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WEAVING CONTINUOUS 𝐾-FRAMES IN HILBERT
SPACES

Abstract. In this paper, we introduce and study weaving contin-
uous 𝐾-frames in Hilbert spaces. We first introduce a useful result
for the production of these frames and then examine them under
the influence of a bounded operator. Due to the basic and useful
applications of different types of frames in restoring some deleted
information on data transfer issues, we give at the end of the paper
some conditions of setting the frame under the removal of some
members of the measure space and we show that this is related to
the discrete 𝐾-frames.
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1. Introduction. The concept of frames in Hilbert spaces was first
introduced by Duffin and Schaeffer ( [10]) in 1952 to study some profound
issues in nonharmonic Fourier series. Frames play so significant role in
both pure and applied mathematics that are considered as the fundamen-
tal research area in mathematics, computer science, and quantum infor-
mation. Besides their former application, they are also applied in some
other fields, such as signal processing, image processing, data compression,
and sampling theory.

The special importance of frames is related to the types of their gen-
eralizations, which are mainly in seven areas:
1) Continuous frames (or briefly c-frames) ( [1], [11]), which are introduced
to the measure spaces.
2) Generalization frames (or briefly g-frames) ( [22]), which are introduced
to the boundary operators between Hilbert spaces.
3) Fusion frames, ( [7]) for subspaces of Hilbert spaces.
4) Frames for operators or 𝐾-frames have been introduced in [14] to study
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the nature of atomic systems for a separable Hilbert space with respect to
a bounded linear operator 𝐾.
5) Controlled frames ( [5]), which are introduced to improve the numeri-
cal efficiency of interactive algorithms for inverting the frame operator on
Hilbert spaces.
6) Weaving frames ( [6]), which are motivated by distributed signal pro-
cessing.
7) Combining the above mentioned (as [2], [3], [11], [15], [17], [19], [20],
[21], [23], [24]).

In this paper, we introduce the concept of weaving continuous
𝐾-frames in Hilbert spaces. After introducing these frames, we intro-
duce the necessary and sufficient conditions for their production. Then,
by affecting the bounded operator on these frames and imposing some
conditions, we try to maintain the existing frame and, in some cases, we
see that we have to make the main space smaller. Finally, by removing a
subset of the measure space, we introduce the conditions for creating those
frames for the new measure space and introduce its relationship with the
discrete frames.

Throughout this paper, 𝐻 is a Hilbert space, (𝑋,𝜇) is a measure space
with positive and 𝜎-finite measure 𝜇, and ℬ(𝐻,𝐾) is the set of all bounded
linear operators from 𝐻 into 𝐾.

First, we review some topics and results of the operator theory. Sup-
pose that 𝑈 ∈ ℬ(𝐻1, 𝐻2) is an operator on the Hilbert space 𝐻1 into the
Hilbert space 𝐻2. The pseudo-inverse of 𝑈 is denoted by 𝑈 † ∈ ℬ(𝐻2, 𝐻1)
and is defined by 𝑈𝑈 †𝑥 = 𝑥 for each 𝑥 ∈ ℛ(𝑈). In the following result,
(Lemma A.7.2 [8]) we present some properties of the operator 𝑈 †:

Lemma 1. [8]

1) (𝑈*)† = (𝑈 †)*.
2) The orthogonal projection of 𝐻2 onto ℛ(𝑈) is given by 𝑈𝑈 †.
3) The orthogonal projection of 𝐻1 onto ℛ(𝑈 †) is given by 𝑈 †𝑈 .
4) ker𝑈 † = ℛ(𝑈)⊥ and ℛ(𝑈 †) = ker𝑈⊥.
5) On ℛ(𝑈), we have 𝑈 † = 𝑈*(𝑈𝑈*)−1.

2. Continuous frames. The space L 2(𝑋) is the class of all measur-
able mappings 𝐹 : 𝑋 → C, such that for each 𝑥 ∈ 𝑋:∫︁

𝑋

‖𝐹 (𝑥)‖2 𝑑𝜇(𝑥) <∞.
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It is a Hilbert space with the inner product defined by

⟨𝐹,𝐺⟩ =

∫︁
𝑋

⟨𝐹 (𝑥), 𝐺(𝑥)⟩ 𝑑𝜇(𝑥) , 𝐹,𝐺 ∈ L 2(𝑋).

