0.

Therefore, (16) is true, and we have proved that 𝑐𝑝 > 0.
It remains to show that 𝑐𝑝 > 𝑟𝑝, i. e.,

𝑛− 𝑘

𝑛

𝑅2

𝑅2 − 1
− 𝑅2

𝑛

𝑝∑︁
𝑗=1

𝑘𝑗
|𝑧𝑗|2 −𝑅2

>
𝑛− 𝑘

𝑛

𝑅

𝑅2 − 1
+
𝑅

𝑛

𝑝∑︁
𝑗=1

𝑘𝑗|𝑧𝑗|
|𝑧𝑗|2 −𝑅2

.

Rewrite the last inequality in the equivalent form:

𝑛− 𝑘

𝑅 + 1
>

𝑝∑︁
𝑗=1

𝑘𝑗
|𝑧𝑗| −𝑅

. (18)
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Inequality (18) follows from the inequality

𝑛− 𝑘 > (𝑅 + 1)

𝑝∑︁
𝑗=1

𝑘𝑗
|𝑧𝑝| −𝑅

=
𝑘(𝑅 + 1)

|𝑧𝑝| −𝑅
. (19)

Let us check the validity of (19) for 𝑅 ∈
(︁

1,
(︁

1 − 𝑘

𝑛

)︁
|𝑧𝑝| −

𝑘

𝑛

)︁
. Since

the function
𝑅 + 1

|𝑧𝑝| −𝑅
increases on 𝑅, it is sufficient to check (19) for

𝑅 =
(︁

1 − 𝑘

𝑛

)︁
|𝑧𝑝| −

𝑘

𝑛
. For such 𝑅, inequality (19) is

(𝑛− 𝑘)
(︁
|𝑧𝑝| −

(︂
1 − 𝑘

𝑛

)︂
|𝑧𝑝| +

𝑘

𝑛

)︁
> 𝑘

(︁(︁
1 − 𝑘

𝑛

)︁
|𝑧𝑝| −

𝑘

𝑛
+ 1
)︁
. (20)

Simple calculations show that (20) is an equality. Hence, 𝑐𝑝 > 𝑟𝑝. �

Remark. Note that Lemma 2 works only if
(︁

1 − 𝑘

𝑛

)︁
|𝑧𝑝| −

𝑘

𝑛
> 1, i. e.,

|𝑧𝑝| >
𝑛+ 𝑘

𝑛− 𝑘
.

Now we have everything to obtain the following refinement of the Bern-
stein inequality (2):

Theorem 2. Let 0 < 𝑟 < 1, 𝑓 and 𝐹 be polynomials, such that

1) deg 𝑓 6 deg𝐹 = 𝑛;
2) all the zeros of 𝐹 belong to D; moreover, let 𝑧1, . . . , 𝑧𝑞 be all the

zeros of 𝐹 of orders 𝑘1, . . . , 𝑘𝑞, 1 6 𝑘1 + · · · + 𝑘𝑞 6 𝑛, such that
𝑟 < |𝑧𝑞| < · · · < |𝑧1| 6 1;

3) |𝑓(𝑧)| 6 |𝐹 (𝑧)| for |𝑧| > 𝑟.

Then
|𝑓 ′(𝑧)| 6 |𝐹 ′(𝑧)|

for all 𝑧, |𝑧| = 𝑅, where

𝑅 ∈ [|𝑧1|,∞) ∪
(︂ 𝑞−1⋃︁

𝑚=1

(|𝑧𝑚+1|, |𝑧𝑚|) ∖ 𝐼𝑚
)︂
∪ ((𝑟, |𝑧𝑞|) ∖ 𝐼𝑞). (21)

Here
𝐼1 =

(︁(︁
1 − 𝑘1

𝑛

)︁
|𝑧1| −

𝑘1
𝑛
|𝑧2|,

(︁
1 − 𝑘1

𝑛

)︁
|𝑧1| +

𝑘1
𝑛
|𝑧2|
)︁
,
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𝐼𝑚 =
(︁(︁

1 − 𝑘1 + · · · + 𝑘𝑚
𝑛

)︁
|𝑧𝑚| −

𝑘1 + · · · + 𝑘𝑚
𝑛

|𝑧𝑚+1|, |𝑧𝑚|
)︁
,

𝑚 = 2, . . . , 𝑞 − 1,

𝐼𝑞 =
(︁(︁

1 − 𝑘1 + · · · + 𝑘𝑞
𝑛

)︁
|𝑧𝑞| −

𝑘1 + · · · + 𝑘𝑞
𝑛

𝑟, |𝑧𝑞|
)︁
.

