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Abstract. Using a generalized translation operator, we intend to
establish generalizations of the Titchmarsh theorem ( [14], theo-
rem 84) for the first Hankel-Clifford transform for certain classes
of functions in the space 𝐿𝑝𝜇((0, + ∞)), where 1 < 𝑝 ⩽ 2.
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1. Introduction. Titchmarsh ( [14], Theorem 84) characterized the
set of functions in 𝐿𝑝(ℝ), 1 < 𝑝 ⩽ 2, satisfying the Lipschitz condition,
by means of an asymptotic estimate growth of the norm of their Fourier
transform; namely, we have:

Theorem 1. Let 𝑓 belong to 𝐿𝑝(ℝ), 1 < 𝑝 ⩽ 2, such that

+∞∫︁
−∞

|𝑓(𝑥+ )− 𝑓(𝑥− )|𝑝𝑑𝑥 = 𝑂(𝛼𝑝), 0 < 𝛼 ⩽ 1, 𝑎𝑠  −→ 0.

Then its Fourier transform ℱ(𝑓) belongs to 𝐿𝛽(ℝ) for

𝑝

𝑝+ 𝛼𝑝− 1
< 𝛽 ⩽

𝑝

𝑝− 1
.

On the other hand, Younis in ( [15], Theorem 3.3) studied the same
phenomena for the wider Dini-Lipschitz class, as well as for some other
allied classes of functions. More precisely,
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Theorem 2. Let 𝑓 ∈ 𝐿𝑝(ℝ) with 1 < 𝑝 ⩽ 2, such that

(︁ +∞∫︁
−∞

|𝑓(𝑥+ )− 𝑓(𝑥)|𝑝𝑑𝑥
)︁ 1

𝑝
= 𝑂

(︁ 𝛼(︀
log 1



)︀𝛾 )︁,  −→ 0, 0 < 𝛼 ⩽ 1, 𝛾 > 0.

Then ℱ(𝑓) ∈ 𝐿𝛽(ℝ) for
𝑝

𝑝+ 𝛼𝑝− 1
⩽ 𝛽 < 𝑝′ =

𝑝

𝑝− 1

and
1

𝛽
< 𝛾, where ℱ(𝑓) stands for the Fourier transform of 𝑓 .

There are many analogues of these theorems: for the Bessel transform
on ℝ+, for the Dunkl transform on ℝ𝑑, for the q-Dunkl transform on ℝ𝑞,
etc (for example, see [2], [3], [4], [5], [10]).

The aim of this paper is to provide generalizations of Theorems 1
and 2 for the first Hankel-Clifford transform. For this purpose, we use the
generalized translation operator.

2. Preliminaries. Let us we briefly collect the pertinent definitions
and facts relevant for first Hankel-Clifford analysis, which can be founded
in [11], [12], [13], [16].

Assume that 𝐿𝑝𝜇 = 𝐿𝑝𝜇((0, +∞)), 1 ⩽ 𝑝 < ∞ and 𝜇 ⩾ 0, is the space
of all real-valued measurable functions 𝑓 on (0,+∞), such that

‖𝑓‖𝑝,𝜇 =
(︁ +∞∫︁

0

|𝑓(𝑥)|𝑝𝑥𝜇𝑑𝑥
)︁ 1

𝑝
<∞.

Let 𝑐𝜇 be the Bessel-Clifford function of the first kind defined by (see [6])

𝑐𝜇(𝑥) =
+∞∑︁
𝑘=0

(−1)𝑘𝑥𝑘

𝑘!Γ(𝜇+ 𝑘 + 1)
, (1)

which satisfies the differential equation

𝑥𝑦′′ + (𝜇+ 1)𝑦′ + 𝑦 = 0.

For 𝜇 ⩾ −1
2
, we introduce the normalized spherical Bessel function 𝑗𝜇

of index 𝜇, defined by

𝑗𝜇(𝑥) = Γ(𝜇+ 1)
+∞∑︁
𝑘=0

(−1)𝑘

𝑘!Γ(𝑘 + 𝜇+ 1)

(︁𝑥
2

)︁2𝑘
, 𝑥 ∈ ℂ, (2)
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where Γ(𝑥) is the gamma-function.
Moreover, from (2) we see that

lim
𝑥→0

𝑗𝜇(𝑥)− 1

𝑥2
̸= 0;

by consequence, there exist 𝐶 > 0 and 𝜂 > 0 satisfying

|𝑥| ⩽ 𝜂 =⇒ |𝑗𝜇(𝑥)− 1| ⩾ 𝐶|𝑥|2. (3)

The function 𝑗𝜇(𝑥) is infinitely differentiable, even, and, moreover,
entire analytic.

