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WEIGHTED VARIABLE HARDY SPACES ASSOCIATED
WITH OPERATORS SATISFYING DAVIES-GAFFNEY
ESTIMATES

Abstract. We introduce the weighted variable Hardy space
H]z«j(')(R”) associated with the operator L, which has a bounded

W

holomorphic functional calculus and fulfills the Davies-Gaffney es-

timates. More precisely, we establish the molecular characterization

of H f(gj (R™) and we show that the new weighted variable bounded
(),M

*
,w

Hg(;z(R”), where L* denotes the adjoint operator of L on L?(R").
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mean oscillation-type space BMOY represents the dual space of

1. Introduction. The theory of Hardy spaces in R™ was first in-
troduced by Stein and Weiss [23] and was originally tied closely to the
theory of harmonic functions. On the other hand, the real-variable meth-
ods were introduced by Fefferman and Stein [7|. It is well-known that
the classical Hardy space HP(R™) is a suitable substitute of the Lebesgue
space LP(R") for any p € (0,1]; for example, when p € (0, 1], various
well-known operators from harmonic analysis, such as Hilbert and Riesz
transforms, are bounded on HP(R™), but not on the classical Lebesgue
spaces LP(R™). As a generalization of the classical Hardy spaces, Nakai
and Sawano [20] introduced and studied the atomic characterization of the
Hardy space HP()(R") with variable exponent. Independently, Cruz-Uribe
and Wang [4] studied the variable Hardy spaces H?")(R"™) with p(-) sat-
isfying some conditions slightly weaker than those used in [20]. Recently,
Zhuo et al. [27] investigated the intrinsic square function characterizations
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of the variable Hardy spaces, then Saibi [21] extended the results of [27]
to the variable Hardy-Lorentz spaces.

The weighted variable Lebesgue space is a natural generalization for
the classical weighted Lebesgue space and the variable exponent Lebesgue
space. This space has been considered in a series of papers, see for exam-
ple [3], [17]. Regarding the theory of the Hardy spaces, Ho [12], presented
the atomic characterization for the variable weighted Hardy spaces. Ad-
ditionally, Melkemi et al. [19] explored the weighted Hardy spaces with
variable exponents on a proper open subset 2 of R™.

In the last decade, the study of function spaces associated with differ-
ent operators has been a very active area of research in harmonic analysis
and has attracted the attention of many researchers. In particular, Yang
and Zhuo [26] introduced the variable Hardy space H z(' (R™) associated
with the operator L, where p(-): R” — (0, 1] is a measurable function
satisfying the globally log-Holder continuous condition and L is a lin-
ear operator on L*(R"), which generates an analytic semigroup {e 'L}
with kernels having pointwise upper bounds. As a generalization of these
results, Yang et al. [24] considered the variable Hardy spaces H ﬁ(')(R”) as-
sociated with the operator L, which obeys the Davies-Gaffney estimates.
More generally, Zuo et al. [28]| investigated the variable Hardy-Lorentz
spaces associated with operators satisfying Davies-Gaffney estimates. We
point out that the notion of the Davies-Gaffney estimates (or the so-called
L? off-diagonal estimates) of the semigroup {e~*},-( was first introduced
by Gaffney [8] and Davies [5], which is considered as a generalization of
the Gaussian upper bound of the associated heat kernel.

The main purpose of this paper is to introduce and study the weighted
variable Hardy space Hg(u))(R”) associated with the operator L, which
satisfies Davies-Gaffney estimates. We establish its molecular character-
ization by means of the atomic decomposition of the weighted variable
tent space. Furthermore, using this molecular characterization, we for-
mulate the dual space of the variable weighted Hardy space Hf(lg(R")
The rest of this paper is arranged as follows: in Section 2, we describe
the Assumption(A) and Assumption(B) imposed on the operator L and
we recall some definitions and basic properties of the weighted Lebesgue
spaces with variable exponent. In Section 3, we introduce the weighted
variable tent space Tﬁ(')(RTI), establish its atomic characterization, and
give the definition of the weighted Hardy space with variable exponents

associated to the operator L in terms of the square function of the heat
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semi-group generated by L. Our main results on the molecular charac-
terization of H f(g(R”) is given in this section (see theorem 3 below). In
Section 4, We 1ntroduce the weighted BM O space with variable expo-
nent BM Oi* (R"), where M € N and L* denotes the adjoint opera-

tor of L on L*(R™), and we establish the duality between H z(yz(R”) and
BM OI;J* (R”)
We end this introduction by describing the basic notation. We denote

by N the set {1,2,...} and by Z, the set NU{0}. The square function Sy,
associated with L is defined by setting, for any f € L?*(R") and = € R™,

=[] |

0 B(z,t)

1/2
2 dydt

tn—l—l

t2 7t2L (y>

The symbols A < B and A ~ B stand for the inequalities A < C'B and
A< BSA, respectlvely, and C denotes a positive constant independent
of the parameters, which can vary from line to line. Finally, for a measur-
able subset 2 C R"™ we denote by || and yq the Lebesgue measure of
and the characteristic function of €, respectively.