We denote the vector space of all equivalence classes of almost everywhere
finite-valued measurable functions on 𝑋 by L 0(𝑋). Let 𝐹 : 𝑋 → 𝐻 be
a weakly measurable (i. e., for all ℎ ∈ 𝐻, the mapping 𝑥 ↦→ ⟨𝐹 (𝑥), ℎ⟩ is
measurable). We define the vector valued integral as follows:∫︁

𝑋

·𝐹 𝑑𝜇 : L 2(𝑋) → 𝐻,

⟨
∫︁
𝑋

𝐺𝐹 𝑑𝜇, ℎ⟩ =

∫︁
𝑋

𝐺(𝑥)⟨𝐹 (𝑥), ℎ⟩𝑑𝜇(𝑥), ℎ ∈ 𝐻.

We can show that if 𝐹 : 𝑋 → 𝐻 is a weakly measurable, then for each
𝐺 ∈ L 2(𝑋), the value of

∫︀
𝑋

𝐺𝐹 𝑑𝜇 exists in 𝐻 if and only if

⟨𝐹, ℎ⟩ ∈ L 2(𝑋) for each ℎ ∈ 𝐻 (see [18]).

Definition 1. Let 𝐹 : 𝑋 → 𝐻 be a weakly measurable and 𝐾 ∈ ℬ(𝐻).
Then the map 𝐹 is called a continuous 𝐾-frame (or briefly c-𝐾-frame) for
𝐻 with respect to 𝑋, if there exist 0 < 𝐴 6 𝐵 < ∞, such that for each
ℎ ∈ 𝐻:

𝐴‖𝐾*ℎ‖2 6
∫︁
𝑋

|⟨ℎ, 𝐹 (𝑥)⟩|2 𝑑𝜇(𝑥) 6 𝐵‖ℎ‖2. (1)

The numbers 𝐴 and 𝐵 are called frame bounds. If 𝐾 = 𝐼𝑑𝐻 , then 𝐹
is called c-frame. We say that 𝐹 is a tight c-𝐾-frame when∫︁

𝑋

|⟨ℎ, 𝐹 (𝑥)⟩|2 𝑑𝜇(𝑥) = 𝐴‖𝐾*ℎ‖2,

and 𝐹 is called the Parseval c-𝐾-frame when 𝐴 = 1. If only the right-
hand side of (1) holds, we say 𝐹 is a c-Bessel mapping with the bound 𝐵.
When 𝜇 is the counting measure and 𝑋 = N, then 𝐹 becomes an ordinary
𝐾-frame (for more details about 𝐾-frames, we refer to [14], [4]).

Example 7. Assume that 𝐻 = ℓ2(N), 𝑋 = R and 𝜇 is the Lebesgue
measure. Let 𝑎 > 0 be a constant and define

𝐾 : ℓ2(N) → ℓ2(N), 𝐾𝛿𝑖 = 𝛿𝑖+1,
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and

𝐹 : 𝑋 −→ 𝐻,

𝐹 (𝑥) =

{︃
𝑎𝛿𝑖, 𝑖 6 𝑥 < 𝑖+ 1,

0, 𝑥 < 1,

where {𝛿𝑖}∞𝑖=1 is an orthonormal base for ℓ2(N). Since

𝐾*𝛿1 = 0 , 𝐾*𝛿𝑖 = 𝛿𝑖 , 𝑖 > 2,

therefore, for every ℎ ∈ 𝐻 we have

∞∫︁
−∞

|⟨ℎ, 𝐹 (𝑥)⟩|2 𝑑𝜇(𝑥) = 𝑎2‖ℎ‖2 > 𝑎2‖𝐾*ℎ‖2.

So, 𝐹 is a c-𝐾-frame for 𝐻 with bounds 𝐴 = 𝐵 = 𝑎2.

Example 8. Assume that 𝐻 = R3 with the standard orthonormal base
{𝑒1, 𝑒2, 𝑒3}, 𝑋 = R and 𝜇 is the Lebesgue measure. Define

𝐾 : R3 → R3,

𝐾𝑒1 = 𝑒1, 𝐾𝑒2 = 𝑒1, 𝐾𝑒3 = 0,

and

𝐹 : R −→ R3,

𝐹 (𝑥) = exp
(︁
− 𝑥2

2
, 0, 0

)︁
.

It is easy to check that 𝐾 ∈ ℬ(𝐻) and, also,

𝐾*𝑒1 = 𝑒1 + 𝑒2, 𝐾*𝑒2 = 𝐾*𝑒3 = 0.

Now, let ℎ = (ℎ1, ℎ2, ℎ3) ∈ R3 be an arbitrary element. Then ‖𝐾*ℎ‖2 =
2ℎ21, and so

∞∫︁
−∞

|⟨ℎ, 𝐹 (𝑥)⟩|2 𝑑𝜇(𝑥) = ℎ21

∞∫︁
−∞

exp(−𝑥2) 𝑑𝑥 =

√
𝜋

2
‖𝐾*ℎ‖2.
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So, 𝐹 is a tight c-𝐾-frame for R3 with the bound 𝐴 = 𝐵 =
√
𝜋
2
.