From [1], we have the following lemma:

Lemma 1. Let 𝜇 ⩾ −1
2
. The following inequalities are fulfilled:

1) |𝑗𝜇(𝑥)| ⩽ 1;

2) 1− 𝑗𝜇(𝑥) = 𝑂(𝑥2), 0 ⩽ 𝑥 ⩽ 1;

3) 1− 𝑗𝜇(𝑥) = 𝑂(1), 𝑥 ⩾ 1.

By formulas (1) and (2), we have the following relation, which connect
the Bessel-Clifford function and the normalized spherical Bessel function:

𝑐𝜇(𝑥) =
1

Γ(𝜇+ 1)
𝑗𝜇(2

√
𝑥) (4)

Definition 1. [8], [9] For 𝜇 ⩾ 0, the first Hankel-Clifford transform for
a function 𝑓 ∈ 𝐿1

𝜇 is defined by

1,𝜇(𝑓)(𝜆) = 𝜆𝜇
+∞∫︁
0

𝑐𝜇(𝜆𝑥)𝑓(𝑥)𝑑𝑥.

Proposition 1. If 𝑓 ∈ 𝐿1
𝜇 and 1,𝜇(𝑓) ∈ 𝐿1

𝜇, then

𝑓(𝑥) = 𝑥𝜇
+∞∫︁
0

𝑐𝜇(𝜆𝑥)1,𝜇(𝑓)(𝜆)𝑑𝜆, ∀𝑥 ∈ (0,+∞).

For 𝜇 ⩾ 0, let 𝐹 (𝜆) = 1,𝜇(𝑓)(𝜆) and 𝐺(𝜆) = 1,𝜇(𝑔)(𝜆) denote
the first Hankel-Clifford transform of order 𝜇 of 𝑓(𝑥) and 𝑔(𝑥), respec-
tively. Méndez et al. [9] established the following Parseval relation:

+∞∫︁
0

𝐹 (𝜆)𝐺(𝜆)𝜆𝜇𝑑𝜆 =

+∞∫︁
0

𝑓(𝑥)𝑔(𝑥)𝑥𝜇𝑑𝑥.
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Then the first Hankel-Clifford transform 1,𝜇 : 𝑓(𝑥) −→ 1,𝜇(𝑓)(𝜆) is a
linear isomorphism of the space 𝐿2

𝜇 into itself, and for any function 𝑓 ∈ 𝐿2
𝜇

we have the Parseval identity

‖𝜆−𝜇1,𝜇(𝑓)(𝜆)‖2,𝜇 = ‖𝑥−𝜇𝑓(𝑥)‖2,𝜇.

Parseval’s identity and the Marcinkiewicz interpolation theorem (see [14])
are true for 𝑓 ∈ 𝐿𝑝𝜇 with 1 < 𝑝 ⩽ 2 and 𝑝′, such that 1

𝑝
+ 1

𝑝′
= 1

‖𝜆−𝜇1,𝜇(𝑓)(𝜆)‖𝑝′,𝜇 ⩽ 𝐶0‖𝑥−𝜇𝑓(𝑥)‖𝑝,𝜇. (5)

Let Δ = Δ(𝑥, 𝑦, 𝑧) be area of the triangle with sides 𝑥, 𝑦, 𝑧 (see [7], [16]).
For 𝜇 ⩾ 0, set

𝐷𝜇(𝑥, 𝑦, 𝑧) =
Δ2𝜇+1

22𝜇(𝑥𝑦𝑧)𝜇Γ(𝜇+ 1
2
)
√
𝜋

if Δ exists, and zero otherwise. Note that 𝐷𝜇(𝑥, 𝑦, 𝑧) ⩾ 0 and it is sym-
metric in 𝑥, 𝑦, 𝑧.

From [12], we define the generalized translation operator by the rela-
tion

𝜏(𝑓)(𝑥) =

+∞∫︁
0

𝑓(𝑧)𝐷𝜇(, 𝑥, 𝑧)𝑧
𝜇𝑑𝑧 , 0 < 𝑥 ,  <∞.

