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ANALYTIC FUNCTIONS OF INFINITE ORDER IN
HALF-PLANE

Abstract. J. B. Meles (1979) considered entire functions with ze-
ros restricted to a finite number of rays. In particular, it was
proved that if 𝑓 is an entire function of infinite order with zeros
restricted to a finite number of rays, then its lower order equals
infinity. In this paper, we prove a similar result for a class of func-
tions analytic in the upper half-plane. The analytic function 𝑓 in
C+ = {𝑧 : Im 𝑧 > 0} is called proper analytic if lim sup

𝑧→𝑡
ln |𝑓(𝑧)| 6 0

for all real numbers 𝑡 ∈ R. The class of the proper analytic func-
tions is denoted by 𝐽𝐴. The full measure of a function 𝑓 ∈ 𝐽𝐴 is
a positive measure, which justifies the term "proper analytic func-
tion". In this paper, we prove that if a function 𝑓 is the proper
analytic function in the half-plane C+ of infinite order with zeros
restricted to a finite number of rays L𝑘 through the origin, then its
lower order equals infinity.
Key words: half-plane, proper analytic function, infinite order,
lower order, Fourier coefficients, full measure
2020 Mathematical Subject Classification: 30D35

1. Introduction, Definitions and Notations. In the 60s of the last
century, several authors (L.A. Rubel and B.A. Taylor [16], J. B. Miles [11],
J. B. Miles and D. F. Shea [13], [14], and others) started to use the Fourier
series method on a large scale for studying of the properties of entire and
meromorphic functions. This method is efficient in solution of several
general problems of the theory of meromorphic functions and establishes
its connections with Fourier series theory. One advantage of this method
is its suitability for investigation of functions of fairly irregular growth
at infinity and functions of infinite order. In the 80s of the last century,
important results in this direction were obtained by A.A. Kondratyuk [5],
[6], [7], who generalized the Levin–Pflüger theory of entire functions of
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completely regular growth to meromorphic functions of the gamma-type.
At the beginning of this century, the first author of this paper extended
the method of Fourier series to delta-subharmonic functions in the half-
plane [10].

For meromorphic functions 𝑓(𝑧) in complex plane C, the characteristic
functions are defined as

𝑚(𝑟, 𝑓) =
1

2𝜋

2𝜋∫︁
0

ln+ |𝑓(𝑟𝑒𝑖𝜙)| 𝑑𝜙 ,

𝑁(𝑟, 𝑓) =

𝑟∫︁
0

𝑛(𝑡, 𝑓) − 𝑛(0, 𝑓)

𝑡
𝑑𝑡+ 𝑛(0, 𝑓) ln 𝑟 ,

where 𝑛(𝑟, 𝑓) is the number of poles of 𝑓 with regard to their multiplicity
in the disk 𝐵(0, 𝑟) (𝐶(𝑎, 𝑟) = {𝑧 : |𝑎−𝑧| < 𝑟}, 𝐵(𝑎, 𝑟) = 𝐶(𝑎, 𝑟), 𝐺 means
the closure of a set 𝐺), 𝑥+ = max{0;𝑥},

𝑇 (𝑟, 𝑓) = 𝑚(𝑟, 𝑓) +𝑁(𝑟, 𝑓) .

The order and the lower order of a meromorphic function 𝑓 are, re-
spectively, the values

𝛽[𝑓 ] = lim sup
𝑟→∞

ln 𝑇 (𝑟, 𝑓)

ln 𝑟
, 𝛼[𝑓 ] = lim inf

𝑟→∞

ln𝑇 (𝑟, 𝑓)

ln 𝑟
.

The order and the lower order of the entire function 𝑓 are, respectively,
the values

𝛽[𝑓 ] = lim sup
𝑟→∞

ln ln𝑀(𝑟, 𝑓)

ln 𝑟
, 𝛼[𝑓 ] = lim inf

𝑟→∞

ln ln𝑀(𝑟, 𝑓)

ln 𝑟
,

where 𝑀(𝑟, 𝑓) = max
06𝜃62𝜋

|𝑓(𝑟𝑒𝑖𝜃)|.
In the work [12], J. B. Meles considered entire functions with zeros

restricted to a finite number of rays. In particular, it was proved that if
𝑓 is an entire function of infinite order with zeros restricted to a finite
number of rays, then its lower order equals infinity.

