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Abstract. In this paper, we establish existence of some common
fixed-point theorems for admissible mappings via a simulation func-
tion along with 𝒞-class functions in quasi-metric spaces. As a con-
sequence, these results are extended to 𝐺-metric spaces and metric
spaces.
Key words: quasi-metric space, 𝐺-metric space, simulation func-
tion, common fixed point, admissible mappings
2020 Mathematical Subject Classification: 47H10, 54H25

1. Introduction. Jleli and Samet [4], Samet et al. [13] have shown
that a 𝐺-metric space has a quasi-metric type structure. Then many
results for such spaces follow from results for quasi-metric spaces.

Khojasteh [7] introduced the simulation function and proved fixed-
point theorems in metric spaces. Later, Roldań et al. [10] modified the
definition of the simulation function by removing the symmetry condition,
and introduced a (𝒵, 𝑔)-contraction. Roldań et al. [12] investigated the
existence and uniqueness of coincidence points via simulation functions in
the setting of quasi-metric spaces and deduced corresponding results in
the framework of 𝐺-metric spaces.

Radenović and Chandok [9] proved common fixed-point theorems for
a (𝒵𝒢, 𝑔)-contraction and a generalized (𝒵𝒢, 𝑔)-contraction. They also in-
troduced a (𝒵𝒢, 𝑔)-quasi-contraction of Ćirić-Das-Naik type and posed an
open problem regarding common fixed point theorems for a
(𝒵𝒢, 𝑔)-quasi-contraction of Ćirić-Das-Naik type in metric spaces.

In this paper, we use the 𝛼-admissible mapping, introduce a
(𝒵(𝛼,𝒢), 𝑔)-quasi-contraction of Ćirić type, prove common fixed-point the-
orems in quasi-metric spaces, and observe its consequences to 𝐺-metric
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spaces.

2. Preliminaries.

Definition 1. [4] Let 𝑋 be a non-empty set and let 𝑑 : 𝑋×𝑋 → [0,∞)
be a function, such that the following conditions hold:

(i) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;
(ii) 𝑑(𝑥, 𝑦) 6 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦), for any points 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Then, 𝑑 is called a quasi-metric on 𝑋 and the pair (𝑋, 𝑑) is called a quasi-
metric space.

Definition 2. Let 𝑇, 𝑔 : 𝑋 → 𝑋 be self maps on 𝑋. A point 𝑥 ∈ 𝑋 is
called a:

• fixed point of the operator 𝑇 , if 𝑇𝑥 = 𝑥; we denote 𝑥 ∈ 𝐹𝑖𝑥(𝑇 );
• coincidence point of 𝑇 and 𝑔, if 𝑇𝑥 = 𝑔𝑥; we denote 𝑥 ∈ 𝐶(𝑇, 𝑔);
• common fixed point of 𝑇 and 𝑔, if 𝑇𝑥 = 𝑔𝑥 = 𝑥.

Definition 3. Let (𝑋, 𝑑) be a quasi-metric space, {𝑥𝑛} be a sequence in
𝑋 and 𝑥 ∈ 𝑋. The sequence {𝑥𝑛} converges to 𝑥 if and only if

lim
𝑛→∞

𝑑(𝑥𝑛, 𝑥) = lim
𝑛→∞

𝑑(𝑥, 𝑥𝑛) = 0. (1)

The limit of a sequence in a quasi-metric space is unique.

Definition 4. Let (𝑋, 𝑑) be a quasi-metric space and {𝑥𝑛} be a sequence
in 𝑋. We say that {𝑥𝑛} is

• left-Cauchy if and only if for every 𝜀 > 0, there exists a positive
integer 𝑁 = 𝑁(𝜀) such that 𝑑(𝑥𝑛, 𝑥𝑚) < 𝜀 for all 𝑛 > 𝑚 > 𝑁 .

• right-Cauchy if and only if for every 𝜀 > 0, there exists a positive
integer 𝑁 = 𝑁(𝜀) such that 𝑑(𝑥𝑛, 𝑥𝑚) < 𝜀 for all 𝑚 > 𝑛 > 𝑁 .

• Cauchy if and only if for every 𝜀 > 0, there exists a positive integer
𝑁 = 𝑁(𝜀) such that 𝑑(𝑥𝑛, 𝑥𝑚) < 𝜀 for all 𝑚,𝑛 > 𝑁 .

A sequence {𝑥𝑛} in a quasi-metric space is Cauchy if and only if it is
left-Cauchy and right-Cauchy.

Definition 5. Let (𝑋, 𝑑) be a quasi-metric space. We say that (𝑋, 𝑑) is
complete if and only if each Cauchy sequence in 𝑋 is convergent.

Lemma 1. [5] Let {𝑥𝑛} be a sequence in a quasi-metric space (𝑋, 𝑑),
such that
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(i) 𝑑(𝑥𝑛+1, 𝑥𝑛+2) 6 𝜆𝑑(𝑥𝑛, 𝑥𝑛+1), 𝑛 > 0,

(ii) 𝑑(𝑥𝑛+2, 𝑥𝑛+1) 6 𝜆𝑑(𝑥𝑛+1, 𝑥𝑛), 𝑛 > 0,

for some 𝜆 ∈ (0, 1). Then {𝑥𝑛} is a Cauchy sequence in 𝑋.

Definition 6. [11] A subset 𝐸 of a metric space (𝑋, 𝑑) is said to be
precomplete if every Cauchy sequence {𝑢𝑛} in 𝐸 converges to a point of
X.

Similarly, precompleteness is defined for quasi-metric space.

Lemma 2. [12] Let (𝑋, 𝑑) be a quasi-metric space and 𝑇 : 𝑋 → 𝑋 be a
given mapping. Suppose that 𝑇 is continuous at 𝑢 ∈ 𝑋. Then, for each
sequence {𝑥𝑛} in 𝑋, such that 𝑥𝑛 → 𝑢, we have 𝑇𝑥𝑛 → 𝑇𝑢; that is,

lim
𝑛→∞

𝑑(𝑇𝑥𝑛, 𝑇𝑢) = lim
𝑛→∞

𝑑(𝑇𝑢, 𝑇𝑥𝑛) = 0.

Every quasi-metric induces a metric, that is, if (𝑋, 𝑑) is a quasi-metric
space, then the function 𝛿 : 𝑋 ×𝑋 → [0,∞), defined by

𝛿(𝑥, 𝑦) = max{𝑑(𝑥, 𝑦), 𝑑(𝑦, 𝑥)}

is a metric on 𝑋 (see [4]).
The following result is an immediate consequence of the above defini-

tion:

Theorem 1. [4] Let (𝑋, 𝑑) be a quasi-metric space, 𝛿 : 𝑋 ×𝑋 → [0,∞)
be the function defined by 𝛿(𝑥, 𝑦) = max{𝑑(𝑥, 𝑦), 𝑑(𝑦, 𝑥)}. Then

(1) (𝑋, 𝛿) is a metric space;

(2) {𝑥𝑛} ⊂ 𝑋 is convergent to 𝑥 𝑖𝑛 (𝑋, 𝑑) if and only if {𝑥𝑛} is conver-
gent to 𝑥 in (𝑋, 𝛿);

(3) {𝑥𝑛} ⊂ 𝑋 is Cauchy in (𝑋, 𝑑) if and only if {𝑥𝑛} is Cauchy in (𝑋, 𝛿);

(4) (𝑋, 𝑑) is complete if and only if (𝑋, 𝛿) is complete.