2. Preliminaries. We first give some notions, notation, and useful
definitions; we also describe the assumptions required for the operator L

considered in this paper.
Let R7! := R" x (0,00). For any a € (0,00) and z € R", define

To(z) = {(y,t) € R |y — 2| < at}.

If « =1, for the sake of simplicity, we write I" (z) instead of I',(z). For
any ball B := B(xpg,rg) C R" with zp € R" and rg € (0,00), A € (0,00)
and j € N, let AB := B(xzg, \rp),

B ={(y,t) € R™", dist(y, B°) > t}.

Now, we recall some notions of bounded holomorphic calculi which was
introduced by McIntosh [18]. Let 0 < 1 < w. The closed sector in the
complex plane C is defined as follows:

S, ={z€C: |argz| <n}U{0}
and its interior denoted by Sy is defined by

= {z € C\{0}: |arg z| < n}.
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Denote the set of all holomorphic functions on 52 by H (5'2) and for any
b€ H(S)) we define [|b]|o by

Iblloc = sup{[b(2)|: 2 € Sp}-

The set of all b € H(S)) satisfying ||b]|oc < 0o is denoted by Hu(S,) and
define the set W(S)) by

clzl”
\11(52) = {1/1 € Hoo(Sg): dv,C > 0: |¢(,z)| < %’LPV

Vz e 5'2}.
Let n € [0,7) and denote the spectrum of L by o(L). Then, we say that
the closed operator L on L*(R"™) is of type 7 if

1) o(L) is a subset of S,

2) for any v € (n, ), there exists a positive constant C,,, such that for
all A ¢ S, :
(L =AD"l zz@ny < Col AT

where £(L?*(R™)) denotes the set of all linear continuous operators
from L?(R™) to itself and for any operator T' € L(L?(R")), its norm
is denoted by ||T'||z(r2(rny)-

Let n € [0,7), L be a one-to-one operator of type n in L*(R"), v € (n,7)
and ¢ € ¥(SY). The operator 1(L) is defined as follows:

wlD) = 5 [T - 1) (1)
(C]

where © = {re”:r € (0,00)} U {re™:r € (0,00)}, v € (n,v) is the
curve consisting of two rays parameterized anti-clockwise. It is well-known
that the integral in (1) is absolutely convergent in L?(R") (see [9], [18]
for more details) and (L) does not depend on the choice of v (see, for
instance, [1, Lecture 2|). By a limiting procedure, we can extend the
above holomorphic functional calculus on ¥(S%) to Hy(S?) (the reader
is referred to [18] for more details). Let 0 < v < m; we say that the
operator L has a bounded H,,(S%)-calculus in L*(R") if there exists a
positive constant C, such that for all v € H,.(S2),

|1V (L)[ 22 @ny) < Cll¥0]| oo (s9)-
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We assume that L is an operator satisfying the following assumptions:
Assumption (A). L is one-to-one operator of type n in L*(R") with
n € [0,%) and has a bounded holomorphic functional calculus.
Assumption (B). The semigroup {e '£'},-o generated by L satisfies the
Davies-Gaffney estimates, namely, there exist positive constants ¢; and
¢, such that, for any function f in L?(R") and closed sets F and F' of R"
with supp f C F,

[dlst(E F)

le ™ ()2 < cre” £l 22,

where dist(E,F) :=inf{|z —y|: x € E,y € F}.

A measurable function p(-): R" — (0, 00| is called a variable exponent.
We set

p— = essinfernp(z) and p; = esssup,cpnp(T),
and

P(R") := {p() variable exponent: 0 < p_ < py < oo}.

Let p(-) € P(R"). The variable Lebesgue space LP()(R™) consists of all
measurable functions f: R" — C, such that [ |f(z)|P@dx < oo, equipped
R

with the Luxemburg quasi-norm

11 Lot ny = inf {)\ ~0- / [!f(;:)l]pmdx < 1}.

R

We recall that for any f € L{_(R"), the Hardy-Littlewood maximal
operator M is defined for all x € R™ by setting

B>z

M()a) = sup o / £(w)] dy

where the supremum is taken over all balls B of R™ containing x.