In the following, we will define the synthesis, analysis, and frame oper-
ators. If 𝐹 is a c-Bessel mapping, then the synthesis and analysis operators
are defined by

𝑇𝐹 : L 2(𝑋) −→ 𝐻,

⟨𝑇𝐹 (𝐺), ℎ⟩ =

∫︁
𝑋

𝐺(𝑥)⟨𝐹 (𝑥), ℎ⟩ 𝑑𝜇(𝑥),

and

𝑇 *
𝐹 : 𝐻 −→ L 2(𝑋),

𝑇 *
𝐹ℎ = ⟨ℎ, 𝐹 ⟩.

For the synthesis operator, we can write, using the notation of the vector-
valued integral:

𝑇𝐹 (𝐺) =

∫︁
𝑋

𝐺𝐹 𝑑𝜇, 𝐺 ∈ L 2(𝑋).

Therefore, the frame operator 𝑆𝐹 := 𝑇𝐹𝑇
*
𝐹 is given by

𝑆𝐹ℎ =

∫︁
𝑋

⟨ℎ, 𝐹 ⟩𝐹 𝑑𝜇.

Now, when 𝐹 is a c-frame for 𝐻 with the frame bounds 𝐴 and 𝐵, we get

𝐴𝐼𝑑𝐻 6 𝑆𝐹 6 𝐵𝐼𝑑𝐻 .

Hence, 𝑆𝐹 is a positive, self-adjoint, and invertible operator. For more
details about c-frames, we refer to [12]. This property does not hold for
c-𝐾-frames. Indeed, the frame operator of a c-𝐾-frame is not invertible
in general, but when 𝐾 is a closed range, then 𝑆𝐹 on ℛ𝐾 is invertible and
for each ℎ ∈ ℛ𝐾 we have ( [25])

𝐵−1‖ℎ‖2 6 ⟨(𝑆𝐹 |ℛ𝐾
)−1ℎ, ℎ⟩ 6 𝐴−1‖𝐾†‖2‖ℎ‖2.

In the following, we can construct c-𝐾-frames with the help of a c-frame.
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Lemma 2. [16] Let 𝐹 : 𝑋 −→ 𝐻 be a c-frame for 𝐻 and 𝐾 ∈ ℬ(𝐻).
Then 𝐾𝐹 is a c-𝐾-frame for 𝐻.

Example 9. [8] Suppose that 𝜓 ∈ L 2(R), such that

𝐶𝜓 :=

+∞∫︁
−∞

|𝜓(𝛾)|
𝛾

𝑑𝛾 <∞.

For each 𝑥 ∈ R, define

𝐹 : R− {0} × R −→ L 2(R)

𝐹 (𝑎, 𝑏)(𝑥) = (𝑇𝑏𝐷𝑎)(𝑥) =
1√
𝑎
𝜓
(︁𝑥− 𝑏

𝑎

)︁
,

where, 𝑇𝑏 and 𝐷𝑎 are operators on L 2(R) defined by

𝑇𝑏 : L 2(R) −→ L 2(R), 𝐷𝑎 : L 2(R) −→ L 2(R),

(𝑇𝑏𝑓)(𝑥) = 𝑓(𝑥− 𝑏), (𝐷𝑎𝑓)(𝑥) =
1√
𝑎
𝑓
(︁𝑥
𝑎

)︁
.

Via Propositions 11.1.1 and 11.1.2 in [8], we can get

+∞∫︁
−∞

+∞∫︁
−∞

⟨𝑓, 𝐹 (𝑎, 𝑏)⟩⟨𝐹 (𝑎, 𝑏), 𝑔⟩𝑑𝑎𝑑𝑏
𝑎2

= 𝐶𝜓(𝑓, 𝑔), ∀𝑓, 𝑔 ∈ L 2(R).

Thus, 𝐹 is a c-frame for L 2(R) with respect to (R − {0} × R, 𝜇), where

𝜇 =
𝑑𝑎𝑑𝑏

𝑎2
. So, by Lemma 2, if 𝐾 ∈ ℬ(𝐻) is a given bounded operator,

then 𝐾𝐹 is a c-𝐾-frame for L 2(R).