Definition 7. [14] Let 𝑇, 𝑔 : 𝑋 → 𝑋 and 𝛼 : 𝑋 ×𝑋 → [0,∞) be map-
pings. We say that 𝑇 is 𝛼-admissible for 𝑔 if

𝛼(𝑔𝑥, 𝑔𝑦) > 1 =⇒ 𝛼(𝑇𝑥, 𝑇𝑦) > 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑋.

For 𝑔 = 𝑖𝑋 (identity mapping on 𝑋), 𝑇 is an 𝛼-admissible mapping.
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Definition 8. Let 𝑇, 𝑔 : 𝑋 → 𝑋 and 𝛼 : 𝑋 ×𝑋 → [0,∞) be mappings.
We say that 𝑇 is triangular 𝛼-admissible for 𝑔 if 𝑇 is 𝛼-admissible for 𝑔
and

𝛼(𝑔𝑥, 𝑔𝑦) > 1 and 𝛼(𝑔𝑦, 𝑔𝑧) > 1 =⇒ 𝛼(𝑔𝑥, 𝑔𝑧) > 1 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Definition 9. [10] Let 𝑇, 𝑔 : 𝑋 → 𝑋 be self-mappings on 𝑋. A sequence
{𝑥𝑛} in 𝑋 is said to be a Picard-Jungck sequence of the pair (𝑇, 𝑔) (based
on 𝑥0) if 𝑔𝑥𝑛+1 = 𝑇𝑥𝑛, for all 𝑛 > 0.

If 𝑇 (𝑋) ⊆ 𝑔(𝑋), then there exists a Picard-Jungck sequence of (𝑇, 𝑔)
based on any point 𝑥0 ∈ 𝑋.

Definition 10. [12] Let 𝑇, 𝑔 : 𝑋 → 𝑋 be mappings on a quasi-metric
space (𝑋, 𝑑). We say that 𝑇 and 𝑔 are compatible if and only if

lim
𝑛→∞

𝑑(𝑇𝑔𝑥𝑛, 𝑔𝑇𝑥𝑛) = 0 𝑜𝑟 lim
𝑛→∞

𝑑(𝑔𝑇𝑥𝑛, 𝑇 𝑔𝑥𝑛) = 0

for all sequences {𝑥𝑛} ⊆ 𝑋 such that the sequences {𝑔𝑥𝑛} and {𝑇𝑥𝑛} are
convergent and have the same limit.

Ćirić [2] introduced the quasi-contraction and proved fixed point the-
orems for metric spaces.

Definition 11. [2] Let (𝑋, 𝑑) be a metric space and 𝑇 : 𝑋 → 𝑋 be a
self-mapping on X. A mapping 𝑇 is said to be a quasi-contraction if and
only if there exists a number 𝜆, 0 6 𝜆 < 1, such that

𝑑(𝑇𝑥, 𝑇𝑦) 6 𝜆𝑚𝑎𝑥{𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦), 𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥)}

for all 𝑥, 𝑦 ∈ 𝑋.

Later, Das and Naik generalized the quasi-contraction of Ćirić for two
mappings and established the following result:

Theorem 2. [3] Let (𝑋, 𝑑) be a complete metric space. Let 𝑇 be a con-
tinuous self-mapping on𝑋 and 𝑔 be any self-mapping on𝑋 that commutes
with 𝑇 . Further, 𝑔(𝑋) ⊆ 𝑇 (𝑋) and there exists a constant 𝜆 ∈ (0, 1), such
that, for every 𝑥, 𝑦 ∈ 𝑋,

𝑑(𝑔𝑥, 𝑔𝑦) 6 𝜆max{𝑑(𝑇𝑥, 𝑇𝑦), 𝑑(𝑇𝑥, 𝑔𝑥), 𝑑(𝑇𝑦, 𝑔𝑦), 𝑑(𝑇𝑥, 𝑔𝑦), 𝑑(𝑇𝑦, 𝑔𝑥)}.

Then 𝑇 and 𝑔 have a unique fixed point.
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Roldan et al. [10] modified the definition of simulation function by
Khojasteh et al. [7] as follows:

Definition 12. A simulation function is a function 𝜁 : [0,∞)×[0,∞) → R
satisfying the following conditions:

(𝜁1) 𝜁(0, 0) = 0;

(𝜁2) 𝜁(𝑡, 𝑠) < 𝑠− 𝑡 for all 𝑡, 𝑠 > 0;

(𝜁3) if {𝑡𝑛} and {𝑠𝑛} are sequences in (0,∞) such that lim
𝑛→∞

𝑡𝑛 = lim
𝑛→∞

𝑠𝑛 > 0

and 𝑡𝑛 < 𝑠𝑛, then lim sup
𝑛→∞

𝜁(𝑡𝑛, 𝑠𝑛) < 0.

Set of all simulation functions is denoted by 𝒵. It is clear that a
simulation function must satisfy 𝜁(𝑠, 𝑠) < 0 for all 𝑠 > 0.

Definition 13. [10] Let (𝑋, 𝑑) be a metric space, 𝑇,𝑔 : 𝑋 → 𝑋 be self
mappings. Then 𝑇 is called a (𝒵, 𝑔)-contraction if there exists 𝜁 ∈ 𝒵,
such that

𝜁(𝑑(𝑇𝑢, 𝑇𝑣), 𝑑(𝑔𝑢, 𝑔𝑣)) > 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 ∈ 𝑋 𝑎𝑛𝑑 𝑔𝑢 ̸= 𝑔𝑣.

If 𝑔 is the identity mapping on 𝑋, we say that T is a 𝒵-contraction
for 𝜁.

Example 4. Let 𝜁𝜆 : [0,∞) × [0,∞) → R be the function defined by
𝜁𝜆(𝑡, 𝑠) = 𝜆𝑠− 𝑡, where 𝜆 ∈ (0, 1). Then, 𝜁𝜆 ∈ 𝒵.

Ansari [1] introduced 𝒞-class functions as follows:
Definition 14. A function 𝒢 : [0,∞)2 → R is called a 𝒞-class function if
it is continuous and satisfies the following conditions:

(i) 𝒢(𝑠, 𝑡) 6 𝑠;

(ii) 𝒢(𝑠, 𝑡) = 𝑠 implies that either 𝑠 = 0 𝑜𝑟 𝑡 = 0 for all 𝑠, 𝑡 > 0.

Definition 15. [8] A function 𝒢 : [0,∞)2 → R has the property 𝒞𝒢, if
there exists 𝒞𝒢 > 0, such that

(𝒢1) 𝒢(𝑠, 𝑡) > 𝒞𝒢 implies 𝑠 > 𝑡;

(𝒢2) 𝒢(𝑡, 𝑡) 6 𝒞𝒢 for all 𝑡 > 0.

Example 5. 𝒢(𝑠, 𝑡) = 𝑠− 𝑡, 𝒞𝒢 = 𝑟, 𝑟 > 0 is a 𝒞-class function that has
property 𝒞𝒢.
Definition 16. [8] 𝒞𝒢 simulation function is a function 𝜁 : [0,∞)2 → R
satisfying the following conditions:
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(𝜁𝑎) 𝜁(𝑡, 𝑠) < 𝒢(𝑠, 𝑡) for all 𝑡,𝑠 > 0, where 𝒢 : [0,∞)2 → R is a 𝒞-class
function with the property 𝒞𝒢;

(𝜁𝑏) if {𝑡𝑛} and {𝑠𝑛} are sequences in (0,∞), such that lim
𝑛→∞

𝑡𝑛 = lim
𝑛→∞

𝑠𝑛 > 0

and 𝑡𝑛 < 𝑠𝑛, then lim sup
𝑛→∞

𝜁(𝑡𝑛, 𝑠𝑛) < 𝒞𝒢 .