Let w: R® — (0,00) be a locally integrable function. The weighted
Lebesgue space with variable exponent L{’U(')(R”) is defined as

LZ,(')(R”) = {f :R" — C: ||f||LZ<~>(Rn) = wa”LP(‘)(R") < OO}'
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Note that if w = 1, then L2 (R") = LPO)(R™) and if p(-) is a constant,
then L5 (R™) is the classical weighted Lebesgue space L?,(R™).

We recall in the following lemma the Holder inequality, for the proof
see |6, Lemma 3.2.20].

Lemma 1. Letp(-): R" — [1,00) andw : R" — (0, 00) be two Lebesgue
measurable functions. Then

/ £@g(@)lde < 217 g g 19173y

where, p'(+) denotes the conjugate function of p(-), that is: 1% + % = 1.

Let p = min{p_, 1}.

Definition 1. Let p(-) € P(R") andw: R" — (0,00) be a Lebesgue mea-
surable function. We denote by W), the set of all Lebesgue measurable
functions w, such that

< oo and ||xB|| wey/pr < o0, for any ball B C R";

(R™) L= (R
e there exist k > 1 and s > 1, such that the Hardy-Littlewood maxi-
mal operator is bounded on LSf i)) / k(]R”).

Remark 1. It is easy to see that L’ 1(/2(]1%”) is the s-convexification of

LEO(RM).

¢ sl

For any w € Wy, set

= inf{s > 1: M is bounded on L ()) . (R™)}
and
Sw = {s > 1: M is bounded on LS]_)EC'/)zl/k(]R"),for some k > 1}.
For any fixed s € S,,, we define

ki = sup{k > 1: M is bounded on L(Sfizz MER™MY.

The following theorem is the Fefferman-Stein vector-valued maximal
inequalities on LY (R™). For the proof, we refer to [12, Theorem 3.1].
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Theorem 1. Letp(-): R" — (0,00) be a Lebesgue-measurable function
with0 < p_ < py < oo andq € (1,00). If w € Wy, then, for any r > s,

we have
1/q
s < (Z2050)

€N

()],

1€N

L

The following lemma plays a key role in the proofs of the main results
of this paper; we refer the reader to |12, Lemma 5.4].

Lemma 2. Let p(-) € P(R"), w € Wy, r € (0,1], such that * € S,
and q € (r(k}u/r)’,oo). Then there exists a positive constant C, such
that for any sequence {B;};en of balls in R", {\;}jen C C and functions
{a;};en satisfying the condition that for any j € N, Supp a; C B; and
llajllzoqny < |B;|M9,

(Ee) o <el(Smoer)

3. Weighted variable Hardy spaces. In this section, we intro-
duce the weighted variable Hardy space associated to the operator L, and
we establish its molecular characterization via the atomic decomposition
of the weighted variable tent spaces given in this section. We begin by
recalling some notation.

For all measurable functions f on R and for any x € R, define the

operator A by
dydt\"?
= ([ 1rwors)
I'(z)

Let p(-) € (0,00). The tent space TP(R:') is the space of all measurable
functions f on R’ such that

LLD( ) R" Lﬁ,()(Rn)

1l zp ey = TAC e eny < o0

Let p(-) € P(R") and w: R™ — (0,00). The weighted variable tent space
T 5(')(}1%1“) is defined to be the space of all measurable functions f on
R"™ such that A(f) € LEO(R™). For any f € Tﬁ(')(R’fﬂ), define

Hf”TfZ(')(RT'l) = ||A(f)||Lgu(->(Rn)-
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Let F be a closed set in R” and O = FT: we denote by O the tent over 0,
which is the set

O :={(z,t) € R dist(z, F) >t}
Next, we give the definition of (p(-), w, co)-atoms:

Definition 2. Let p(-) € P(R"), w: R" — (0,00) be a Lebesgue-measur-
able function and r € (1,00). A function a on R is called
a (p(+), w, 00)-atom, if

(i) there exists a ball B C R", such that supp a C B;

() llallzr@yey < 1BV lIxall

The theorem presents the atomic characterization of TH (R"1):

Theorem 2. Letp(-) € P(R"), w € W,y. Then, for any f €T£(')(RT1),
there exist (p(+), w, 0o)-atoms {a; };en associated with the balls { B; }ien, re-
spectively, and numbers {\;};en C C, such that for almost every

(z,t) € RT,
t)=> Nai(x,t). (2)

ieN
Moreover, there exists a constant C' > 0, such that for all f€TH (R™1) :
A({Ai}ien; { Bitien) < Ol fll o0 i1y (3)

where for any sequence of numbers {\;};en € C and sequence of balls
{Bi}ien

A({Aibien A Bi}ien) : H(%N [LB(R)]@)

Here and hereafter 6 := sup{s~': s € S,,}.