We prove a similar result for functions that are analytic in the half-
plane. To prove this statement, we use the Fourier series method developed
by the first author [10]. Passing to the half-plane is complicated by com-
plex behaviour of the function near the boundary. The difference from
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the plane is obvious just in obtaining tests for a meromorphic function
to belong to a fixed class (see [9, Teorems 1, 2, and the Example after
Theorem 2]).

A special case, when zeros are restricted to the imaginary axis, was
considered by the third author [17]. Note that the case of zeros at an
arbitrary system of rays is more complicated than one ray. In particular,
the proof in this case essentially uses Lemma 2.

The main result is the following theorem.

Theorem 1. Suppose 𝑓 is the proper analytic function in the half-
plane C+ of infinite order with zeros restricted to a finite number of rays
L𝑘 through the origin :

L𝑘 =
{︀
𝑧 : arg 𝑧 = 𝑒𝑖𝜃𝑘 , 0 < 𝜃𝑘 < 𝜋, 𝑘 ∈ 1, 𝑁0, 𝑁0 ∈ N

}︀
.

Then its lower order equals infinity.

2. Classes of Functions in C+. Let C+ = {𝑧 : Im 𝑧 > 0} be
the upper half-plane. We denote by Ω+ the intersection of a set Ω with
the half-plane C+ : Ω+ = Ω ∩ C+. If 0 < 𝑟1 < 𝑟2, then 𝐷+(𝑟1, 𝑟2) =
= 𝐶+(0, 𝑟2)∖𝐶+(0, 𝑟1) means the closed half-ring.

Let 𝐴𝐾 be the class of analytic functions 𝑓(𝑧) in C+, such that ln |𝑓(𝑧)|
possess a positive harmonic majorant in each bounded subdomain of C+.
Functions 𝑓(𝑧) in 𝐴𝐾 have the following properties [1]:

a) ln |𝑓(𝑧)| has non-tangential limits ln |𝑓(𝑡)| almost everywhere on the
real axis and ln |𝑓(𝑡)| ∈ 𝐿1

loc(−∞,∞);
b) there exists a measure (charge) of variable sign 𝜈 on the real axis,

such that

lim
𝑦→+0

𝑏∫︁
𝑎

ln |𝑓(𝑡+ 𝑖𝑦)| 𝑑𝑡 = 𝜈([𝑎, 𝑏]) − 1

2
𝜈({𝑎}) − 1

2
𝜈({𝑏}) .

The measure 𝜈 is called the boundary measure of 𝑓 ;
c) 𝑑𝜈(𝑡) = ln |𝑓(𝑡)| 𝑑𝑡+𝑑𝜎(𝑡), where 𝜎 is a singular measure with respect

to the Lebesgue measure.
For a function 𝑓 ∈ 𝐴𝐾, we define, following [1], the full measure

𝜆𝑓 := 𝜆 by the formula

𝜆(𝐺) = 2𝜋

∫︁
C+∩𝐺

Im 𝜁 𝑑𝜇(𝜁) − 𝜈(𝐺) ,
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where 𝜇 is the Riesz measure of ln |𝑓(𝑧)|.
The full measure determines a function 𝑓 ∈ 𝐴𝐾 in the same way as the

Riesz measure 𝜇 determines a subharmonic function in C. More precisely,
if 𝑓1, 𝑓2 ∈ 𝐴𝐾 have the same full measure 𝜆, then there exists a real entire
function 𝑔, such that |𝑓1(𝑧)| − ln |𝑓2(𝑧)| = Im 𝑔(𝑧), 𝑧 ∈ C+.

A function 𝑓 is called proper analytic in C+ if 𝑓 is an analytic function
in C+ and lim sup

𝑧→𝑡
ln |𝑓(𝑧)| 6 0 for each 𝑡 ∈ R. The full measure of

the proper analytic function is a positive measure, which explains the
term «proper analytic function». Note that a proper analytic function is
necessarily in the class 𝐴𝐾. By 𝐽𝐴 we denote the class of proper analytic
functions in C+.

A function 𝑓 is called proper meromorphic function in C+ if 𝑓 can be
represented as a quotient of two proper analytic functions. The class of
proper meromorphic functions in C+ is denoted by 𝐽𝑀 .

Proposition 1. [1] 𝐽𝑀 = 𝐴𝐾/𝐴𝐾.

Let 𝑓1, 𝑓2 ∈ 𝐽𝐴. The functions 𝑓1 and 𝑓2 have no common zeros in C+

if full measures of 𝑓1 and 𝑓2 are mutually singular.