3. c-𝐾-woven frame. In this section, we aim to introduce weaving
c-𝐾-frames (or c-𝐾-woven frame) and study some results about them.
Throughout the paper, by partition of a measure space (Ω, 𝜇) we mean
a partition of Ω into disjoint measurable sets. For each 𝑚 > 1, where
𝑚 ∈ N, we define [𝑚] := {1, 2, . . . ,𝑚} and [𝑚]𝑐 = {𝑚+ 1,𝑚+ 2, . . .}.
Definition 2. Let F := {𝐹𝑖}𝑖∈[𝑚] be a family of c-𝐾-frames for 𝐻 with
respect to the measure 𝜇. We say F is a woven frame when there exist
0 < 𝐴 6 𝐵 < ∞, such that for every partition {𝜎𝑖}𝑖∈[𝑚] of 𝑋, the family
∪𝑖∈[𝑚]{𝐹𝑖} is a c-𝐾-frame for 𝐻 with bounds 𝐴 and 𝐵.
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Via Proposition 3.4 in [23], the upper bound of the woven frame is
evident; indeed, if

{𝐹𝑖}ℎ∈[𝑚]

is a c-Bessel sequence for 𝐻 with bounds 𝐵𝑖, then for each partition
{𝜎𝑖}𝑖∈[𝑚] of 𝑋, the family ∪𝑖∈[𝑚]{𝐹𝑖} is a c-Bessel sequence for 𝐻 with
the bound

∑︀
ℎ∈[𝑚]𝐵𝑖.

The following result presents the necessary and sufficient condition to
construct c-𝐾-woven frame.

Theorem 1. Let 𝐹,𝐺 : 𝑋 → 𝐻 be two c-𝐾-frames for 𝐻. The following
assertions are equivalent:

1) 𝐹 and 𝐺 are two c-𝐾-woven frames.
2) There is a number 𝛼 > 0, such that for each measurable subset

𝜎 ⊂ 𝑋, there exists a bounded operator

Γ𝜎 : L 2
𝜎 (𝑋) −→ 𝐻,

⟨Γ𝜎𝜙, ℎ⟩ =

∫︁
𝜎

𝜙(𝑥)⟨𝐹 (𝑥), ℎ⟩ 𝑑𝜇(𝑥) +

∫︁
𝜎𝑐

𝜙(𝑥)⟨𝐺(𝑥), ℎ⟩ 𝑑𝜇(𝑥),

such that 𝛼𝐾𝐾* 6 Γ𝜎Γ*
𝜎, where

L 2
𝜎 (𝑋) =

{︁
𝜙 ∈ L 2(𝑋) , 𝜙 = 𝐹

⃒⃒
𝜎
∪𝐺

⃒⃒
𝜎𝑐

}︁
.

Proof. (1) ⇒ (2). Suppose that 𝐴 is a minimum of lower bounds of two
frames 𝐹 and 𝐺. Consider 𝛼 := 𝐴 and for any measurable subset 𝜎 ⊂ 𝑋,
assume that Γ𝜎 = 𝑇𝜎, where 𝑇𝜎 is the synthesis operator of 𝐹

⃒⃒
𝜎
∪ 𝐺

⃒⃒
𝜎𝑐 .

Now, for each 𝜙 ∈ L 2
𝜎 (𝑋) and ℎ ∈ 𝐻, we have

⟨Γ𝜎𝜙, ℎ⟩ = ⟨𝑇𝜎𝜙, ℎ⟩ =

∫︁
𝜎

𝜙(𝑥)⟨𝐹 (𝑥), ℎ⟩ 𝑑𝜇(𝑥) +

∫︁
𝜎𝑐

𝜙(𝑥)⟨𝐺(𝑥), ℎ⟩ 𝑑𝜇(𝑥),

and, also,

𝛼‖𝐾*ℎ‖2 6 ‖𝑇 *
𝜎ℎ‖2 = ‖Γ*

𝜎ℎ‖2.

Therefore, 𝛼𝐾𝐾* 6 Γ𝜎Γ*
𝜎.

(2) ⇒ (1). The upper bound is obvious. Suppose that 𝜎 ⊂ 𝑋 is a
measurable subset, 𝜙 ∈ L 2

𝜎 (𝑋) and ℎ ∈ 𝐻 are arbitrary. We get

⟨Γ*
𝜎ℎ, 𝜙⟩ = ⟨Γ𝜎𝜙, ℎ⟩ =
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=

∫︁
𝜎

⟨ℎ, 𝐹 (𝑥)⟩𝜙(𝑥) 𝑑𝜇(𝑥) +

∫︁
𝜎𝑐

⟨ℎ,𝐺(𝑥)⟩𝜙(𝑥) 𝑑𝜇(𝑥) =

=
⟨
⟨ℎ, 𝐹 ⟩

⃒⃒
𝜎
∪ ⟨ℎ,𝐺⟩

⃒⃒
𝜎𝑐 ,𝜙

⟩
.