Assume that 𝜇 ⩾ 0. Let 𝑀 be the map of 𝐿2
𝜇 defined by

𝑀𝑓(𝑥) = 𝑥𝜇𝑓(𝑥) (6)

Prasad et al proved the following well-known proposition:

Proposition 2. [12] Let 𝑓 ∈ 𝐿2
𝜇 and fix  > 0. Then 𝜏(𝑓)(𝑥) ∈ 𝐿2

𝜇 and

1,𝜇(𝑀𝜏𝑓(·))(𝜆) = 𝑐𝜇(𝜆)1,𝜇(𝑀𝑓(·))(𝜆), 𝜆 ∈ (0,+∞).

3. Main results. Before giving our first main result, we define the
Clifford-Lipschitz class.

Definition 2. Let 0 < 𝛿 ⩽ 1. A function 𝑓 ∈ 𝐿𝑝𝜇, 1 < 𝑝 ⩽ 2, is said to
be in the Clifford-Lipschitz class, denoted 𝐿𝑖𝑝𝑐(𝛿, 𝑝, 𝜇), if

‖Γ(𝜇+ 1)𝜏𝑓(𝑥)− 𝑓(𝑥)‖𝑝,𝜇 = 𝑂(𝛿) 𝑎𝑠 −→ 0
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Theorem 3. Let 𝑓 belong to the Clifford-Lipschitz class 𝐿𝑖𝑝𝑐(𝛿, 𝑝, 𝜇),
0 < 𝛿 ⩽ 1 and 1 < 𝑝 ⩽ 2. Then 1,𝜇(𝑀𝑓) ∈ 𝐿𝛽𝜇((0,+∞)) for all 𝛽
satisfying

𝜇𝑝+ 𝑝

𝑝− 𝜇+ 𝛿𝑝− 1
< 𝛽 ⩽ 𝑝′ =

𝑝

𝑝− 1
.

Proof. Assume that 𝑓 ∈ 𝐿𝑖𝑝𝑐(𝛿, 𝑝, 𝜇); then we have

‖Γ(𝜇+ 1)𝜏𝑓(𝑥)− 𝑓(𝑥)‖𝑝,𝜇 = 𝑂(𝛿) a𝑠  −→ 0.

Using the formula (6), we have

‖Γ(𝜇+ 1)𝜏𝑓(𝑥)− 𝑓(𝑥)‖𝑝,𝜇 = ‖𝑥−𝜇 (Γ(𝜇+ 1)𝑥𝜇𝜏𝑓(𝑥)− 𝑥𝜇𝑓(𝑥)) =

= ‖𝑥−𝜇 (Γ(𝜇+ 1)𝑀 (𝜏𝑓(𝑥))−𝑀 (𝑓(𝑥))) ‖𝑝,𝜇.

From proposition 2 and formula (4), we get

1,𝜇 (Γ(𝜇+ 1)𝑀 (𝜏𝑓(𝑥))−𝑀 (𝑓(𝑥))) (𝜆) =

=
(︁
𝑗𝜇(2

√
𝜆)− 1

)︁
1,𝜇(𝑀𝑓(𝑥))(𝜆).

By the Hausdorff-Young formula (5), we have

+∞∫︁
0

𝜆−𝜇𝑝
′|1− 𝑗𝜇(2

√
𝜆)|𝑝′|1,𝜇(𝑀𝑓)(𝜆)|𝑝′𝜆𝜇𝑑𝜆 ⩽

⩽ 𝐶𝑝′

0

⃦⃦
𝑥−𝜇 (Γ(𝜇+ 1)𝑀 (𝜏𝑓(𝑥))−𝑀 (𝑓(𝑥)))

⃦⃦𝑝′
𝑝,𝜇

⩽

⩽ 𝐶𝑝′

0 ‖Γ(𝜇+ 1)𝜏𝑓(𝑥)− 𝑓(𝑥)‖𝑝
′

𝑝,𝜇 ⩽ 𝐶1
𝛿𝑝′ .

Hence,

+∞∫︁
0

|1− 𝑗𝜇(2
√
𝜆)|𝑝′ |1,𝜇(𝑀𝑓)(𝜆)|𝑝′𝜆(1−𝑝′)𝜇𝑑𝜆 ⩽ 𝐶1

𝛿𝑝′ .