Proof. Let f € Tp(')(]R”H). Let Q; = {z € R" : A(f)(z) > 2'} for any
i € 7. Since f € TO (R”“), it is easy to check that €); is a proper open
set and |2;] < oo for each ¢ € Z. By a similar argument used in the

proof of |15, Theorem 3.2|, we can show that supp f C [( Usez Q/\j) U E} ,
where E C R satisfying [ @ = 0. Thus, for each i € Z, by applying

(4)

ARG

E
the Whitney decomposition (see [22, p. 167]) to Qf, we get a sequence
{Qi j}jen of disjoint cubes, such that
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1) UN Qi; = QF and {Q;;}jen have disjoint interiors,
j€

2) for all j € N,

Cl\/ﬁlQi,j < diSt(Qi,j7 (Qj)c) < CQﬁlQi,j’

where g, denotes the side-length of the cube @Q;; with

diSt(Qz‘,ja(Qf)C) =inf{lz —yl: € Qi;,y € ().
For each j € N, choose a ball B;; with the same center as ();; and
with radius £/nl(Q; ;). Define

Aij = Ezj N (Qij x (0,00)) N (Q* \ Qz-i—l)

|LP() fXA’L] and Al] - 2 HXBz]

Note that {(Q; ;% (0,00))N (Q*\QZ“)} C B\” Following the proof used in
[27, Theorem 2.16|, we can show that a; ; is a (p(+), w, 00)-atom associated
to the ball B, ; for any i € Z and j € N. We see that f = > > \ija;;

i€Z jEN
almost everywhere. Then remains to show that
A({Ai}ien, { Bitien) < C||f||T5<‘>(R1+1)'
Indeed, by the definition of A; ;, we have
%
i 6
A({Nijiezjen, { Bijiezjen) = Z <Z (2'xs.,) > N
i€Z jEN LA (Rm)
1
i 0\’
N (z (x5 ) s
iet jeN L5 (Rm)
ZGZ
Since % € S, and % > s,. Hence, by Theorem 1 and the fact that
xar S [M(xe,)], we find

AN Yiezjer { Bigiezjen) S 2 [ M(xa,)

i€EZ
< AU g0 @y = 1 lggor gy

} <
w (Rn) ~
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Now the proof is completed. [
We denote by TP/ (R%™) and T2(R'}*) respectively, the set of all

functions in T4 (R%*1) and T2(R"*") which have compact supports.
Proposition 1. Letp(-) € P(R"),w € W,y. Then TPO (R € T2(RTH)
in the meaning of sets.

Proof. By [16, Lemma 3.3(i)], we know that T4(R"™) C T2(R":) for any
¢ € (0,00). Then it is sufficient to show that T2 (R ¢ T4 (R, for
some ¢ € (0,00). Indeed, let f € Tf,gj,)(]RTl) be such that supp f C E,
where F is a compact set of R’fl. Let B be a ball of RTFI such that
E C B. Then supp Af C B and by Lemma 1 we have:

Jus@ra= [ as@ras [ A@rdas
R {zeB:Af(z)<1} {zeB:Af(z)>1}

S IBI+ A2 omllxsl oom: S 1B+ IAFI -
w= w P w

O

Next, we establish the molecular characterization of the weighted vari-
able Hardy spaces associated with operators satisfying the Davies-Gaffney
estimates. These kind of spaces are denoted by H Z(JJ(R”) We begin with
some definitions.

Definition 3. Let p(-) € P(R") and w : R* — (0,00) be a Lebesgue
measurable function. Let L be an operator satisfying Assumption (A) and
Assumption (B). The weighted variable Hardy space H z(uz(R”) is defined

as the completion of the space ]’—_V]fl(u)}(Rﬂ),

HYO(R") = {f € L®"): (/)] pogny < 00}

with respect to the quasi-norm

| Su(f
£y = 150 gy = 8 {2 > 02 g0 (PE0) < 1],

where gy (340) = [ [SUDGN]
Rn

To introduce the molecular weighted variable Hardy spaces H gfi’M’e(R"),
we give the definition of a (p(+), w, M, €),-molecule.
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Definition 4. Let L be an operator satisfying Assumption (A) and As-
sumption (B) and p(-) € P(R™) and w: R®™ — (0,00) be a Lebesgue
measurable function. Assume that M € N and € € (0,00). A function
m € L*(R") is called a (p(-), w, M, €)-molecule, if m € R(L™) (the range
of LM) and there exists a ball B := B(xg,rp) C R", where x5 € R" and
rg > 0 is such that for every k =0,...,M and j € Z:

H (TE2L_1)kaL2(U]'(B)) < 2_€j|2jB|1/2||XB||;§](')(Rn)’

where for j € N:
U](B) = B(I‘B, 2‘77“3)\3(1'3, 2j_17"3),

and for j = 0:
U[)(B) = B($B7TB).