Thus,
Γ*
𝜎ℎ = ⟨ℎ, 𝐹 ⟩

⃒⃒
𝜎
∪ ⟨ℎ,𝐺⟩

⃒⃒
𝜎𝑐 .

Therefore,

𝛼‖𝐾*ℎ‖2 = ⟨𝛼𝐾𝐾*ℎ, ℎ⟩ 6 ⟨𝛼Γ𝜎Γ*
𝜎ℎ, ℎ⟩ = ‖Γ*

𝜎ℎ‖2 =

=

∫︁
𝜎

|⟨ℎ, 𝐹 (𝑥)⟩|2 𝑑𝜇(𝑥) +

∫︁
𝜎𝑐

|⟨ℎ,𝐺(𝑥)⟩|2 𝑑𝜇(𝑥).

So, we conclude that 𝛼 is a lower bound for 𝐹 and 𝐺. �

Example 10. Let 𝐻 = ℓ2(N), 𝑋 = R and 𝜇 is the Lebesgue measure.
For each 𝑎, 𝑏 > 0, define

𝐾 : 𝐻 → 𝐻,

𝐾𝛿𝑖 = 𝛿𝑖+1

and

𝐹,𝐺 : 𝑋 −→ 𝐻,

𝐹 (𝑥) =

{︃
𝑎𝛿𝑖, 𝑖 6 𝑥 < 𝑖+ 1,

0, 𝑥 < 1
, 𝐺(𝑥) =

{︃
𝑏𝛿𝑖, 𝑖 6 𝑥 < 𝑖+ 1,

0, 𝑥 < 1,

where {𝛿𝑖}∞𝑖=1 is the orthonormal base for ℓ2(N). Via Example 7, 𝐹 and
𝐺 are two c-𝐾-frames for 𝐻 with similar bounds, respectively, 𝑎2 and 𝑏2.
Consider 𝜎 ⊂ R to be a Lebesgue-measurable subset and let

Γ𝜎 : L 2(R) −→ 𝐻,

Γ𝜎𝜙 =
{︁ 𝑖+1∫︁

𝑖

𝑎𝜙(𝑥) 𝑑𝑥
}︁
𝑖∈𝜎

∪
{︁ 𝑖+1∫︁

𝑖

𝑏𝜙(𝑥) 𝑑𝑥
}︁
𝑖∈𝜎𝑐

.

For every 𝜙 ∈ L 2(R), we have

‖Γ𝜎𝜙‖2 = 𝑎2
∑︁
𝑖∈𝜎

𝑖+1∫︁
𝑖

|𝜙(𝑥)|2 + 𝑏2
∑︁
𝑖∈𝜎𝑐

𝑖+1∫︁
𝑖

|𝜙(𝑥)|2 6 max{𝑎2, 𝑏2}‖𝜙‖22.
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So, Γ𝜎 is bounded. For each ℎ ∈ 𝐻, we can calculate that

‖Γ*
𝜎ℎ‖2 > min{𝑎2, 𝑏2}‖ℎ‖2 > min{𝑎2, 𝑏2}‖𝐾*ℎ‖2.

Thus, by Theorem 1, 𝐹 and 𝐺 are c-𝐾-woven frames for 𝐻.

In the next results, we construct a c-𝐾-woven frame with a bounded
operator.

Theorem 2. Let {𝐹𝑖 : 𝑋 → 𝐻}𝑖∈[𝑚] be a c-𝐾-woven frame for 𝐻 with
bounds 𝐴 and 𝐵, also 𝑈 ∈ ℬ(𝐻) be a closed range, such that𝐾𝑈 † = 𝑈 †𝐾.
Then {𝑈𝐹𝑖}𝑖∈[𝑚] is a c-𝐾-woven frame for ℛ(𝑈) with bounds 𝐴‖𝑈 †‖−2 and
𝐵‖𝑈‖2.
Proof. Suppose that 𝑖 ∈ [𝑚] and consider

𝜑 : 𝑋 −→ C,
𝜑(𝑥) = ⟨ℎ, 𝐹𝑖(𝑥)⟩ (ℎ ∈ 𝐻).

So, the mapping 𝜑 is measurable for each ℎ. Thus, the mapping

𝑥→ ⟨𝑈*ℎ, 𝐹𝑖(𝑥)⟩

is measurable and, so, the operator 𝑈𝐹𝑖 is weakly measurable.
For each ℎ ∈ ℛ(𝑈), we can write

𝐴‖𝐾*ℎ‖2 = 𝐴‖𝐾*(𝑈 †)*𝑈*ℎ‖2 =

= 𝐴‖(𝑈 †)*𝐾*𝑈*ℎ‖2 6
6 𝐴‖𝑈 †‖2‖𝐾*𝑈*ℎ‖2 6

6 ‖𝑈 †‖2
∑︁
𝑖∈[𝑚]

∫︁
𝑋

|⟨𝑈*ℎ, 𝐹𝑖(𝑥)⟩|2 𝑑𝜇(𝑥) =

= ‖𝑈 †‖2
∑︁
𝑖∈[𝑚]

∫︁
𝑋

|⟨ℎ, 𝑈𝐹𝑖(𝑥)⟩|2 𝑑𝜇(𝑥).