Example 6. Let 𝑘 ∈ R be such that 𝑘 6 1 and 𝜁 : [0,∞)2 → R be the
function defined by 𝜁(𝑡, 𝑠) = 𝑘𝒢(𝑠, 𝑡). Here take 𝒞𝒢 = 1. Then, 𝜁 is a 𝒞𝒢
simulation function.

The family of all 𝒞𝒢 simulation functions is denoted by 𝒵𝒢.
Radenovic et al. [8] generalized the simulation function using 𝒞-class

function for two operators, as follows:

Definition 17. [8] Let (𝑋, 𝑑) be a metric space and 𝑇, 𝑔 : 𝑋 → 𝑋 be
self-mappings. A mapping 𝑇 is called a (𝒵𝒢, 𝑔)-contraction if there exists
𝜁 ∈ 𝒵𝒢 such that

𝜁(𝑑(𝑇𝑥, 𝑇𝑦),𝑑(𝑔𝑥, 𝑔𝑦)) > 𝒞𝒢 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑋 𝑎𝑛𝑑 𝑔𝑥 ̸= 𝑔𝑦.

3. Main result. In this section, we use admissible mappings, sim-
ulation functions, and 𝒞-class functions to consider quasi-contraction of
Ćirić-type on quasi-metric spaces, and we establish related results on ex-
istence and uniqueness of the coincidence point.

Lemma 3. Let (𝑋, 𝑑) be a quasi-metric space and 𝑇, 𝑔 : 𝑋 → 𝑋 be
mappings. Let {𝑥𝑛} be a Picard-Jungck sequence of (𝑇, 𝑔). If 𝑇 is trian-
gular 𝛼-admissible for 𝑔 with 𝛼(𝑔𝑥0, 𝑇𝑥0) > 1 𝑎𝑛𝑑 𝛼(𝑇𝑥0, 𝑔𝑥0) > 1, then
𝛼(𝑔𝑥𝑛, 𝑔𝑥𝑚) > 1 𝑓𝑜𝑟 𝑛 ̸= 𝑚.

Proof. Let {𝑥𝑛} be a Picard sequence of (𝑇, 𝑔) based at 𝑥0, that is,

𝑇𝑥𝑛 = 𝑔𝑥𝑛+1,

for all 𝑛 > 0. Since 𝑇 is 𝛼-admissible for 𝑔, we have

𝛼(𝑔𝑥0, 𝑇𝑥0) = 𝛼(𝑔𝑥0, 𝑔𝑥1) > 1 =⇒ 𝛼(𝑇𝑥0, 𝑇𝑥1) = 𝛼(𝑔𝑥1, 𝑔𝑥2) > 1.

By induction, we get

𝛼(𝑔𝑥𝑛, 𝑔𝑥𝑛+1) > 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 0.

Since 𝑇 is triangular 𝛼-admissible for 𝑔, we have

𝛼(𝑔𝑥0, 𝑔𝑥1) > 1 and 𝛼(𝑔𝑥1, 𝑔𝑥2) > 1 =⇒ 𝛼(𝑔𝑥0, 𝑔𝑥2) > 1.



78 Sejal V. Puvar, R. G. Vyas

Continuing this way, we get

𝛼(𝑔𝑥𝑛, 𝑔𝑥𝑚) > 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 > 𝑛.

Similarly, for 𝛼(𝑇𝑥0, 𝑔𝑥0) > 1, we get

𝛼(𝑔𝑥𝑛, 𝑔𝑥𝑚) > 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 < 𝑛.

�

Definition 18. Let (𝑋, 𝑑) be a metric space, 𝛼 : 𝑋 × 𝑋 → [0,∞) and
𝑇, 𝑔 : 𝑋 → 𝑋 be given mappings. A mapping 𝑇 is called a (𝒵(𝛼,𝒢), 𝑔)-
quasi-contraction of Ćirić type if there exist 𝜁 ∈ 𝒵𝒢 and 𝜆 ∈ (0, 1) such
that

𝜁(𝛼(𝑔𝑥, 𝑔𝑦)𝑑(𝑇𝑥, 𝑇𝑦), 𝜆𝑀(𝑔𝑥, 𝑔𝑦)) > 𝒞𝒢 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑋, (2)

where

𝑀(𝑔𝑥, 𝑔𝑦) = max{𝑑(𝑔𝑥, 𝑔𝑦), 𝑑(𝑔𝑥, 𝑇𝑥), 𝑑(𝑔𝑦,𝑇𝑦), 𝑑(𝑔𝑥,𝑇𝑦), 𝑑(𝑔𝑦, 𝑇𝑥)}.

Remark 1.

(i) If we take 𝛼(𝑥, 𝑦) = 1, inequality (2) becomes a (𝒵𝒢, 𝑔)-quasi-
contraction of Ćirić-Das-Naik type contraction.

(ii) For 𝛼(𝑥, 𝑦) = 1, 𝑔 = 𝑖𝑋 and 𝒞𝒢 = 0, we get a 𝒵-quasi-contraction of
Ćirić type.

(iii) For 𝛼(𝑥, 𝑦) = 1 and 𝜁(𝑡, 𝑠) < 𝒢(𝑠, 𝑡) = 𝑠− 𝑡, inequality (2) becomes
a Das-Naik type quasi-contraction.

Theorem 3. Let (𝑋, 𝑑) be a quasi-metric space, 𝑇, 𝑔 : 𝑋 → 𝑋 be map-
pings with 𝑇 (𝑋) ⊂ 𝑔(𝑋). If 𝑇 is a (𝒵(𝛼,𝒢), 𝑔)-quasi-contraction of Ćirić
type satisfying the following conditions:

(i) 𝑇 is triangular 𝛼-admissible for 𝑔;

(ii) there exists 𝑥0 ∈ 𝑋 such that 𝛼(𝑔𝑥0, 𝑇𝑥0) > 1 𝑎𝑛𝑑 𝛼(𝑇𝑥0, 𝑔𝑥0) > 1;

(iii) at least one of the following conditions holds:

(a) 𝑇 (𝑋) is precomplete in 𝑔(𝑋).

(b) (𝑋, 𝑑) is a complete quasi-metric space and 𝑇 and 𝑔 are con-
tinuous and compatible.
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Then, 𝑇 and 𝑔 have a point of coincidence.

Proof. Start with 𝑥0 ∈ 𝑋; since 𝑇 (𝑋) ⊂ 𝑔(𝑋), we get a sequence {𝑥𝑛}
in 𝑋 with 𝑇𝑥𝑛 = 𝑔𝑥𝑛+1 for all n > 0. If 𝑔𝑥𝑛 = 𝑔𝑥𝑛+1 for some 𝑛, then
𝑇𝑥𝑛 = 𝑔𝑥𝑛; that is, 𝑥𝑛 is a coincidence point of 𝑇 and 𝑔. Thus, we assume
that 𝑑(𝑔𝑥𝑛+1, 𝑔𝑥𝑛) > 0 and 𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛+1) > 0 for all 𝑛 > 0.