If 0 < 𝜆 < 𝜂2

4
, then 0 < 2

√
𝜆 < 𝜂 and inequality (3) implies

|1− 𝑗𝜇(2
√
𝜆)| ⩾ 4𝐶𝜆.
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From this, we get

𝜂2

4∫︁
0

|𝜆|𝑝′|1,𝜇(𝑀𝑓)(𝜆)|𝑝′𝜆(1−𝑝′)𝜇𝑑𝜆 ⩽

⩽
1

(4𝐶)𝑝′

𝜂2

4∫︁
0

|1− 𝑗𝜇(2
√
𝜆)|𝑝′ |1,𝜇(𝑀𝑓)(𝜆)|𝑝′𝜆(1−𝑝′)𝜇𝑑𝜆 ⩽

⩽
1

(4𝐶)𝑝′

+∞∫︁
0

|1− 𝑗𝜇(2
√
𝜆)|𝑝′|1,𝜇(𝑀𝑓)(𝜆)|𝑝′𝜆(1−𝑝′)𝜇𝑑𝜆 = 𝑂(𝛿𝑝

′
).

So that
𝜂2

4∫︁
0

|𝜆1,𝜇(𝑀𝑓)(𝜆)|𝑝′𝜆(1−𝑝′)𝜇𝑑𝜆 = 𝑂((𝛿−1)𝑝′).

Thus,
𝑡∫︁

0

|𝜆1,𝜇(𝑀𝑓)(𝜆)|𝑝′𝜆(1−𝑝′)𝜇𝑑𝜆 = 𝑂(𝑡(1−𝛿)𝑝
′
).

Let

𝜓(𝑡) =

𝑡∫︁
1

|𝜆1,𝜇(𝑀𝑓)(𝜆)|𝛽𝜆(1−𝑝′)𝜇𝛽/𝑝′𝑑𝜆.

Now, if 𝛽 ⩽ 𝑝′, by the Hölder inequality we obtain

𝜓(𝑡) ⩽

(︂ 𝑡∫︁
1

|𝜆1,𝜇(𝑀𝑓)(𝜆)|𝑝′𝜆(1−𝑝′)𝜇𝑑𝜆
)︂(︂ 𝑡∫︁

1

𝑑𝜆

)︂1−𝛽/𝑝′

=

= 𝑂(𝑡(1−𝛿)𝑝
′×𝛽/𝑝′𝑡1−𝛽/𝑝

′
) = 𝑂(𝑡(1−𝛿)𝛽𝑡1−𝛽/𝑝

′
) = 𝑂(𝑡1−𝛿𝛽+𝛽/𝑝).

Therefore,

𝑡∫︁
1

|1,𝜇(𝑀𝑓)(𝜆)|𝛽𝜆𝜇𝑑𝜆 =

𝑡∫︁
1

𝜆−𝛽−(1−𝑝′)𝜇𝛽/𝑝′𝜓′(𝜆)𝜆𝜇𝑑𝜆 =
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= 𝑡−𝛽−(1−𝑝′)𝜇𝛽/𝑝′+𝜇𝜓(𝑡)+

+ (𝛽 + (1− 𝑝′)𝜇𝛽/𝑝′ − 𝜇)

𝑡∫︁
1

𝜆−𝛽−(1−𝑝′)𝜇𝛽/𝑝′+𝜇−1𝜓(𝜆)𝑑𝜆 =

= 𝑂(𝑡−𝛽−(1−𝑝′)𝜇𝛽/𝑝′+𝜇 𝑡1−𝛿𝛽+𝛽/𝑝)+𝑂

(︂ 𝑡∫︁
1

𝜆−𝛽−(1−𝑝′)𝜇𝛽/𝑝′+𝜇−1𝜆1−𝛿𝛽+𝛽/𝑝𝑑𝜆

)︂
=

= 𝑂(𝑡−𝛽−(1−𝑝′)𝜇𝛽/𝑝′+𝜇+1−𝛿𝛽+𝛽/𝑝)

and the right-hand side of this estimate is bounded as 𝑡 −→ ∞ if

−𝛽 − (1− 𝑝′)𝜇𝛽/𝑝′ + 𝜇+ 1− 𝛿𝛽 + 𝛽/𝑝 < 0.

That is,

𝛽 >
𝜇𝑝+ 𝑝

𝑝− 𝜇+ 𝛿𝑝− 1
.

Thus, the proof is finished. □

In the rest of this paper, we give our second main result, which is a
generalization of Theorem 2. For this objective, we need to define the
Dini-Clifford Lipschitz class.