Proposition 2. [1] For 𝑓 ∈ 𝐽𝑀 , the identity 𝑓 = 𝑓1/𝑓2 holds; here 𝑓1,
𝑓2 are proper analytic functions without common zeros in C+. They are
defined uniquely up to a multiplier of the form 𝑒𝑖𝑔(𝑧), where 𝑔 is a real
entire function.

Note, however, that the uniqueness of the numerator and denominator
in Proposition 2 is not so simple to prove. For example, both could be
also multiplied by constant less then 1.

3. Nevanlinna’s Characteristic Functions for the Complex
Half–Plane. In 1925, R. Nevanlinna [15] (see also [3]) introduced for
meromorphic function 𝑓(𝑧) in the closed upper half-plane C+ the charac-
teristic functions

𝐴(𝑟, 𝑓) =
1

𝜋

𝑟∫︁
0

(︂
1

𝑡2
− 1

𝑟2

)︂
(ln+ |𝑓(𝑡)| + ln+ |𝑓(−𝑡)|) 𝑑𝑡 ,

𝐵(𝑟, 𝑓) =
2

𝜋𝑟

𝜋∫︁
0

ln+ |𝑓(𝑟𝑒𝑖𝜙)| sin𝜙𝑑𝜙 ,
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𝐶(𝑟, 𝑓) = 2

𝑟∫︁
0

(︂
1

𝑡2
+

1

𝑟2

)︂
𝑐(𝑡, 𝑓) 𝑑𝑡 ,

where 𝑐(𝑟, 𝑓) =
∑︀

16𝑟𝑛6𝑟
sin𝜙𝑛, 𝑟𝑛𝑒𝑖𝜙𝑛 are poles of 𝑓 with regard to their

multiplicity,
𝑆(𝑟, 𝑓) = 𝐴(𝑟, 𝑓) +𝐵(𝑟, 𝑓) + 𝐶(𝑟, 𝑓) .

The following question arises: what is a good analogue of the func-
tions 𝑚(𝑟,𝑓) and 𝑁(𝑟,𝑓) for C+? R. Nevanlinna [15], A.A. Goldberg [2],
A.A. Goldberg and I.V. Ostrovskii [3] reasoned that the analogue of the
function 𝑚(𝑟, 𝑓) is 𝐴(𝑟, 𝑓)+𝐵(𝑟, 𝑓) and the analogue of 𝑁(𝑟, 𝑓) is 𝐶(𝑟, 𝑓).

We will exploit other definitions as well to emphasize the connection
with the case of the complex plane. These characteristic functions are
defined in the widest space where they have meaning. Here we use termi-
nology and definitions from [1].

Let 𝑓 ∈ 𝐽𝑀 and let 𝜆 be its full measure. Let 𝜆 = 𝜆+ − 𝜆− be the
Jordan decomposition of the measure 𝜆. We denote

𝑚(𝑟, 𝑓) :=
1

𝑟

𝜋∫︁
0

ln+ |𝑓(𝑟𝑒𝑖𝜙)| sin𝜙𝑑𝜙 =
𝜋

2
𝐵(𝑟, 𝑓) ,

𝑁(𝑟, 𝑓, 𝑟0) :=

𝑟∫︁
𝑟0

𝜆−(𝑡)

𝑡3
𝑑𝑡 =

𝜋

2
(𝐴(𝑟, 𝑓) + 𝐶(𝑟, 𝑓) +𝑂(1)) ,

𝑇 (𝑟, 𝑓, 𝑟0) := 𝑚(𝑟, 𝑓) +𝑁(𝑟, 𝑓, 𝑟0) +𝑚(𝑟0, 1/𝑓) =
𝜋

2
𝑆(𝑟, 𝑓) +𝑂(1) ,

where 𝑟0 is an arbitrary fixed positive number (one may as well take 𝑟0 =1),
which will be omitted in designations provided that this does not cause
any misunderstanding; for example, instead of 𝑇 (𝑟, 𝑓, 𝑟0) we will write
𝑇 (𝑟, 𝑓), and so on, 𝑟 > 𝑟0, 𝜆−(𝑡) = 𝜆−(𝐵(0, 𝑡)).