Definition 5. Let L be an operator satisfying Assumption (A) and
Assumption (B). Let p(-) € P(R") and w € Wy.y. Assume that M € N

and e € (0,00). For a measurable function f on R", f = Y \;m; is called
a molecular (p(-),w, M, €)-representation of f, if {mj}jjeNl is a family of
(p(+), w, M, €)-molecules, the sum converges in L*(R") and {\,}jen C C
satisties

A ({Aj}jen, {Bj}jen) < o0,
where A ({\;}jen, {Bj}jen) is as in (4) and for any j € N, B; is the ball
associated with m;. The space H QEZ’M‘(R”) is defined to be the set of all

functions f € L*(R"), which has a molecular (p(-), w, M, €)-representation.

OMeRnY s the com-

The molecular weighted variable Hardy spaces H7

pletion of ﬁz%’M’E(R”) with respect to the quasi-norm

£l gy 30 oy 1= inf {A({)\j}jeN, {Bj}jen) :

f= Z A;jm; is a molecular (p(-),w, M, €) — representation}.
j=1

To establish the molecular characterization of HﬁfZ’M’E(R”), we need
the following technical lemmas. Let L be an operator satisfying Assump-
tions (A) and (B) and M € N. The next lemma can be proved by using
an argument similar to that used in the proof of [24, Proposition 3.10].
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Lemma 3. Let p(-) € P(R"),w € Wy,,M € (%[3 —3].00) NN
and € > 5. There exist a constant C' and o € (%,00), such that, for
any j € Zy and (p(-),w, M, €)r-molecule m, associated with the ball

B := B(zg,rp) C R", where xp € R" and rg > 0,

I1820m) 2w, < C2 2Bl

Proposition 2. Let p(-) € P(R"),w € W)y. Let M €N and e€ (0, 00).
Then the set of all finite linear combinations of (p(-),w, M, €)-molecule
denoted by Hz(')’%;f (R™) is dense in Hﬁ%’M’E(R”) with respect to the quasi-

?w?
norm || - ) M,e

”Hifw (&)

Proof. Let g € Hi( ) ME(R”). Then, by the definition of Hﬁg’M’e(R"), we

know that for any § € (0,00) there exists a function f € ﬁfEZ’M’G(R”),

such that
)
Hg - fHHfSLZ’M’G(R”) < 5

By the definition of H ﬁfi’M’E(R”), we conclude that there exist {);};en € C
and a family {m;};en of (p(-),w, M,e€)r-molecules, associated with the

balls {B;};en of R", such that
F=>_Xmyin L*(R") and A({\;}jen.{B;}jen) < o0
j=1
Let fv = Zﬁvzl Ajm;j for any N € N; then we have

Zx\m

j=N+1

({)\ } =N+1> {B }] N+1) =

HE ]y
j=N+1 ”XBJ'HLfU(‘)(R”)
15 e

)

<

Hf fN”Hp( ), Moe (Rm) — Hz(')’M’S(R")

AR

Lp(e')/e (R")
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On the other hand, since

1/6

A ({)‘j}?o:NHv{Bj};o:NH) = < 00,

Lp(e')/e (R")

i { |>‘j|XBjRn):|0

it follows that for almost every x € R",

. - I)\J|XB] ’
e I

=N+1 ||XBj||LP(')(Rn

Combining this and the dominated convergence theorem (see, for example,
[6, Lemma 3.2.8]), we obtain

i [ Ailxs, )r

1/6
=0.
Lp(g')/e(R")

lim
N—oo

Thus, we conclude that
]\}1_{20”][ - fNHHQS'IZ*MvS(Rn) =0.

Hence, we find that for any 6 € (0,00) there exists some Ny € N, such
that for any N > Ny:

|

Hf - fNHHz(,u)],M,e(Rn) <

Obviously, for any N € N, f € Hig%g(R”) Then, for any § € (0, 00),
when N > Ny:

Hg - fN||H§§;}1’M‘€(R") S Hg - fHHZS;Z»M’E(Rn) + Hf - .fNHHz(’;J)J’M»f(Rn) S 0.

Then we conclude that H g(u)]%ne (R™) is dense in H ﬁ;}z’M’e(R”) with respect
to the quasi-norm || - ||HES;Z,M,6(RW). O

The following theorem deals with the molecular characterization of
HY o (R").

Theorem 3. Let L be an operator satisfying Assumption (A) and As-
sumption (B). Let p(-) € P(R"),w € Wy). Let M € (%[5 — 1],00) NN
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and let € € (%,00). Then Hz(w “(R™) and Hz(lZ(R") coincide with the
equivalent quasi-norms.