Proof. 1) Firstly, consider the case 𝑅 ∈ [|𝑧1|,+∞). Put 𝑓1(𝑤) = 𝑓(|𝑧1|𝑤),
𝐹1(𝑤) = 𝐹 (|𝑧1|𝑤). For these polynomials, all assumptions of Theorem E
are satisfied. Therefore, by Theorem E,

|𝑆𝛼[𝑓1](𝑤)| 6 |𝑆𝛼[𝐹1](𝑤)|, |𝑤| = 𝑅1 > 1,

where 𝛼 ∈ Ω𝑅1 . This is equivalent to

|𝑤|𝑧1|𝑓 ′(|𝑧1|𝑤) − 𝛼𝑛𝑓(|𝑧1|𝑤)| 6 |𝑤|𝑧1|𝐹 ′(|𝑧1|𝑤) − 𝛼𝑛𝐹 (|𝑧1|𝑤)| ,

|𝑤| = 𝑅1 > 1, 𝛼 ∈ Ω𝑅1 . Denoting 𝑧 = 𝑤|𝑧1|, 𝑅 = 𝑅1|𝑧1|, we have

|𝑆𝛼[𝑓 ](𝑧)| 6 |𝑆𝛼[𝐹 ](𝑧)|, |𝑧| = 𝑅 > |𝑧1|,

for 𝛼 ∈ Ω 𝑅
|𝑧1|

. Since 0 ∈ Ω 𝑅
|𝑧1|

, we obtain

|𝑓 ′(𝑧)| 6 |𝐹 ′(𝑧)|, |𝑧| = 𝑅 > |𝑧1|.

2) Now let 𝑅 ∈ (|𝑧2|,|𝑧1|). The polynomials 𝑓2(𝑤) = 𝑓(|𝑧2|𝑤), 𝐹2(𝑤) =
= 𝐹 (|𝑧2|𝑤) satisfy the conditions of Lemma 1, the polynomial 𝐹2 has the
unique zero 𝑤 =

𝑧1
|𝑧2|

outside D. The order of this zero equals 𝑘1. By

Lemma 1, 𝐷(𝑅2, 1, 𝑛) contains 0 if

𝑅2 ∈
(︁

1,
⃒⃒⃒𝑧1
𝑧2

⃒⃒⃒)︁
∖
(︁(︁

1 − 𝑘1
𝑛

)︁⃒⃒⃒𝑧1
𝑧2

⃒⃒⃒
− 𝑘1
𝑛
,
(︁

1 − 𝑘1
𝑛

)︁⃒⃒⃒𝑧1
𝑧2

⃒⃒⃒
+
𝑘1
𝑛

)︁
.

Therefore,
|𝑓 ′

2(𝑤)| 6 |𝐹 ′
2(𝑤)|, |𝑤| = 𝑅2, (22)

for these 𝑅2. Denoting 𝑧 = 𝑤|𝑧2|, 𝑅 = 𝑅2|𝑧2|, rewrite (22) in the form
|𝑓 ′(𝑧)| 6 |𝐹 ′(𝑧)|. Then the last inequality takes place for |𝑧| = 𝑅 ∈
∈ (|𝑧2|,|𝑧1|) ∖ 𝐼1.