In view of condition (i), by Lemma 3, we get

𝛼(𝑔𝑥𝑛, 𝑔𝑥𝑚) > 1 for all 𝑛 ̸= 𝑚. (3)

Now,

𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛+1) = 𝑑(𝑇𝑥𝑛−1, 𝑇𝑥𝑛) 6 𝛼(𝑔𝑥𝑛−1, 𝑔𝑥𝑛)𝑑(𝑇𝑥𝑛−1, 𝑇𝑥𝑛). (4)

Since 𝑇 is a (𝒵(𝛼,𝒢), 𝑔)-quasi-contraction of Ćirić type,

𝒞𝒢 6 𝜁(𝛼(𝑔𝑥𝑛−1, 𝑔𝑥𝑛)𝑑(𝑇𝑥𝑛−1, 𝑇𝑥𝑛), 𝜆𝑀(𝑔𝑥𝑛−1, 𝑔𝑥𝑛)) <

< 𝒢(𝜆𝑀(𝑔𝑥𝑛−1, 𝑔𝑥𝑛), 𝛼(𝑔𝑥𝑛−1, 𝑔𝑥𝑛)𝑑(𝑇𝑥𝑛−1, 𝑇𝑥𝑛)).

Using (𝒢1), we get

𝛼(𝑔𝑥𝑛−1, 𝑔𝑥𝑛)𝑑(𝑇𝑥𝑛−1, 𝑇𝑥𝑛) 6 𝜆𝑀(𝑔𝑥𝑛−1, 𝑔𝑥𝑛). (5)

From (4) and (5), we have

𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛+1) 6 𝜆𝑀(𝑔𝑥𝑛−1, 𝑔𝑥𝑛), (6)

where

𝑀(𝑔𝑥𝑛−1, 𝑔𝑥𝑛) = max{𝑑(𝑔𝑥𝑛−1, 𝑔𝑥𝑛), 𝑑(𝑔𝑥𝑛−1, 𝑇𝑥𝑛−1),

𝑑(𝑔𝑥𝑛,𝑇𝑥𝑛), 𝑑(𝑔𝑥𝑛−1, 𝑇𝑥𝑛), 𝑑(𝑔𝑥𝑛, 𝑇𝑥𝑛−1)} =

= max{𝑑(𝑔𝑥𝑛−1, 𝑔𝑥𝑛), 𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛+1), 𝑑(𝑔𝑥𝑛−1, 𝑔𝑥𝑛+1))} 6
6 𝑑(𝑔𝑥𝑛−1, 𝑔𝑥𝑛) + 𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛+1).

Hence,
𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛+1) 6 𝜆(𝑑(𝑔𝑥𝑛−1, 𝑔𝑥𝑛) + 𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛+1)),

𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛+1) 6
𝜆

1 − 𝜆
𝑑(𝑔𝑥𝑛−1, 𝑔𝑥𝑛),

𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛+1) 6 𝑘𝑑(𝑔𝑥𝑛−1, 𝑔𝑥𝑛), (7)
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where 𝑘 = 𝜆
1−𝜆 < 1.

Similarly, we get

𝑑(𝑔𝑥𝑛+1,𝑔𝑥𝑛) 6 𝑘𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛−1) for 𝑘 < 1.

By Lemma 1, the sequence {𝑔𝑥𝑛} is a Cauchy sequence. Now, let us
consider independently cases (a)–(b). Let us prove that 𝑇 and 𝑔 have a
coincidence point.

(a): Assume 𝑇 (𝑋) is precomplete in 𝑔(𝑋). The precompleteness of 𝑇 (𝑋)
in 𝑔(𝑋) ensures the existence of some 𝑣 ∈ 𝑋 with

lim
𝑛→∞

𝑔𝑥𝑛 = 𝑔𝑣 = lim
𝑛→∞

𝑇𝑥𝑛−1. (8)

We claim that 𝑣 is a coincidence point of 𝑇 and 𝑔. On contrary,
assume that 𝑑(𝑔𝑣, 𝑇𝑣) > 0 and 𝑑(𝑇𝑣, 𝑔𝑣) > 0.
We have

lim
𝑛→∞

𝑀(𝑔𝑥𝑛, 𝑔𝑣) = lim
𝑛→∞

max{𝑑(𝑔𝑥𝑛, 𝑔𝑣), 𝑑(𝑔𝑥𝑛, 𝑇𝑥𝑛), 𝑑(𝑔𝑣, 𝑇𝑣),

𝑑(𝑔𝑥𝑛, 𝑇 𝑣), 𝑑(𝑔𝑣, 𝑇𝑥𝑛)} = 𝑑(𝑔𝑣, 𝑇𝑣) > 0. (9)

Using (2), we get

𝒞𝒢 6 𝜁(𝛼(𝑔𝑥𝑛, 𝑔𝑣)𝑑(𝑇𝑥𝑛, 𝑇 𝑣),𝜆𝑀(𝑔𝑥𝑛, 𝑔𝑣))

< 𝒢(𝜆𝑀(𝑔𝑥𝑛, 𝑔𝑣), 𝛼(𝑔𝑥𝑛, 𝑔𝑣)𝑑(𝑇𝑥𝑛, 𝑇 𝑣)).

By (𝒢1) , we have

𝛼(𝑔𝑥𝑛, 𝑔𝑣)𝑑(𝑇𝑥𝑛, 𝑇 𝑣) < 𝜆𝑀(𝑔𝑥𝑛, 𝑔𝑣) for all 𝑛 ∈ N

Letting 𝑛→ ∞ in above inequality and using (9), we get

lim
𝑛→∞

𝛼(𝑔𝑥𝑛, 𝑔𝑣)𝑑(𝑔𝑥𝑛, 𝑇 𝑣) < 𝜆𝑑(𝑔𝑣, 𝑇𝑣).

Hence, 𝑑(𝑔𝑣, 𝑇𝑣) < 𝜆𝑑(𝑔𝑣, 𝑇𝑣) and so is a contradiction.
Therefore, 𝑑(𝑔𝑣, 𝑇𝑣) = 0. So, 𝑣 is a coincidence point of 𝑇 and 𝑔.

(b): Assume that (𝑋, 𝑑) is complete and 𝑇 and 𝑔 are continuous and
compatible. In this case, the sequence {𝑔𝑥𝑛} is a Cauchy sequence
in the complete quasi-metric space (𝑋, 𝑑), hence, there exists 𝑢 ∈ 𝑋
such that lim

𝑛→∞
𝑔𝑥𝑛 = 𝑢. That is,

lim
𝑛→∞

𝑑(𝑔𝑥𝑛, 𝑢) = lim
𝑛→∞

𝑑(𝑢, 𝑔𝑥𝑛) = 0.
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Since 𝑇𝑥𝑛 = 𝑔𝑥𝑛+1 for all 𝑛 > 0, we have

lim
𝑛→∞

𝑑(𝑇𝑥𝑛, 𝑢) = lim
𝑛→∞

𝑑(𝑢, 𝑇𝑥𝑛) = 0.

The continuity of 𝑇 yields that

lim
𝑛→∞

𝑑(𝑇𝑔𝑥𝑛, 𝑇𝑢) = lim
𝑛→∞

𝑑(𝑇𝑢,𝑇𝑔𝑥𝑛) = 0.