Let first show that f[ﬁf;})’M’e(R”) Hp()(R") N L*(R")|.

Proposition 3. Let L be an operator satisfying Assumption (A) and
(B). Let p(-) € P(R"),w € Wy). Let M € (%[3 — 3],00) NN and let
€ € (§,00). Then there exists a positive constant C, such that for any

fe  H MR,
1126 ey < OIS sty

Proof. Let f € ]:lg(u)}M€(R") Then, by Definition 5, we know that there
exist {\j}jen C C and a family {m;},en of (p(:), w, M, €) -molecules as-

sociated with the balls {B;};jen of R", such that f = > A\;m; in L*(R")
j=1

and
1AW s e ey ~ A ({As }yens {Bj}yen) (5)

Since the operator S, is bounded on L*(R"™), we find that

‘ SL<Z)\mJ>

Hence, there exists a subsequence {SL< Zjvz’“l )\jmj)} , such that for
keN

almost every x € R™:

’}LIEOSL (Z /\jmj) (z) = Sc(f)(x).

Thus, for almost every z € R” we have

ZZIA |S1(my) () Xv,(B;)(T)-

7=1 =0

— 0.
(R") N—o0

Then

1L A0 gy = 12O

<
<
)/ (rn)

w
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o0

Z I\ [Se(my)xus))]

0

N

<D

o0 00 0 1/610
<y [Z I S5 is )| .
=0 j=1 Lf;)(')(]R”)

By Lemma 3, we find that for any j € N and ¢ € Z,

HSL(m]')“L?(Ui(B HSL ;) XUy(B)) HL2 (Rn) ~ S 277[2'B; ‘UQHXB HLP O (gny’

(7)

where o € (%, 00). Multiplying (7) by 2" ||x3, I 150) gy We obtain

|

We apply Lemma 2 for a; := 2°||xp,|| »0
that

S 12'By|'2
L2(R7)

2 ”XB]' HLg}(‘)(Rn)SL(mj)XUz‘(Bj)
(RH)SL(mj)XUi(Bj), to conclude

<

1/6
H{ > [Satom o) } <
Lﬁ(')(R")

o~ 1/6
< H{ 2 g s,
j=1

From the fact that xsip, () < 2" M(xs,)(z), we deduce that

H{Z|>\| [SL(mj)xu.(B )]9}1/0

. 0~ 1/0
S [{S [ el 2a000m)
j=1

L5 )

S
AN

L5 ()

We choose r € (0,6) such that ¢ > nr~!. Then, by Remark 1 and
Theorem 1, we have
<

1/6
H{Zm [Su(m )} <
ARG
‘ . 0/r~N 1/0
<[{ [e e i g, wirarta)] )
j=1

N
140 ()
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) T ‘)\|r 0/rNr/0)1/r
s | S ()] ) S
j=1 Lt HXBj HL{’U(')(]R“) Li}(r‘)/T(]Rn)
. T |)\ | 6y 1/0
5 271(07%) {Z —]XB~:| } 5
j=1 _||XB]HLfU()(Rn) ! LZ(')(RTL)

S 270N (A }en, {Bj}ien) ~ 2_i(a_%)“fHHf(;)J’M‘C(R”)'

From this, (5) and (6), we infer that for any f € ﬁ[ﬁfg’M’E(R”),

oo 1/6
15562y = NS00 gy {Z2< } 1 Ly ~

~ ||fHH£E:u))J\4’E(Rn)7

which is the desired result. [J

The following proposition shows that [H f(u))(R”) N LQ(R”)] is a subset
of the space ﬁi%’M’E(R”).
Proposition 4. Let L be an operator satisfying Assumptions (A) and
(B). Let p(-) € P(R™), w € Wyy. Let M € N and let € € (0,00). Then
for any f € [Hz(lz(R”) N L2(R")] there exist {A;}jen C C and a family

{m;};en of (p(-), w, M, €)-molecules, associated with the balls { B;}en of
R™, such that f = > \jm; in L*(R"),
j=1

A({A}ew ABj}jen) < CllSll ro -

Proof. Let f € H}')(R") N L*(R") and F(z,t) := t2Le™ "I f(z), for all
(z,t) € R™'. Then F € T4 (R") N L*R"). Hence, by Theorem 2,
there exist (p(-), w, co)-atoms {a;},en, associated with the balls {B;};en,
respectively, and numbers {\;};en C C, such that for almost (z,t) € R%:

F(z,t) =Y Naj(2,t), in THO(R") N LA(R")
JEN

and
A({)‘j}jGNv {Bj}jEN) < O’|F|’T5(‘)(Rn) ~ |’fHH€<;Z(R”)'
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By the H, —calculi of L, we know that

f Cus /( )M“rle*t L(t2L 7t2L(f))@

7 = WM’L(F), in L2(Rn),
0

where Cyy | t2(M+2)e_t2% = 1. From the fact that 7y 1, is a bounded map
0
from T2(R’) to L2(R™), it follows that
f = OM X TM,L < Z )\j@j) = CM(Z /\j7TM7L(aj)>7 n LQ(Rn)
jEN jeN

Following the argument used for [24, Lemma 3.11|, we can prove that
m; = ma,(a;) is a multiple of a (p(-), w, M, €) ,-molecule adopted to Bj;
this implies the desired result. [J

Next, we give the proof of Theorem 3.
Proof. By Proposition 3, Proposition 4, and the density argument, we

have for M € (2[5 — 3],00) NN and each € € (%,00): the spaces HZEJ(R”)

and H f&?)’M’E(R”) coincide with equivalent quasi-norms. O

4. Dual space. In this section, we study the duality of Hﬁg (R™).
Here and hereafter, we denote by L* the adjoint operator of L in L?(R™).
Let us first recall some basic notions and definitions.

Definition 6. Let p(-) € P(R") and w: R* — (0,00) be a Lebesgue
measurable function. Let L be an operator satisfying Assumption (A)
and Assumption (B). Then for any M € N and € € (0,00) define

M,e n n
POMR) = {f = L"(g) € L*(R"): g€ D(LM), Hf|yM,m,M,e(Rn)<oo},

where D(LM) denotes the domain of the operator L™ and

LAl gz e ey = sup {2j(€ NIxsonl 120 @n Z 1L ()| 22w (071))}-
; +

The dual space of ME MG(R") denoted by [ ()MG(R )r is defined

as the set of all bounded linear functionals on /\/lp )ME(R”) Then,
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for any f € [M’E(;l’M’e(R”)r and g € M]z(,')’M’g(R"), the duality be-
tween [ ‘Z(BUME(]R”)} and /\/lp )ME(R”) is denoted by (f,g)m. Let
HOM (RY) = Mo | i‘;ME(Rn)} .

Definition 7. Let p(-) € P(R") andw: R" — (0,00) be a Lebesgue mea-
surable function. Let M € N and L be an operator satlsfymg Assumption

(A) and Assumption (B). We say that an element f € /\/l M (R™) is in
BMOI,;*M (R™) if

’3‘1/2 ) 1/2
o sy = 308, — [ [iu-esypmpa - <o,

where the supremum is taken over all balls of R".

The following result can be seen as an extension of |24, Proposition 4.3]
to the weighted Mﬁ%’M’G(R").

Proposition 5. Let p(-) € P(R") and w € Wy. Let M € N and

€ (0,00). If f € M’ﬁg)’M’e(Rn), then f is a harmless positive constant
multiple of a (p(:),w,M,e)-molecule associated with the ball
B(0,1). Conversely, if m is a ( (1), w, M, €)-molecule associated with
the ball B C R, then m € M~ MG(R")

The following three estimates play important roles in the proofs of our
main results in this section. The proof of the next lemma can be done
with similar arguments as in [24, Lemma 9.

Lemma. Letp(-) € P(R"),w € Wy, M € N. Then f € BMO’LJS;)U’M(R”)
is equivalent to

”fHBMOP(')’M*TeS(Rn) =

= s O [l0= s o]

BCR" HXBHLp<> Rn)

1/2
dx] < 00,

where the supremum is taken over all balls of R™. Moreover, there exists
a positive constant C', such that for any f € BMO’E%M(R") we have

1HfHBMO€<'U)J’M(]R”) < HfHBMOIE(;I)JvaTES(Rn) < CHf”BMOIL’(‘J)’M(R")'
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Similarly to |24, Lemma 4.5|, we have the next lemma. The proof is
left to the reader.

Lemma 4. Let p(-) € P(R") and w € Wy. Let e¢,¢ € (0,00) and
MeNandM>M+¢ + 4. Suppose that f € ./\/lp )M*(R”) satisfies

2

(1_ (I + 1)) ()
/ dr < 0. (8)

1+ |z|nte

Then, for any (p(-),w, M, €)-molecule m, it is true that

(= Cas / / (E2L*)M =2 () (2)ZLeL(m) (@)

Rn+1

dxdt
t )

where C'y; is a positive constant, depending on M, which satisfies

o0

Cu / tM“e?tQ% —1.
0

The proof of the following lemma is similar to that of |14, Lemma 8.3|
and [24, Lemma 4.7]:

Lemma 5. Let p(-) € P(R") and w € Wy and M € N. Then there
exists a positive constant C', such that for any f € BM Olz(’g)’M(R"):

|B|1/2 {/ SN Jdrdi 1/2
su (t°L )22 <C ot
Ao Tnal o L | (@)= [ s~

where the supremum is taken over all balls of R™.