3) If 𝑅 ∈ (|𝑧𝑚+1|,|𝑧𝑚|), 𝑚 = 2, . . . , 𝑞−1, then we consider the following
polynomials: 𝑓𝑚+1(𝑤) = 𝑓(|𝑧𝑚+1|𝑤) and 𝐹𝑚+1(𝑤) = 𝐹 (|𝑧𝑚+1|𝑤). They
satisfy the conditions of Lemma 2 with 𝑝 = 𝑚. The polynomial 𝐹𝑚
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has 𝑚 zeros
𝑧1

|𝑧𝑚+1|
, . . . ,

𝑧𝑚
|𝑧𝑚+1|

of orders 𝑘1, . . . , 𝑘𝑚 outside D. Applying

Lemma 2, we obtain

|𝑓 ′
𝑚+1(𝑤)| 6 |𝐹 ′

𝑚+1(𝑤)|, |𝑤| = 𝑅𝑚+1, (23)

for

𝑅𝑚 ∈
(︁

1,
⃒⃒⃒ 𝑧𝑚
𝑧𝑚+1

⃒⃒⃒)︁
∖
(︁(︁

1 − 𝑘1 + · · · + 𝑘𝑚
𝑛

)︁⃒⃒⃒ 𝑧𝑚
𝑧𝑚+1

⃒⃒⃒
− 𝑘1 + · · · + 𝑘𝑚

𝑛
; +∞

)︁
.

Denote 𝑧 = 𝑤|𝑧𝑚+1|, 𝑅 = 𝑅𝑚+1|𝑧𝑚+1|; from (23) we obtain |𝑓 ′(𝑧)| 6
6 |𝐹 ′(𝑧)| for |𝑧| = 𝑅, where 𝑅 ∈ (|𝑧𝑚+1|,|𝑧𝑚|) ∖ 𝐼𝑚.

4) For 𝑅 ∈ (𝑟, |𝑧𝑞|) we repeat the reasonings from the previous step
for the polynomials 𝑓𝑟(𝑤) = 𝑓(𝑟𝑤) and 𝐹𝑟(𝑤) = 𝐹 (𝑟𝑤), and obtain the
Bernstein inequality for 𝑅 ∈ (𝑟; |𝑧𝑞|) ∖ 𝐼𝑞. �

Remark. If polynomials 𝑓 and 𝐹 satisfy the conditions of Theorem 2 and
the inequality

min

{︂⃒⃒⃒⃒
𝑧1
𝑧2

⃒⃒⃒⃒
,

⃒⃒⃒⃒
𝑧2
𝑧3

⃒⃒⃒⃒
, . . . ,

⃒⃒⃒⃒
𝑧𝑞−1

𝑧𝑞

⃒⃒⃒⃒
,
⃒⃒⃒𝑧𝑞
𝑟

⃒⃒⃒}︂
>
𝑛+ 𝑘1 + · · · + 𝑘𝑞
𝑛− 𝑘1 − · · · − 𝑘𝑞

takes place, then (21) implies that inequality (2) is true not only in the
complement to D, but also in the following rings that are in D:

Γ1 =

{︂
𝑧 ∈ C :

(︂
1 − 𝑘1

𝑛

)︂
|𝑧1| +

𝑘1
𝑛
|𝑧2| 6 |𝑧| < 1

}︂
,

Γ2 =

{︂
𝑧 ∈ C : |𝑧2| < |𝑧| 6

(︂
1 − 𝑘1

𝑛

)︂
|𝑧1| −

𝑘1
𝑛
|𝑧2|
}︂
,

. . .

Γ𝑞 =

{︂
𝑧∈C : |𝑧𝑞| < |𝑧|6

(︂
1−𝑘1 +. . .+ 𝑘𝑞−1

𝑛

)︂
|𝑧𝑞−1|−

𝑘1 + · · · + 𝑘𝑞−1

𝑛
|𝑧𝑞|
}︂
,

Γ𝑞+1 =

{︂
𝑧 ∈ C : 𝑟 < |𝑧| 6

(︂
1 − 𝑘1 + · · · + 𝑘𝑞

𝑛

)︂
|𝑧𝑞| −

𝑘1 + · · · + 𝑘𝑞
𝑛

𝑟

}︂
.
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