The continuity of 𝑔 yields that

lim
𝑛→∞

𝑑(𝑔𝑇𝑥𝑛, 𝑔𝑢) = lim
𝑛→∞

𝑑(𝑔𝑢, 𝑔𝑇𝑥𝑛) = 0.

Moreover, as 𝑇 and 𝑔 are compatible and the sequences {𝑇𝑥𝑛} and
{𝑔𝑥𝑛} have the same limit, we deduce that

lim
𝑛→∞

𝑑(𝑇𝑔𝑥𝑛, 𝑔𝑇𝑥𝑛) = 0 or lim
𝑛→∞

𝑑(𝑔𝑇𝑥𝑛, 𝑇 𝑔𝑥𝑛) = 0.

Now,

𝑑(𝑇𝑢, 𝑔𝑢) 6 𝑑(𝑇𝑢, 𝑇𝑔𝑥𝑛) + 𝑑(𝑇𝑔𝑥𝑛, 𝑔𝑇𝑥𝑛) + 𝑑(𝑔𝑇𝑥𝑛, 𝑔𝑢).

By taking limit 𝑛 → ∞ in above inequality, we get 𝑑(𝑇𝑢, 𝑔𝑢) = 0.
Similarly, we can show that 𝑑(𝑔𝑢, 𝑇𝑢) = 0. In any case, 𝑇𝑢 = 𝑔𝑢
and we conclude that 𝑢 is a coincidence point of 𝑇 and 𝑔.

�

If 𝑇 (𝑋) ⊂ 𝑔(𝑋), then there exists a Picard-Jungck sequence of (𝑇, 𝑔)
based on any point 𝑥0 ∈ 𝑋.

Corollary 1. Let (𝑋, 𝑑) be a quasi-metric space, 𝑇, 𝑔 : 𝑋 → 𝑋 be
mappings and let {𝑥𝑛} be a Picard-Jungck sequence of (𝑇, 𝑔). Let 𝑇
be a (𝒵(𝛼,𝒢), 𝑔)-quasi-contraction of Ćirić-type and satisfy the following
conditions:

(i) 𝑇 is triangular 𝛼-admissible for 𝑔;
(ii) there exists 𝑥0 ∈ 𝑋 such that 𝛼(𝑔𝑥0, 𝑇𝑥0) > 1 and 𝛼(𝑇𝑥0, 𝑔𝑥0) > 1;

(iii) at least one of the following conditions holds:

(a) (𝑔(𝑋), 𝑑) is complete.

(b) (𝑋, 𝑑) is a complete quasi-metric space and 𝑇 and 𝑔 are con-
tinuous and compatible.
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Then, 𝑇 and 𝑔 have a point of coincidence.

For the uniqueness of a coincidence point and existence and uniqueness
of a fixed point of a (𝒵(𝛼,𝒢), 𝑔)-quasi-contraction of Ćirić type, we propose
the following conjecture.

Theorem 4. In addition to the assumptions of Theorem 3, suppose
that for all 𝑢, 𝑣 ∈ 𝐶(𝑇, 𝑔), there exists 𝑤 ∈ 𝑋, such that 𝛼(𝑔𝑢, 𝑔𝑤) > 1,
𝛼(𝑔𝑤, 𝑔𝑢) > 1, 𝛼(𝑔𝑤, 𝑔𝑣) > 1, and 𝛼(𝑔𝑣, 𝑔𝑤) > 1. Also, 𝑇, 𝑔 commute
at their coincidence points. Then, 𝑇 and 𝑔 have a unique common fixed
point.

Proof. We claim that if 𝑢, 𝑣 ∈ 𝐶(𝑇, 𝑔), then 𝑔𝑢 = 𝑔𝑣. By the assumption,
there exists 𝑤 ∈ 𝑋, such that

𝛼(𝑔𝑤, 𝑔𝑢) > 1 𝑎𝑛𝑑 𝛼(𝑔𝑤, 𝑔𝑣) > 1.

Let us define the Picard sequence {𝑤𝑛} in 𝑋 by 𝑔𝑤𝑛+1 = 𝑇𝑤𝑛 for all 𝑛 > 0
and 𝑤0 = 𝑤. Reasoning as in the proof of Theorem 3, we obtain that the
sequence {𝑔𝑤𝑛} converges to 𝑔𝑧.

By condition (i) in Theorem 3, we have

𝛼(𝑔𝑤𝑛, 𝑔𝑢) > 1 and 𝛼(𝑔𝑤𝑛, 𝑔𝑣) > 1 for all 𝑛 > 1. (10)

Using (2), we have

𝒞𝒢 6 𝜁(𝛼(𝑔𝑤𝑛, 𝑔𝑢)𝑑(𝑇𝑤𝑛, 𝑇𝑢), 𝜆𝑀(𝑔𝑤𝑛, 𝑔𝑢)) <

< 𝒢(𝜆𝑀(𝑔𝑤𝑛, 𝑔𝑢), 𝛼(𝑔𝑤𝑛, 𝑔𝑢)𝑑(𝑇𝑤𝑛, 𝑇𝑢)) =

= 𝒢(𝜆𝑀(𝑔𝑤𝑛, 𝑔𝑢), 𝛼(𝑔𝑤𝑛, 𝑔𝑢)𝑑(𝑔𝑤𝑛+1, 𝑔𝑢)). (11)

By (𝒢1) and (10), we have

𝑑(𝑔𝑤𝑛+1, 𝑔𝑢) 6 𝛼(𝑔𝑤𝑛, 𝑔𝑢)𝑑(𝑔𝑤𝑛+1, 𝑔𝑢) < 𝜆𝑀(𝑔𝑤𝑛, 𝑔𝑢) for all 𝑛 > 1,
(12)

where

𝑀(𝑔𝑤𝑛, 𝑔𝑢) =

= max{𝑑(𝑔𝑤𝑛, 𝑔𝑢), 𝑑(𝑔𝑤𝑛, 𝑇𝑤𝑛), 𝑑(𝑔𝑢, 𝑇𝑢), 𝑑(𝑔𝑤𝑛, 𝑇𝑢), 𝑑(𝑔𝑢, 𝑇𝑤𝑛)} =

= max{𝑑(𝑔𝑤𝑛, 𝑔𝑢), 𝑑(𝑔𝑤𝑛, 𝑔𝑤𝑛+1), 𝑑(𝑔𝑢, 𝑔𝑤𝑛+1)}.

Passing to the limit 𝑛→ ∞, we get

lim
𝑛→∞

𝑀(𝑔𝑤𝑛, 𝑔𝑢) = max{𝑑(𝑔𝑧, 𝑔𝑢), 𝑑(𝑔𝑢, 𝑔𝑧)}.
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Similarly, we get

𝑑(𝑔𝑢, 𝑔𝑤𝑛+1) < 𝜆𝑀(𝑔𝑢, 𝑔𝑤𝑛) for all 𝑛 > 1, (13)

where

𝑀(𝑔𝑢, 𝑔𝑤𝑛) = max{𝑑(𝑔𝑢, 𝑔𝑤𝑛), 𝑑(𝑔𝑤𝑛, 𝑔𝑤𝑛+1), 𝑑(𝑔𝑤𝑛, 𝑔𝑢)}.

Letting 𝑛→ ∞, we obtain

lim
𝑛→∞

𝑀(𝑔𝑤𝑛, 𝑔𝑢) = max{𝑑(𝑔𝑢, 𝑔𝑧), 𝑑(𝑔𝑧, 𝑔𝑢)}.