Definition 1. The order and the lower order of the function 𝑓 ∈ 𝐽𝑀 are
the values

𝛽[𝑓 ] = lim sup
𝑟→∞

ln(𝑟𝑇 (𝑟, 𝑓))

ln 𝑟
, 𝛼[𝑓 ] = lim inf

𝑟→∞

ln(𝑟𝑇 (𝑟, 𝑓))

ln 𝑟
.

4. Preliminaries. Let 𝜆 be the full measure of a function 𝑓 ∈ 𝐽𝑀 .
The function 𝑓 has the following representation in the half-disc 𝐶+(0, 𝑅) [4]:
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ln |𝑓(𝑧)| = − 1

2𝜋

∫︁∫︁
𝐶+(0,𝑅)

𝐺(𝑧, 𝜁)

Im 𝜁
𝑑𝜆(𝜁)+

+
𝑅

2𝜋

𝜋∫︁
0

𝜕𝐺(𝑧,𝑅𝑒𝑖𝜙)

𝜕𝜏
ln |𝑓(𝑅𝑒𝑖𝜙)| 𝑑𝜙, 𝑧 ∈ 𝐶+(0, 𝑅) , (1)

where 𝐺(𝑧, 𝜁) is the Green function of the half-disc,
𝜕𝐺

𝜕𝜏
is its derivative in

the inward-normal direction, and the kernel
𝐺(𝑧, 𝜁)

Im 𝜁
, where 𝜁 ∈ 𝐶+(0, 𝑅),

is extended by continuity to the real axis for |𝑡| 6 𝑅.
For the measure 𝜆, let

𝑑𝜆𝑘(𝜏𝑒
𝑖𝜙) =

sin 𝑘𝜙

sin𝜙
𝜏 𝑘−1 𝑑𝜆(𝜏𝑒𝑖𝜙), 𝜆𝑘(𝑟) = 𝜆𝑘(𝐶(0, 𝑟)), 𝑘 ∈ N ,

where the function
sin 𝑘𝜙

sin𝜙
is defined for 𝜙 = 0 and 𝜙 = 𝜋 by continuity.

The next relation is Carleman’s formula in Grishin’s notation [4]:

1

𝑟𝑘

𝜋∫︁
0

ln |𝑓(𝑟𝑒𝑖𝜙)| sin 𝑘𝜙 𝑑𝜙 =

𝑟∫︁
𝑟0

𝜆𝑘(𝑡)

𝑡2𝑘+1
𝑑𝑡+

+
1

𝑟𝑘0

𝜋∫︁
0

ln |𝑓(𝑟0𝑒
𝑖𝜙)| sin 𝑘𝜙 𝑑𝜙, 𝑘 ∈ N .

In particular, for 𝑘 = 1 we have

1

𝑟

𝜋∫︁
0

ln |𝑓(𝑟𝑒𝑖𝜙)| sin𝜙𝑑𝜙 =

𝑟∫︁
𝑟0

𝜆(𝑡)

𝑡3
𝑑𝑡+

1

𝑟0

𝜋∫︁
0

ln |𝑓(𝑟0𝑒
𝑖𝜙)| sin𝜙𝑑𝜙 . (2)

In this notation, Carleman’s formula (2) can be written as follows:

𝑇 (𝑟, 𝑓) = 𝑇 (𝑟, 1/𝑓) . (3)

The Fourier coefficients of a function 𝑓 ∈ 𝐽𝑀 are defined by the
formula [10]:

𝑐𝑘(𝑟, 𝑓) =
2

𝜋

𝜋∫︁
0

ln |𝑓(𝑟𝑒𝑖𝜙)| sin 𝑘𝜃 𝑑𝜃, 𝑘 ∈ N .
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Let 𝜆 be the full measure of 𝑓 ∈ 𝐽𝑀 ; then [10]:

𝑐𝑘(𝑟, 𝑓) = 𝛼𝑘𝑟
𝑘 +

2𝑟𝑘

𝜋

𝑟∫︁
𝑟0

𝜆𝑘(𝑡)

𝑡2𝑘+1
𝑑𝑡, 𝑘 ∈ N , (4)

where 𝛼𝑘 = 𝑟−𝑘0 𝑐𝑘(𝑟0, 𝑓), and from (4) we obtain:

𝑐𝑘(𝑟, 𝑓) = 𝛼𝑘𝑟
𝑘 +

𝑟𝑘

𝜋𝑘𝑟2𝑘0

∫︁∫︁
𝐶+(0,𝑟0)

sin 𝑘𝜙

Im 𝜁
𝜏 𝑘 𝑑𝜆(𝜁)+

+
𝑟𝑘

𝜋𝑘

∫︁∫︁
𝐷+(𝑟0, 𝑟)

sin 𝑘𝜙

𝜏 𝑘 Im 𝜁
𝑑𝜆(𝜁) − 1

𝑟𝑘𝜋𝑘

∫︁∫︁
𝐶+(0, 𝑟)

sin 𝑘𝜙

Im 𝜁
𝜏 𝑘 𝑑𝜆(𝜁) , (5)

where 𝜁 = 𝜏𝑒𝑖𝜙.
From definition of 𝑐𝑘(𝑟, 𝑓), the inequality follows:

|𝑐𝑘(𝑟, 𝑓)| 6 2𝑘

𝜋

𝜋∫︁
0

| ln |𝑓(𝑟𝑒𝑖𝜙)|| sin𝜙𝑑𝜙, 𝑘 ∈ N .

From this and from equality (3), we obtain

𝑟𝑚(𝑟, 𝑓) >
𝜋

4𝑘
|𝑐𝑘(𝑟, 𝑓)|, 𝑘 ∈ N . (6)

Indeed, (6) follows from the relations

𝜋

2𝑘𝑟
|𝑐𝑘(𝑟, 𝑓)| 6 1

𝑟

𝜋∫︁
0

(ln+ |𝑓(𝑟𝑒𝑖𝜙)| + ln+ |1/𝑓(𝑟𝑒𝑖𝜙)|) sin𝜙𝑑𝜙 6

6 𝑚(𝑟, 𝑓) +𝑚(𝑟, 1/𝑓) 6 2𝑚(𝑟, 𝑓), 𝑘 ∈ N .

Now we need a lemma:

Lemma 1. If 𝑔 ∈ 𝐽𝑀 and 𝜆𝑔 ≡ 0, then ln |𝑔(𝑧)| = Im𝐹 (𝑧), where 𝐹 (𝑧)
is an entire real function.

Proof. Remind [8] that the entire function 𝐹 (𝑧) is a real function if
𝐹 (R) ⊂ R.
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Since the full measure of the function 𝑔 equals zero, then from (1) it
follows that for any 𝑅 > 0

ln |𝑔(𝑧)| =
𝑅

2𝜋

𝜋∫︁
0

𝜕𝐺(𝑧,𝑅𝑒𝑖𝜙)

𝜕𝑛
ln |𝑔(𝑅𝑒𝑖𝜙)| 𝑑𝜙 , 𝑧 ∈ 𝐶+(0, 𝑅) .

The right-hand part is a harmonic function in a half-disc 𝐶+(0, 𝑅),
which is extended continuously by zero to the interval (−𝑅,𝑅). As 𝑅 is
an arbitrary positive number, then the function ln |𝑔(𝑧)| is harmonic in
the half-plane C+ and is extended continuously by zero to the real axis.
By the principle of symmetry, this function is extended as harmonic on
the bottom half-plane.

Then there exists a harmonic function ℎ(𝑧) on the complex plane van-
ishing on the real axis and such that ln |𝑔(𝑧)| = ℎ(𝑧) for Im 𝑧 > 0.

Let (−ℎ1(𝑧)) be a function harmoniously conjugated to the function
ℎ(𝑧). Then 𝐹 (𝑧) = ℎ1(𝑧) + 𝑖ℎ(𝑧) is an entire function, real on the real
axis and ln |𝑔(𝑧)| = Im𝐹 (𝑧). �

The following lemma [12, Lemma 1.1] is used in the proof of Theorem 1.

Lemma 2. Suppose 𝜃1, 𝜃2, . . . , 𝜃𝑁0 are distinct elements of [0, 2𝜋). For a
real 𝑥, let 𝑥* denote the unique number in [−𝜋, 𝜋), congruent to 𝑥 modulo
2𝜋. There exists an increasing sequence 𝐼 = {𝑛𝑙} of positive integers, such
that 𝐼 has positive density and

(𝑛𝑙𝜃𝑗)
* ∈

(︁
− 𝜋

6
,
𝜋

6

)︁
(7)

for 𝑗 ∈ 1, 𝑁0 and 𝑛𝑙 ∈ 𝐼.