Definition 3. Let 0 < 𝛿 ⩽ 1, 𝛾 > 0. A function 𝑓 ∈ 𝐿𝑝𝜇, 1 < 𝑝 ⩽ 2, is
said to be in the Dini-Clifford-Lipschitz class, denoted 𝐷-𝐿𝑖𝑝𝑐(𝛿, 𝛾, 𝑝, 𝜇),
if

‖Γ(𝜇+ 1)𝜏𝑓(𝑥)− 𝑓(𝑥)‖𝑝,𝜇 = 𝑂

(︂
𝛿

(log 1

)𝛾

)︂
𝑎𝑠  −→ 0.

Theorem 4. Let 𝑓 ∈ 𝐿𝑝𝜇, 1 < 𝑝 ⩽ 2. If 𝑓 belongs to 𝐷-𝐿𝑖𝑝𝑐(𝛿, 𝛾, 𝑝, 𝜇),
then 1,𝜇(𝑀𝑓) belongs to 𝐿𝛽𝜇((0,+∞)), such that

𝜇𝑝+ 𝑝

𝑝− 𝜇+ 𝛿𝑝− 1
< 𝛽 ⩽ 𝑝′ =

𝑝

𝑝− 1
𝑎𝑛𝑑 𝛽 >

1

𝛾
.

Proof. Similary to the proof of theorem 3, we can establish the following
result:

𝜂2

4∫︁
0

|𝜆1,𝜇(𝑀𝑓)(𝜆)|𝑝′𝜆(1−𝑝′)𝜇𝑑𝜆 = 𝑂

(︂
(𝛿−1)𝑝′

(log 1

)𝛾𝑝′

)︂
.
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Thus,
𝑡∫︁

0

|𝜆1,𝜇(𝑀𝑓)(𝜆)|𝑝′𝜆(1−𝑝′)𝜇𝑑𝜆 = 𝑂

(︂
𝑡(1−𝛿)𝑝

′

(log 𝑡)𝛾𝑝′

)︂
.

Let us consider again the function 𝜓, defined by

𝜓(𝑡) =

𝑡∫︁
1

|𝜆1,𝜇(𝑀𝑓)(𝜆)|𝛽𝜆(1−𝑝′)𝜇𝛽/𝑝′𝑑𝜆.

Then, if 𝛽 ⩽ 𝑝′, using the Hölder inequality we obtain

𝜓(𝑡) = 𝑂

(︂
𝑡1−𝛿𝛽+𝛽/𝑝

(log 𝑡)𝛾𝛽

)︂
.

Hence,

𝑡∫︁
1

|1,𝜇(𝑀𝑓)(𝜆)|𝛽𝜆𝜇𝑑𝜆 =

𝑡∫︁
1

𝜆
−𝛽−(1−𝑝′)𝜇𝛽

𝑝′ 𝜓′(𝜆)𝜆𝜇𝑑𝜆 =

= 𝑡−𝛽−(1−𝑝′)𝜇𝛽/𝑝′+𝜇 𝜓(𝑡)+(𝛽+(1−𝑝′)𝜇𝛽
𝑝′

−𝜇)
𝑡∫︁

1

𝜆−𝛽−(1−𝑝′)𝜇𝛽/𝑝′+𝜇−1 𝜓(𝜆)𝑑𝜆 =

= 𝑂
(︁
𝑡−𝛽−(1−𝑝′)𝜇𝛽/𝑝′+𝜇 𝑡

1−𝛿𝛽+𝛽/𝑝

(log 𝑡)𝛾𝛽

)︁
+𝑂
(︁ 𝑡∫︁

1

𝜆−𝛽−(1−𝑝′)𝜇𝛽/𝑝′+𝜇−1𝜆
1−𝛿𝛽+𝛽/𝑝

(log 𝜆)𝛾𝛽
𝑑𝜆
)︁
=

= 𝑂
(︁𝑡−𝛽−(1−𝑝′)𝜇𝛽

𝑝′ +𝜇+1−𝛿𝛽+𝛽/𝑝

(log 𝑡)𝛾𝛽

)︁
.

and this is bounded as 𝑡 −→ ∞ if

−𝛽 − (1− 𝑝′)𝜇𝛽/𝑝′ + 𝜇+ 1− 𝛿𝛽 + 𝛽/𝑝 < 0 and − 𝛾𝛽 < −1,

which gives

𝛽 >
𝜇𝑝+ 𝑝

𝑝− 𝜇+ 𝛿𝑝− 1
and 𝛽 >

1

𝛾
.

And this ends the proof. □
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