For the upper bound, we have∑︁
𝑖∈[𝑚]

∫︁
𝑋

|⟨ℎ, 𝑈𝐹𝑖(𝑥)⟩|2 𝑑𝜇(𝑥) 6 𝐵‖𝑈*ℎ‖2 6 𝐵‖𝑈‖2‖ℎ‖2.

�
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Theorem 3. Let {𝐹𝑖 : 𝑋 → 𝐻}𝑖∈[𝑚] be a c-𝐾-woven frame for 𝐻 with
bounds 𝐴 and 𝐵, also let 𝑈 ∈ ℬ(𝐻) be such that ℛ(𝑈*) ⊆ ℛ(𝐾). Then
{𝑈𝐹𝑖}𝑖∈[𝑚] is a c-𝐾-woven frame for 𝐻 if and only if there exists 𝛿 > 0,
such that for every ℎ ∈ 𝐻 we have

‖𝑈*ℎ‖ > 𝛿‖𝐾*ℎ‖.

Proof. First, assume that {𝑈𝐹𝑖}𝑖∈[𝑚] is a c-𝐾-woven frame 𝐻 with the
lower bounds 𝐴. For any ℎ ∈ 𝐻, we get

𝐴‖𝐾*ℎ‖2 6
∑︁
𝑖∈[𝑚]

∫︁
𝑋

|⟨𝑈ℎ, 𝐹𝑖(𝑥)⟩|2 𝑑𝜇(𝑥) =

=
∑︁
𝑖∈[𝑚]

∫︁
𝑋

|⟨𝑈*ℎ, 𝐹𝑖(𝑥)⟩|2 𝑑𝜇(𝑥) 6

6 𝐵‖𝑈*ℎ‖2.

Therefore, ‖𝑈*ℎ‖ >
√︁

𝐴
𝐵
‖𝐾*ℎ‖. For the opposite, if ℎ ∈ 𝐻 is arbitrary,

then

‖𝑈*ℎ‖ = ‖(𝐾†)*𝐾*𝑈*ℎ‖ 6 ‖𝐾†‖ ‖𝐾*𝑈*ℎ‖.

Now, consider {𝜎𝑖}𝑖∈[𝑚] ⊂ 𝑋; we can write

𝐴𝛿2‖𝐾†‖−2‖𝐾*ℎ‖2 6 𝐴‖𝐾†‖−2‖𝑈*ℎ‖2 6 𝐴‖𝐾*𝑈*ℎ‖2 6

6
∑︁
𝑖∈[𝑚]

∫︁
𝜎𝑖

|⟨𝑈*ℎ, 𝐹𝑖(𝑥)⟩|2 𝑑𝜇(𝑥) =

=
∑︁
𝑖∈[𝑚]

∫︁
𝜎𝑖

|⟨ℎ, 𝑈𝐹𝑖(𝑥)⟩|2 𝑑𝜇(𝑥) 6

6 𝐵‖𝑈‖2‖ℎ‖2.

So, {𝑈𝐹𝑖}𝑖∈[𝑚] is a c-𝐾-woven frame for 𝐻 with bounds 𝐴𝛿2‖𝐾†‖−2and
𝐵‖𝑈‖2 �

The following theorem is an extension of Proposition 2.10 in [9] for the
case of continuous 𝐾-frames:

Theorem 4. Let 𝐻 have closed range and {𝐹𝑖}𝑖∈[𝑚] be a family of c-𝐾-
frames for 𝐻. The following assertions are equivalent:
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1) {𝐹𝑖}𝑖∈[𝑚] is a c-𝐾-woven frame for 𝐻.
2) For each 𝑈 ∈ ℬ(𝐻), such that 𝑈𝐾 is well-defined, the family

{𝑈𝐹𝑖}𝑖∈[𝑚] is a c-𝑈𝐾-woven frame for 𝐻.

Proof. (1) ⇒ (2). Suppose that 𝐴 and 𝐵 are frame bounds of {𝐹𝑖}𝑖∈[𝑚].
For each partition {𝜎𝑖}𝑖∈[𝑚] ⊂ 𝑋 and ℎ ∈ 𝐻, we have∑︁
𝑖∈[𝑚]

∫︁
𝜎𝑖

|⟨ℎ,𝑈𝐹𝑖(𝑥)⟩|2 𝑑𝜇(𝑥) =
∑︁
𝑖∈[𝑚]

∫︁
𝜎𝑖

|⟨𝑈*ℎ,𝐹𝑖(𝑥)⟩|2 𝑑𝜇(𝑥) 6 𝐵‖𝑈‖2‖ℎ‖2.