3. Proof of the Theorem 1. Since 𝜆𝑓 restricted to the finite system
of rays, then, by formula (5), we obtain for the Fourier coefficients of the
function 𝑓 :

𝑐𝑛(𝑟, 𝑓) = 𝛼𝑛𝑟
𝑛 +

𝑁0∑︁
𝑘=1

𝑟𝑛 sin(𝜃𝑘𝑛)

𝜋𝑛𝑟2𝑛0 sin 𝜃𝑘

𝑟0∫︁
0

𝑡𝑛−1𝑑𝜆(𝑡)+

+

𝑁0∑︁
𝑘=1

𝑟𝑛 sin(𝜃𝑘𝑛)

𝜋𝑛 sin 𝜃𝑘

𝑟∫︁
𝑟0

𝑑𝜆(𝑡)

𝑡𝑛+1
−

𝑁0∑︁
𝑘=1

sin(𝜃𝑘𝑛)

𝑟𝑛𝜋𝑛 sin 𝜃𝑘

𝑟∫︁
0

𝑡𝑛−1𝑑𝜆(𝑡), 𝑛 ∈ N .



Functions of infinite order 67

Then we obtain

𝑐𝑛(𝑟, 𝑓) = 𝛼𝑛𝑟
𝑛 +

𝑁0∑︁
𝑘=1

𝑟𝑛 sin(𝜃𝑘𝑛)

𝜋𝑛𝑟2𝑛0 sin 𝜃𝑘

𝑟0∫︁
0

𝑡𝑛−1𝑑𝜆(𝑡)+

+

𝑁0∑︁
𝑘=1

sin(𝜃𝑘𝑛)

𝜋𝑛 sin 𝜃𝑘

𝑟∫︁
𝑟0

1

𝑡

[︂(︁𝑟
𝑡

)︁𝑛
−
(︂
𝑡

𝑟

)︂𝑛]︂
𝑑𝜆(𝑡), 𝑛 ∈ N . (8)

Integrating by parts twice in (8), we get

𝑐𝑛(𝑟, 𝑓) = 𝛼𝑛𝑟
𝑛 +

𝑁0∑︁
𝑘=1

𝑟𝑛 sin(𝜃𝑘𝑛)

𝜋𝑛𝑟2𝑛0 sin 𝜃𝑘

𝑟0∫︁
0

𝑡𝑛−1𝑑𝜆(𝑡)+

+
2

𝜋

𝑁0∑︁
𝑘=1

sin(𝜃𝑘𝑛)

sin 𝜃𝑘

(︂
�̃�(𝑟) + 𝑟𝑛

𝑟∫︁
𝑟0

�̃�(𝑡)

𝑡𝑛+1
𝑑𝑡

)︂
+

+
𝑛− 1

𝜋

𝑁0∑︁
𝑘=1

sin(𝜃𝑘𝑛)

sin 𝜃𝑘

𝑟∫︁
𝑟0

1

𝑡

[︂(︁𝑟
𝑡

)︁𝑛
−
(︂
𝑡

𝑟

)︂𝑛]︂
�̃�(𝑡) 𝑑𝑡, 𝑛 ∈ N , (9)

where �̃�(𝑟) =

𝑟∫︁
𝑟0

𝜆(𝑡)

𝑡2
𝑑𝑡.

By Lemma 2, choose the sequence 𝐼={𝑛𝑙} such that (𝑛𝑙𝜃𝑗)
*∈

(︁
−𝜋

6
,
𝜋

6

)︁
.

Then
𝑁0∑︁
𝑘=1

sin(𝜃𝑘𝑛𝑙) =

𝑁0∑︁
𝑘=1

sin(𝜃𝑘𝑛𝑙)
* > 𝑁0 sin

𝜋

6
=
𝑁0

2
. Note that

𝑁0∑︁
𝑘=1

𝑟𝑛𝑙 sin(𝜃𝑘𝑛𝑙)

𝜋𝑛𝑙𝑟
2𝑛𝑙
0 sin 𝜃𝑘

𝑟0∫︁
0

𝑡𝑛𝑙−1𝑑𝜆(𝑡) > 0, 𝑛𝑙 ∈ N .