If 𝑔𝑢 ̸= 𝑔𝑧 and we take the limit 𝑛→ ∞ in (12) and (13), we get

𝑑(𝑔𝑧, 𝑔𝑢) < 𝜆max{𝑑(𝑔𝑧, 𝑔𝑢), 𝑑(𝑔𝑢, 𝑔𝑧)},

𝑑(𝑔𝑢, 𝑔𝑧) < 𝜆max{𝑑(𝑔𝑧, 𝑔𝑢), 𝑑(𝑔𝑢, 𝑔𝑧)}.

If 𝑑(𝑔𝑧, 𝑔𝑢) < 𝜆𝑑(𝑔𝑧, 𝑔𝑢) or 𝑑(𝑔𝑧, 𝑔𝑢) < 𝜆𝑑(𝑔𝑢, 𝑔𝑧) < 𝜆2𝑑(𝑔𝑧, 𝑔𝑢), we get
a contradiction. Thus, 𝑑(𝑔𝑧, 𝑔𝑢) = 0. Therefore, 𝑔𝑢 = 𝑔𝑧. Similarly,
𝑔𝑣 = 𝑔𝑧 implies 𝑔𝑢 = 𝑔𝑣. Hence, 𝑢 is a unique coincidence point of 𝑇
and 𝑔.

Existence of a common fixed point: Let 𝑢 ∈ 𝐶(𝑇, 𝑔), that is, 𝑇𝑢 = 𝑔𝑢.
Due to commutativity of 𝑇 and 𝑔 at their coincidence points, we get

𝑔𝑔𝑢 = 𝑔𝑇𝑢 = 𝑇𝑔𝑢.

Denote 𝑔𝑢 = 𝑧*. Then 𝑔𝑧* = 𝑇𝑧*, and, thus, 𝑧* is a coincidence point of 𝑇
and 𝑔. By uniqueness of the coincidence point, we have
𝑧* = 𝑔𝑢 = 𝑔𝑧* = 𝑇𝑧*. Then, 𝑧* is a common fixed point of 𝑇 and 𝑔.

Uniqueness: Assume that 𝑤* is another common fixed point of 𝑇 and 𝑔.
Then 𝑤* ∈ 𝐶(𝑇, 𝑔). Thus, we have 𝑤* = 𝑔𝑤* = 𝑔𝑧* = 𝑧*. This completes
the proof. �

From Theorem 1 we see that the result above is valid also for metric
spaces.

Corollary 1. Let (𝑋, 𝑑) be a metric space, 𝑇, 𝑔 : 𝑋 → 𝑋 be mappings,
and let {𝑥𝑛} be a Picard-Jungck sequence of (𝑇, 𝑔). Assume that 𝑇 is a
(𝒵(𝛼,𝒢), 𝑔)-quasi-contraction of Ćirić type satisfying the following condi-
tions:

(i) 𝑇 is triangular 𝛼-admissible for 𝑔;
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(ii) there exists 𝑥0 ∈ 𝑋, such that 𝛼(𝑔𝑥0, 𝑇𝑥0) > 1;
(iii) for all 𝑢, 𝑣 ∈𝐶(𝑇, 𝑔), there exists 𝑤 ∈𝑋, such that 𝛼(𝑔𝑢, 𝑔𝑤)> 1,

𝛼(𝑔𝑣, 𝑔𝑤) > 1 and 𝑇, 𝑔 commute at their coincidence points.
(iv) at least one of the following conditions holds:

(a) 𝑇 (𝑋) is precomplete in 𝑔(𝑋).

(b) (𝑋, 𝑑) is a complete metric space and 𝑇 and 𝑔 are continuous
and compatible.

Then, 𝑇 and 𝑔 have a unique common fixed point.

The following result is a solution to an open problem posed by Rade-
novic and Chandok [9].

Corollary 2. [9] Let (𝑋, 𝑑) be a metric space, 𝑇, 𝑔 : 𝑋 → 𝑋 be map-
pings, and let {𝑥𝑛} be a Picard-Jungck sequence of (𝑇, 𝑔). Let 𝑇 be a
(𝒵𝒢, 𝑔)-quasi-contraction of Ćirić-Das-Naik type. Assume that at least
one of the following conditions holds:

(a) (𝑔(𝑋), 𝑑) is complete.
(b) (𝑋, 𝑑) is a complete metric space and 𝑇 and 𝑔 are continuous and

compatible.

Then, 𝑇 and 𝑔 have a unique point of coincidence. Moreover, if 𝑇 and
𝑔 commute at their coincidence point, then they have a unique common
fixed point in X.

Proof. The result follows from Corollary 1 and Theorem 4, if we con-
sider 𝛼(𝑥, 𝑦) = 1 and (𝑋, 𝑑) is a metric space with metric 𝑑 as defined in
Theorem 1. �

Now, if we take 𝒢(𝑠, 𝑡) = 𝑠− 𝑡, 𝒞𝒢 = 0, we get the following result:

Corollary 3. Let (𝑋, 𝑑) be a metric space, 𝛼 : 𝑋 × 𝑋 → [0,∞), and
𝑇, 𝑔 : 𝑋 → 𝑋 be mappings. Let {𝑥𝑛} be a Picard-Jungck sequence of
(𝑇, 𝑔) and 𝜆 ∈ (0, 1), such that

𝛼(𝑔𝑥, 𝑔𝑦)𝑑(𝑇𝑥, 𝑇𝑦) 6 𝜆𝑀(𝑔𝑥, 𝑔𝑦) for all 𝑥, 𝑦 ∈ 𝑋,

𝑀(𝑔𝑥, 𝑔𝑦) = max{𝑑(𝑔𝑥, 𝑔𝑦), 𝑑(𝑔𝑥, 𝑇𝑥), 𝑑(𝑔𝑦, 𝑇𝑦), 𝑑(𝑔𝑥, 𝑇𝑦), 𝑑(𝑔𝑦,𝑇𝑥)}.
Assume that

(i) 𝑇 is triangular 𝛼-admissible for 𝑔;

(ii) there exists 𝑥0 ∈ 𝑋 such that 𝛼(𝑔𝑥0, 𝑇𝑥0) > 1;
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(iii) for all 𝑢, 𝑣 ∈ 𝐶(𝑇, 𝑔), there exists 𝑤 ∈ 𝑋, such that 𝛼(𝑔𝑢, 𝑔𝑤) > 1,
𝛼(𝑔𝑣, 𝑔𝑤) > 1 and 𝑇, 𝑔 commute at their coincidence points;

(iv) at least one of the following conditions holds:

(a) (𝑔(𝑋), 𝑑) is complete.

(b) (𝑋, 𝑑) is a complete metric space and 𝑇 and 𝑔 are continuous
and compatible.

Then 𝑇 and 𝑔 have a unique common fixed point.

4. Consequences: Common fixed point results in the context
of 𝐺-metric spaces. In this section, we give some consequences of our
main results. For this purpose, we first recollect the basic concepts on
𝐺-metric spaces.