Similarly, for the lower bound, we can write:∑︁
𝑖∈[𝑚]

∫︁
𝜎𝑖

|⟨ℎ,𝑈𝐹𝑖(𝑥)⟩|2 𝑑𝜇(𝑥) =
∑︁
𝑖∈[𝑚]

∫︁
𝜎𝑖

|⟨𝑈*ℎ,𝐹𝑖(𝑥)⟩|2 𝑑𝜇(𝑥) > 𝐴‖(𝑈𝐾)*ℎ‖2.

For the opposite, consider 𝑈 := 𝑖𝑑𝐻 and the proof is evident. �

In the next results, our aim is to delete a measurable subset of the
measure space 𝑋 and generate a new c-𝐾-woven frame.

Theorem 5. Let 𝐾 have closed range and {𝐹𝑖 : 𝑋 → 𝐻}𝑖∈[𝑚] be
a c-𝐾-woven frame for 𝐻 with bounds 𝐴 and 𝐵. If 𝑌 is a measurable
subset of 𝑋 and

𝐶 :=
∑︁
𝑖∈[𝑚]

∫︁
𝑌

‖𝐹𝑖(𝑥)‖2 𝑑𝜇(𝑥) < 𝐴‖𝐾†‖−2,

then {𝐹𝑖 : 𝑋 ∖ 𝑌 → 𝐻}𝑖∈[𝑚] is a c-𝐾-woven frame for ℛ(𝐾) with bounds
(𝐴− 𝐶‖𝐾†‖2) and 𝐵.

Proof. The upper bound is evident. Assume that {𝜎𝑖}𝑖∈[𝑚] ⊂ 𝑋 ∖𝑌 is an
arbitrarily partition, so

{𝜏𝑖}𝑖∈[𝑚] := {𝜎𝑖}𝑖∈[𝑚] ∪ 𝑌

is a partition for 𝑋. For each ℎ ∈ ℛ(𝐾), we have∑︁
𝑖∈[𝑚]

∫︁
𝜎𝑖

|⟨ℎ, 𝐹𝑖(𝑥)⟩|2 𝑑𝜇(𝑥) =
∑︁
𝑖∈[𝑚]

∫︁
𝜏𝑖

|⟨ℎ, 𝐹𝑖(𝑥)⟩|2 𝑑𝜇(𝑥)−

−
∑︁
𝑖∈[𝑚]

∫︁
𝑌

|⟨ℎ, 𝐹𝑖(𝑥)⟩|2 𝑑𝜇(𝑥) >
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> 𝐴‖𝐾*ℎ‖2 − ‖ℎ‖2
∑︁
𝑖∈[𝑚]

∫︁
𝑌

‖𝐹𝑖(𝑥)‖2 𝑑𝜇(𝑥) >

> (𝐴− 𝐶‖𝐾†‖2)‖𝐾*ℎ‖2.

�

Theorem 6. Let 𝐾 have closed range, every singleton subset of 𝑋 be
non-zero measurable, and {𝐹𝑖 : 𝑋 → 𝐻}𝑖∈[𝑚] be a tight c-𝐾-woven frame
for 𝐻 with the bound 𝐴. If, for any 𝑥0 ∈ 𝑋, the set {𝐹𝑖(𝑥0)}𝑖∈[𝑚] is a
𝐾-frame for ℛ(𝐾) with the upper bound 𝐵, where 𝐴 > 𝐵𝜇({𝑥0})‖𝐾†‖2,
then {𝐹𝑖 : 𝑋 ∖ {𝑥0} → 𝐻}𝑖∈[𝑚] is a c-𝐾-woven frame for ℛ(𝐾).

Proof. Consider {𝜎𝑖}𝑖∈[𝑚] to be a partition for 𝑋 ∖{𝑥0}. Then {𝜏𝑖}𝑖∈[𝑚] :=
{𝜎𝑖}𝑖∈[𝑚] ∪ {𝑥0} is a partition for 𝑋. Now, for each ℎ ∈ ℛ(𝐾) we can get∑︁

𝑖∈[𝑚]

∫︁
𝜎𝑖

|⟨ℎ, 𝐹𝑖(𝑥)⟩|2 𝑑𝜇(𝑥) =
∑︁
𝑖∈[𝑚]

∫︁
𝜏𝑖

|⟨ℎ, 𝐹𝑖(𝑥)⟩|2 𝑑𝜇(𝑥)−

−
∑︁
𝑖∈[𝑚]

𝜇({𝑥0})|⟨ℎ, 𝐹𝑖(𝑥0)⟩|2 >

> 𝐴‖𝐾*ℎ‖2 −𝐵𝜇({𝑥0})‖ℎ‖2 >
> (𝐴−𝐵𝜇({𝑥0})‖𝐾†‖2)‖𝐾*ℎ‖2.