From (9) with 𝑛 = 𝑛𝑙, 𝑙 ∈ N, we obtain

|𝑐𝑛𝑙
(𝑟,𝑓)|
𝑟𝑛𝑙

>
𝑁0

𝜋

(︂
�̃�(𝑟)

𝑟𝑛𝑙
+

𝑟∫︁
𝑟0

�̃�(𝑡)

𝑡𝑛𝑙+1
𝑑𝑡

)︂
− |𝛼𝑛𝑙

|, 𝑛𝑙 ∈ N . (10)
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If the function �̃�(𝑟) has infinite order, then the integral in the right-
hand part of the last inequality is unlimited as 𝑟 → ∞, because

∞∫︁
𝑟

�̃�(𝑡)

𝑡𝑛+1
𝑑𝑡 >

�̃�(𝑟)

𝑛𝑟𝑛
, 𝑛 ∈ N ,

and right-hand part of this inequality can be made arbitrarily large by
suitable choice of 𝑟. By this inequality, inequality (6), and (10), we receive
the demanded statement.

If �̃�(𝑟) has a finite order, then there exist positive numbers 𝐾 > 0
and 𝜌 > 0, such that �̃�(𝑟) 6 𝐾𝑟𝜌 for all 𝑟 > 0. It is possible to consider
non-integer 𝜌. From here it follows that

𝐾2𝜌𝑟𝜌 > �̃�(2𝑟) >

2𝑟∫︁
𝑟

𝜆(𝑡)

𝑡2
𝑑𝑡 > 𝜆(𝑟)

2𝑟∫︁
𝑟

𝑑𝑡

𝑡2
=
𝜆(𝑟)

2𝑟
,

i.e.,
𝜆(𝑟) 6 𝐾2𝜌+1𝑟𝜌+1 .

In this case, from the paper [10, Theorem 3] it follows that there exists
the function 𝑔1 ∈ 𝐽𝐴 of order 𝜌 and with full measure 𝜆. Then the function
𝑔 = 𝑓/𝑔1 ∈ 𝐽𝐴 and 𝜆𝑔 ≡ 0.

According to the Lemma 1, |𝑔(𝑧)| = exp(Im𝐹 (𝑧)), where 𝐹 (𝑧) is an
entire real function

𝐹 (𝑧) =
∞∑︁
𝑛=0

𝑎𝑛𝑧
𝑛 .

The fact that 𝑎𝑛 ∈ R, for all 𝑛 ∈ N, is proved by termwise derivation
of the Taylor series of the function 𝐹 (𝑧) at the point 𝑧 = 0.

If the only finite number 𝑎𝑛 ̸= 0, then 𝐹 (𝑧) is a polynomial, hence 𝑔
and 𝑓 have a finite order: this contradicts the condition.

Further,
𝑐𝑘(𝑟, 𝑔) = 𝑎𝑘𝑟

𝑘, 𝑘 ∈ N .

From this and (6), we obtain

𝑟𝑚(𝑟, 𝑔) >
𝜋

4𝑘
|𝑐𝑘(𝑟, 𝑔)| =

𝜋|𝑎𝑘|𝑟𝑘

4𝑘
.

The last inequality is valid for any fixed natural 𝑘. It follows that the
function 𝑔(𝑧) has infinite lower order.
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Further, from the elementary inequality (ln(𝑎𝑏))+ > (ln 𝑎)+ − (ln 𝑏)+,
which is valid for 𝑏 > 1, we obtain

𝑚(𝑟, 𝑔) 6 𝑚(𝑟, 𝑓) +𝑚(𝑟, 1/𝑔1) < 𝑚(𝑟, 𝑓) + 𝑇 (𝑟, 𝑔1) .

Then, from the inequality

lim inf
𝑟→∞

𝑟𝑚(𝑟, 𝑔) 6 lim inf
𝑟→∞

𝑟𝑚(𝑟, 𝑓) + lim sup
𝑟→∞

𝑟𝑇 (𝑟, 𝑔1)

and the relations

lim inf
𝑟→∞

𝑟𝑚(𝑟, 𝑔) = ∞, lim sup
𝑟→∞

𝑟𝑇 (𝑟, 𝑔1) 6 𝜌 <∞ ,

it follows that
lim inf
𝑟→∞

𝑟𝑚(𝑟, 𝑓) = ∞ .

The theorem 1 is proved. �

Remark. In Theorem 1 the boundary measure 𝜈 of 𝑓 , generally speaking,
is not zero. It is a non-negative measure.

The boundary measure of a function 𝑓 ∈ 𝐴𝐾 can be sign-variable,
its full measure can also be sign-variable. So, I think it has merely been
observed that the proof of Theorem 1 does not apply to functions in the
class 𝐴𝐾. The question whether there exists a specific 𝑓 in 𝐴𝐾 of infinite
order and finite lower order i still open.
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