Definition 19. [15] Let 𝑋 be a nonempty set. Let 𝐺 : 𝑋×𝑋×𝑋 → R+

be a function satisfying the following properties:

(𝐺1) 𝐺(𝑥, 𝑦, 𝑧) = 0, if 𝑥 = 𝑦 = 𝑧,

(𝐺2) 𝐺(𝑥, 𝑥, 𝑦) > 0 for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ̸= 𝑦,
(𝐺3) 𝐺(𝑥, 𝑥, 𝑦) 6 𝐺(𝑥, 𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 with 𝑧 ̸= 𝑦,
(𝐺4) 𝐺(𝑥, 𝑦, 𝑧) = 𝐺(𝑥, 𝑧, 𝑦) = 𝐺(𝑦, 𝑧, 𝑥) = . . . (symmetry in all three

variables),
(𝐺5) 𝐺(𝑥, 𝑦, 𝑧) 6 𝐺(𝑥, 𝑎, 𝑎) + 𝐺(𝑎, 𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋(rectangle

inequality).

The function 𝐺 is called 𝐺-metric on 𝑋 and the pair (𝑋,𝐺) is called
a 𝐺-metric space.

Definition 20. A 𝐺-metric space (𝑋,𝐺) is said to be symmetric if
𝐺(𝑥, 𝑦, 𝑦) = 𝐺(𝑦, 𝑥, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋.

The function defined by 𝑑𝐺′(𝑥, 𝑦) = 𝐺(𝑥, 𝑦, 𝑦)+𝐺(𝑦, 𝑥, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋,
is a metric on 𝑋. Furthermore, (𝑋,𝐺) is 𝐺− complete if and only if
(𝑋, 𝑑𝐺′) is complete.

Recently, Jleli and Samet [4] obtained the following results.

Theorem 5. Let (𝑋,𝐺) be a 𝐺−metric space. Let 𝑑𝐺 : 𝑋×𝑋 → [0,∞)
be the function defined by 𝑑𝐺(𝑥, 𝑦) = 𝐺(𝑥, 𝑦, 𝑦). Then,

(1) (𝑋, 𝑑𝐺) is a quasi-metric space;
(2) {𝑥𝑛} ⊂ 𝑋 is 𝐺-convergent to 𝑥 ∈ 𝑋 if and only if {𝑥𝑛} is convergent

to 𝑥 in (𝑋, 𝑑𝐺);
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(3) {𝑥𝑛} ⊂ 𝑋 is 𝐺-Cauchy if and only if {𝑥𝑛} is Cauchy in (𝑋, 𝑑𝐺);
(4) (𝑋,𝐺) is 𝐺-complete if and only if (𝑋, 𝑑𝐺) is complete.

Definition 21. A subset 𝐸 of a 𝐺-metric space (𝑋,𝐺) is said to be
precomplete if every Cauchy sequence {𝑢𝑛} in 𝐸 converges to a point
of 𝑋.

Furthermore, a subset 𝐸 of 𝑋 is precomplete in (𝑋,𝐺) if and only if
it is precomplete in (𝑋, 𝑑𝐺).

Definition 22. For a nonempty set 𝑋, let 𝑇, 𝑔 : 𝑋 → 𝑋 and
𝛼𝐺 : 𝑋3 → [0,∞) be mappings. We say that 𝑇 is 𝛼𝐺-admissible for 𝑔,
if for all 𝑥, 𝑦 ∈ 𝑋 we have

𝛼𝐺(𝑔𝑥, 𝑔𝑦, 𝑔𝑦) > 1 =⇒ 𝛼𝐺(𝑇𝑥, 𝑇𝑦, 𝑇𝑦) > 1.

Definition 23. For a nonempty set 𝑋, let 𝛼𝐺 : 𝑋3 → [0,∞) and
𝑇 : 𝑋 → 𝑋 be mappings. We say that 𝑇 is triangular 𝛼𝐺-admissible
for 𝑔, if 𝑇 is 𝛼𝐺-admissible for 𝑔 and for all 𝑥, 𝑦 ∈ 𝑋, we have

𝛼𝐺(𝑔𝑥, 𝑔𝑦, 𝑔𝑦) > 1 and 𝛼𝐺(𝑔𝑦, 𝑔𝑧, 𝑔𝑧) > 1 =⇒ 𝛼𝐺(𝑔𝑥, 𝑔𝑧, 𝑔𝑧) > 1.

By using the above definition, we get the following corollary:

Corollary 1. Let 𝑋 be a non-empty set. The mapping 𝑇 : 𝑋 → 𝑋 is
triangular 𝛼𝐺-admissible for 𝑔 if and only if 𝑇 is triangular 𝛼-admissible
for 𝑔.

Proof. It is obvious by taking 𝛼(𝑥, 𝑦) = 𝛼𝐺(𝑥, 𝑦, 𝑦). �

Now, we present Theorem 3 and Theorem 4 in the context of 𝐺-metric
spaces, using the quasi-metric 𝑑𝐺 as defined in Theorem 5.

Corollary 2. Let (𝑋,𝐺) be a 𝐺-metric space, 𝛼𝐺 : 𝑋×𝑋×𝑋 → [0,∞),
and 𝑇, 𝑔 : 𝑋 → 𝑋 be mappings with 𝑇 (𝑋) ⊂ 𝑔(𝑋). Let 𝜁 ∈ 𝒵𝒢, and
𝜆 ∈ (0, 1), such that

𝜁(𝛼𝐺(𝑔𝑥, 𝑔𝑦, 𝑔𝑦)𝐺(𝑇𝑥, 𝑇𝑦, 𝑇𝑦), 𝜆𝑀(𝑔𝑥, 𝑔𝑦, 𝑔𝑦)) > 𝒞𝒢 (14)

for all 𝑥, 𝑦 ∈ 𝑋, where

𝑀(𝑔𝑥, 𝑔𝑦, 𝑔𝑦) =

= max{𝐺(𝑔𝑥, 𝑔𝑦, 𝑔𝑦), 𝐺(𝑔𝑥, 𝑇𝑥, 𝑇𝑥), 𝐺(𝑔𝑦, 𝑇𝑦, 𝑇𝑦), 𝐺(𝑔𝑥, 𝑇𝑦, 𝑇𝑦),

𝐺(𝑔𝑦, 𝑇𝑥, 𝑇𝑥)}.

Suppose that
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(i) 𝑇 is triangular 𝛼𝐺-admissible for 𝑔;

(ii) there exists 𝑥0 ∈ 𝑋, such that 𝛼𝐺(𝑔𝑥0, 𝑇𝑥0, 𝑇𝑥0) > 1 and
𝛼𝐺(𝑇𝑥0, 𝑔𝑥0, 𝑔𝑥0) > 1;

(iii) for all 𝑢, 𝑣 ∈𝐶(𝑇, 𝑔), there exists 𝑤∈𝑋 such that 𝛼𝐺(𝑔𝑢, 𝑔𝑤, 𝑔𝑤)>1,
𝛼𝐺(𝑔𝑤, 𝑔𝑢, 𝑔𝑢) > 1, 𝛼𝐺(𝑔𝑣, 𝑔𝑤, 𝑔𝑤) > 1 𝛼𝐺(𝑔𝑤, 𝑔𝑣, 𝑔𝑣) > 1 and 𝑇, 𝑔
commute at their coincidence points;

(iv) at least one of the following conditions holds:

(a) 𝑇 (𝑋) is precomplete in 𝑔(𝑋).

(b) (𝑋,𝐺) is a complete 𝐺-metric space and 𝑇 and 𝑔 are continuous
and compatible.

Then, 𝑇 and 𝑔 have a unique common fixed point.