On the other hand, we have∑︁
𝑖∈[𝑚]

∫︁
𝜎𝑖

|⟨ℎ, 𝐹𝑖(𝑥)⟩|2 𝑑𝜇(𝑥) 6
∑︁
𝑖∈[𝑚]

∫︁
𝜏𝑖

|⟨ℎ, 𝐹𝑖(𝑥)⟩|2 𝑑𝜇(𝑥) 6 𝐴‖𝐾‖2‖ℎ‖2.

This completes the proof. �

In the next result, the converse of Theorem 6 can be constructed with
a slight change.

Theorem 7. Use the notation of Theorem 6. If, for some 𝑥0 ∈ 𝑋, the
family {𝐹𝑖 : 𝑋 ∖ {𝑥0} → 𝐻}𝑖∈[𝑚] is a c-𝐾-woven frame for ℛ(𝐾) with the
upper bound 𝐵′, such that 𝐴 > 𝐵′‖𝐾†‖2, then {𝐹𝑖(𝑥0)}𝑖∈[𝑚] is a 𝐾-frame
for ℛ(𝐾).

Proof. Suppose 𝐶 and𝐵′ be the frame bounds of {𝐹𝑖 : 𝑋∖{𝑥0} → 𝐻}𝑖∈[𝑚].
With the same assumptions as in Theorem 6, we can write

𝐶‖𝐾*ℎ‖2 6
∑︁
𝑖∈[𝑚]

∫︁
𝜎𝑖

|⟨ℎ, 𝐹𝑖(𝑥)⟩|2 𝑑𝜇(𝑥) =
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=
∑︁
𝑖∈[𝑚]

∫︁
𝜏𝑖

|⟨ℎ, 𝐹𝑖(𝑥)⟩|2 𝑑𝜇(𝑥) −
∑︁
𝑖∈[𝑚]

𝜇({𝑥0})|⟨ℎ, 𝐹𝑖(𝑥0)⟩|2 =

= 𝐴‖𝐾*ℎ‖2 −
∑︁
𝑖∈[𝑚]

𝜇({𝑥0})|⟨ℎ, 𝐹𝑖(𝑥0)⟩|2.

Therefore,

0 < 𝐶 6 𝐴− 𝜇({𝑥0})

‖𝐾‖2 ‖ℎ‖2
∑︁
𝑖∈[𝑚]

|⟨ℎ, 𝐹𝑖(𝑥0)⟩|2,

or ∑︁
𝑖∈[𝑚]

|⟨ℎ, 𝐹𝑖(𝑥0)⟩|2 6
𝐴‖𝐾‖2

𝜇({𝑥0})
‖ℎ‖2.

Hence, {𝐹𝑖(𝑥0)}𝑖∈[𝑚] is a Bessel sequence for ℛ(𝐾). Since

𝐴‖𝐾*ℎ‖2 −
∑︁
𝑖∈[𝑚]

𝜇({𝑥0})|⟨ℎ, 𝐹𝑖(𝑥0)⟩|2 =
∑︁
𝑖∈[𝑚]

∫︁
𝜏𝑖

|⟨ℎ, 𝐹𝑖(𝑥)⟩|2 𝑑𝜇(𝑥)−

−
∑︁
𝑖∈[𝑚]

𝜇({𝑥0})|⟨ℎ, 𝐹𝑖(𝑥0)⟩|2 =

=
∑︁
𝑖∈[𝑚]

∫︁
𝜎𝑖

|⟨ℎ, 𝐹𝑖(𝑥)⟩|2 𝑑𝜇(𝑥) 6

6 𝐵′‖ℎ‖2 6 𝐵′‖𝐾†‖2‖𝐾*ℎ‖2,

we get

(𝐴−𝐵′‖𝐾†‖2)
𝜇({𝑥0})

‖𝐾*ℎ‖2 6
∑︁
𝑖∈[𝑚]

|⟨ℎ, 𝐹𝑖(𝑥0)⟩|2.

The proof is completed. �

Summary. In this note, we connected three concepts of the frame theory:
continuous frames, 𝐾-frames, and weaving frames. Mainly, we studied the
effects of weaving applied to the continuous 𝐾-frames.
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