Proposition 6. Let p(-) € P(R") and w € W.). For any € € (2, 00),
M eNand f € BMOp(;,)L’UM(R”). Then f satisfies (8).

Proof. We can check that f satisfies (8) by following the argument used
for [25, Remark 4.8|, with X = R™ and p_ replaced by 0. OJ

In the following result, we prove the duality of the space H f-j()w(]R")

Theorem 4. Let p(-) € P(R") and w € Wy such that p, € (0,1].

LetME(%[%—l] o0) NN, M>M—i—2" + % and € € (,00). Then,

[HE(J(R")] coincides with BM Ozj—i* M(R") in the following sense:
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(i) Let g € [Hfl(u)}(R”)] . Then g € BMOp ( ") and for any
fe Hz(yz%ne (R™) the following holds true: g(f) = (g, f)m, and there
exists a positive constant C, such that for any g € [Hg(u)](]R”)} :

”gHBMOp()IM R” CHgH[HP<> Rn)] :

(ii) Conversely, let g € BMOZE(;?@M(R”) Then, for any f € H"" ), “(R™),

w, fin

the linear functional ¢, defined by £,(f) = (9, f)m has a unique
bounded extension to H} ¢ )(R”) and there exists a positive C, such

that for any g € BMOP*M (R™):
Hf || [Hp() Rn)] CHgHBMOIL’(;?l’UM(R")'

Proof. First we show (i). Let g€ [Hp (]R”)} For any feHﬁ (R™), w
have:

l9(H)I < gl [Hﬁ(w)]*||f||H§§3)(Rn)-
We also know that for any (p(:),w, M, €)-molecule m HmHHp(q(Rn) < 1
L,w
Thus,
< *
901 S 19l o )

On the other hand, by Proposition 5, we find that for any h € MZ(,'BU’M’G(R")

with HhHMP(g,M,C(Rn) = 1: h is multiple of a (p(-),w, M, €)-molecule up
L,w

to harmless positive constant associated with the ball B(0,1). From
(9), we know that for any € € (0,00), g € [Mp( MR . Hence,

g€ Mi(,.zl’M7*<Rn), and for any h € ML,ufM’e(Rn):
(g, h)am = g(h).
Next, we show that

We take a ball B C R, h € L*(B) with ||h||2(5) = 1. Following the argu-

ment used in [25], we learn that %(I - e’”BL)M(h) is a harmless
XBULEC) @)
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positive constant multiple of a (p(+),w, M, €)-molecule. Therefore,

|B’1/2 _er%L* M 2 h(x)dx
)/(1 )" @)

Pl o 4

B2 PN
~[Co T (=49 ) | S ol
XB “qu(‘)(Rn) M L,w

which implies that for any ball B C R™:

o {/\ (0)(a)[ d }1/2< gl
x)| ar ~ ) (R yx
||XB||Lp<> Rn) Y I pC) )

Hence, we get the desired result.
Now we turn to prove (ii). Let g € BM OI££'?1LM(R”). We define

~ [ f@yg(wyis

for f € H') %;(Rn) Since f € HJ') ;{;(Rn) c HY)(R"), we have
£2Le~tLf € TH )(Rfl). Then, by Theorem 2, ?Le™"Lf = 3 Aa;,
jEN
where {a;};en is a sequence of (p(-),w, co)-atoms supported by {B }ien.
By Proposition 6, we know that g satisfies inequality (8) for € > 2%, Thus,

it follows from Lemma 4, the Holder inequality, and Lemma 5 that

60 = |ow [[ @t @erieTnm S| <
R+
27 % dxd
<Z|A|// (L) (g) (@) lag ) 5

Rn+l

S ffeereronor ] fuearst] "

oo
5 Z |)\j|”g”BMO’Z(*‘);M(R") ,S
j=1 "
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S A <{>‘j}j€N’ {Bj}jEN) HgHBMOZ(;?I’j”(R”) N Hf”Hz(,;,Z(R”)Hg”BMOZ(%?{UM(R")’

where in the third inequality uses the fact that

D= Z Al < A ({A}jens {Bjjen) -

Indeed,
4 o\ " , p(z)
/ (Z L\)MXBZ- } ) Vo > /Z |:l|))\Z’XBi } w(z)@) dz >
pn €N i o €N i
)\ p(z
> Z/ A [ } w(z)PDdr > 1.
ZGN

Hence, the proof of Theorem 4 is finished. [J
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