Proof. It suffices to take 𝑑𝐺(𝑥, 𝑦) = 𝐺(𝑥, 𝑦, 𝑦) 𝑎𝑛𝑑 𝛼(𝑥, 𝑦) = 𝛼𝐺(𝑥, 𝑦, 𝑦).
From (14), we get (2). Since (𝑋,𝐺) is complete, (𝑋, 𝑑𝐺) is a complete
quasi-metric space due to Theorem 5. Hence, the result follows from
Lemma 1, Theorem 3, and Theorem 4. �

Corollary 3. Let (𝑋,𝐺) be a 𝐺-metric space, 𝛼𝐺 : 𝑋×𝑋×𝑋 → [0,∞),
and 𝑇, 𝑔 : 𝑋 → 𝑋 be mappings. Let {𝑥𝑛} be a Picard-Jungck sequence of
(𝑇, 𝑔), 𝜁 ∈ 𝒵𝒢 and 𝜆 ∈ (0, 1), such that (1) is satisfied. Suppose that

(i) 𝑇 is triangular 𝛼𝐺-admissible for 𝑔;
(ii) there exists 𝑥0 ∈ 𝑋 such that 𝛼𝐺(𝑔𝑥0, 𝑇𝑥0, 𝑇𝑥0) > 1 and

𝛼𝐺(𝑇𝑥0, 𝑔𝑥0, 𝑔𝑥0) > 1;
(iii) for all 𝑢, 𝑣 ∈𝐶(𝑇, 𝑔), there exists 𝑤∈𝑋 such that 𝛼𝐺(𝑔𝑢, 𝑔𝑤, 𝑔𝑤)>1,

𝛼𝐺(𝑔𝑤, 𝑔𝑢, 𝑔𝑢) > 1, 𝛼𝐺(𝑔𝑣, 𝑔𝑤, 𝑔𝑤) > 1, 𝛼𝐺(𝑔𝑤, 𝑔𝑣, 𝑔𝑣) > 1 and 𝑇,
𝑔 commute at their coincidence points;

(iv) at least one of the following conditions holds:

(a) 𝑇 (𝑋) is precomplete in 𝑔(𝑋).

(b) (𝑋,𝐺) is a complete 𝐺-metric space and 𝑇 and 𝑔 are continuous
and compatible.

Then 𝑇 and 𝑔 have a unique common fixed point.

Corollary 4. Let (𝑋,𝐺) be a 𝐺-metric space and 𝑇, 𝑔 : 𝑋 → 𝑋 be map-
pings. Let {𝑥𝑛} be a Picard-Jungck sequence of (𝑇, 𝑔), 𝜁 ∈ 𝒵𝒢, and
𝜆 ∈ (0, 1) such that

𝜁(𝐺(𝑇𝑥, 𝑇𝑦, 𝑇𝑦), 𝜆𝑀(𝑔𝑥, 𝑔𝑦, 𝑔𝑦)) > 𝒞𝒢 (15)
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for all 𝑥, 𝑦 ∈ 𝑋, where

𝑀(𝑔𝑥, 𝑔𝑦, 𝑔𝑦) = max{𝐺(𝑔𝑥, 𝑔𝑦, 𝑔𝑦), 𝐺(𝑔𝑥, 𝑇𝑥, 𝑇𝑥), 𝐺(𝑔𝑦, 𝑇𝑦, 𝑇𝑦),

𝐺(𝑔𝑥, 𝑇𝑦, 𝑇𝑦), 𝐺(𝑔𝑦, 𝑇𝑥, 𝑇𝑥)}.

Also assume that at least one of the following conditions holds:

(a) 𝑇 (𝑋) is precomplete in 𝑔(𝑋).
(b) (𝑋,𝐺) is a complete 𝐺-metric space and 𝑇 and 𝑔 are continuous and

compatible.

Then 𝑇 and 𝑔 have unique point of coincidence. Moreover, if 𝑇, 𝑔 commu-
te at their coincidence points, then 𝑇 and 𝑔 have a unique common fixed
point in 𝑋.

Proof. In (1), if we take 𝛼𝐺(𝑥, 𝑦, 𝑦) = 1, we get (2). �

Corollary 5. Let (𝑋,𝐺) be a 𝐺-metric space, 𝛼𝐺 : 𝑋×𝑋×𝑋 → [0,∞),
and 𝑇, 𝑔 : 𝑋 → 𝑋 be mappings. Let {𝑥𝑛} be a Picard-Jungck sequence of
(𝑇, 𝑔) and 𝜆 ∈ (0, 1), such that

𝛼𝐺(𝑔𝑥, 𝑔𝑦, 𝑔𝑦)𝐺(𝑇𝑥, 𝑇𝑦, 𝑇𝑦) 6 𝜆𝑀(𝑔𝑥, 𝑔𝑦, 𝑔𝑦)

for all 𝑥, 𝑦 ∈ 𝑋, where

𝑀(𝑔𝑥, 𝑔𝑦, 𝑔𝑦) = max{𝐺(𝑔𝑥, 𝑔𝑦, 𝑔𝑦), 𝐺(𝑔𝑥, 𝑇𝑥, 𝑇𝑥), 𝐺(𝑔𝑦, 𝑇𝑦, 𝑇𝑦),

𝐺(𝑔𝑥, 𝑇𝑦, 𝑇𝑦), 𝐺(𝑔𝑦, 𝑇𝑥, 𝑇𝑥)}.

Suppose that

(i) 𝑇 is triangular 𝛼𝐺-admissible for 𝑔;
(ii) there exists 𝑥0 ∈ 𝑋 such that 𝛼𝐺(𝑔𝑥0, 𝑇𝑥0, 𝑇𝑥0) > 1 and

𝛼𝐺(𝑇𝑥0, 𝑔𝑥0, 𝑔𝑥0) > 1;
(iii) for all 𝑢, 𝑣∈𝐶(𝑇, 𝑔), there exists 𝑤∈𝑋 such that 𝛼𝐺(𝑔𝑢, 𝑔𝑤, 𝑔𝑤) >1,

𝛼𝐺(𝑔𝑤, 𝑔𝑢, 𝑔𝑢) > 1, 𝛼𝐺(𝑔𝑣, 𝑔𝑤, 𝑔𝑤) > 1, 𝛼𝐺(𝑔𝑤, 𝑔𝑣, 𝑔𝑣) > 1 and 𝑇, 𝑔
commute at their coincidence points;

(iv) at least one of the following conditions holds:

(a) 𝑇 (𝑋) is precomplete in 𝑔(𝑋).

(b) (𝑋,𝐺) is a complete 𝐺-metric space and 𝑇 and 𝑔 are continuous
and compatible.
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Then 𝑇 and 𝑔 have a unique common fixed point.
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[2] Ćirić L. B. A generalization of Banach’s contraction principle. Proc. Amer.
Math. Soc., 1974, vol. 45, no. 2, pp. 267 – 273.
DOI: https://doi.org/10.1090/S0002-9939-1974-0356011-2

[3] Das K. M., Naik K. V. Common fixed point theorems for commuting
maps on a metric space. Proc. Amer. Math. Soc., 1979, vol. 77, no. 3,
pp. 369 – 373. DOI: https://doi.org/10.2307/2042188

[4] Jleli M., Samet B. Remarks on G-metric spaces and fixed point theorems.
Fixed Point Theory Appl., 2012, vol. 2012, no. 1, Paper No. 210, 7 pages.
DOI: https://doi.org/10.1186/1687-1812-2012-210
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