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Abstract. We study existence of fixed points for multivalued
⊥𝜓𝐹 -contractions in the setting of generalized orthogonal sets by
extending some basic notions related to this new direction of re-
search. The proven theorems generalize and improve many known
results in the literature. Also, an application to a Volterra-type
integral inclusion is provided.
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1. Introduction. Nadler [6] (1969) was the first author who com-
bined the notion of Hausdorff metric and contractions and proved a fixed-
point theorem for this class of contractions. Since then, this type has been
dealt with in a number of papers [2], [9]. In 2015, Altun et al [1] introduced
multivalued F-contractions by using the idea of Wardowski [14] (2012) and
Nadler [6]. Also, a fixed-point result for this class of mappings was proven.
On the other hand, Gordji et al [4] (2014) defined the notion of orthog-
onal set, and, hence, a generalization of the Banach contraction. After
that, Baghani et al [3] (2017) gave a generalization of 𝐹 -contraction on
orthogonal sets called ⊥𝐹 -contraction and established a fixed-point result
for these contractions. Other works in this area can be found in [11,13].

Very recently, the authors in [10] (2020) have introduced the notion of
generalized orthogonal sets and some related basic concepts as an exten-
sion of orthogonal sets. Further, they proved some fixed-point theorems
for ⊥𝜓𝐹 -contraction mappings.

© Petrozavodsk State University, 2022

http://creativecommons.org/licenses/by/4.0/


110 Y. Touail

In this paper, motivated by the major role of fixed points for multi-
valued mappings, we generalize the notion of ⊥𝜓𝐹 -contractions to mutli-
valued ⊥𝜓𝐹 -contractions. Also, we extend some related notions and prove
new fixed-point theorems for this new direction of research. In this work,
we show the superiority of the obtained results compared to the existing
ones in the literature ( [3], [4], [10]). Finally, as an extension of some ap-
plications from the literature [10], [12], an application to a Volterra-type
integral inclusion under new weak conditions is considered.

2. Preliminary. Throughout this article, (𝑋, 𝑑) is a metric space and
𝐶𝐵(𝑋) (respectively, 𝐾(𝑋)) denotes the family of all nonempty closed
and bounded subsets of 𝑋 (respectively, of compact subsets of 𝑋). Define

𝐻(𝐴,𝐵) = max{sup
𝑎∈𝐴

𝑑(𝑎,𝐵), sup
𝑏∈𝐵

𝑑(𝑏, 𝐴)},

for a given 𝐴,𝐵 ∈ 𝐶𝐵(𝑋) with 𝑑(𝑎,𝐵) = inf{𝑑(𝑎, 𝑏) : 𝑏 ∈ 𝐵}. It is known
that 𝐻 is a metric on 𝐶𝐵(𝑋), called the Hausdorff metric induced by the
metric 𝑑. Now, we describe some notions and results used in the sequel.

Definition 1. [8], [14] Let 𝐹 : ℝ+ → ℝ be a mapping and consider the
following conditions:

(F1) 𝐹 is strictly increasing;
(F2) For each sequence {𝛼𝑛} of positive numbers, we get

lim
𝑛→∞

𝛼𝑛 = 0 ⇔ lim
𝑛→∞

𝐹 (𝛼𝑛) = −∞;

(F3) There exists 𝜆 ∈ (0, 1), such that lim
𝛼→0

𝛼𝜆𝐹 (𝛼) = 0.

ℱ denotes the class of all functions 𝐹 : ℝ+ → ℝ that satisfy conditions
(F1), (F2), and (F3).

Definition 2. [14] A mapping 𝑇 : 𝑋 → 𝑋 is said to be an 𝐹 -contraction,
where 𝐹 ∈ ℱ , if

∃𝜏 > 0,∀𝑥, 𝑦 ∈ 𝑋, 𝑑(𝑇𝑥, 𝑇𝑦) > 0 =⇒ 𝜏 + 𝐹 (𝑑(𝑇𝑥, 𝑇𝑦)) ⩽ 𝐹 (𝑑(𝑥, 𝑦)).

Definition 3. [1] A mapping 𝑇 : 𝑋 → 𝐶𝐵(𝑋) is said to be an 𝐹 -
contraction, where 𝐹 ∈ ℱ , if

∃𝜏 > 0, ∀𝑥, 𝑦 ∈ 𝑋,𝐻(𝑇𝑥, 𝑇𝑦) > 0 =⇒ 𝜏 + 𝐹 (𝐻(𝑇𝑥, 𝑇𝑦)) ⩽ 𝐹 (𝑑(𝑥, 𝑦)).
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Theorem 1. [1] Let (𝑋, 𝑑) be a complete metric space and 𝑇 : 𝑋→𝐾(𝑋)
be a mutlivalued 𝐹 -contraction; then 𝑇 has a fixed point in 𝑋.

Definition 4. [8] Let Ψ denote the family of all functions 𝜓 : ℝ → ℝ that
satisfy the following assumptions:

(𝜓1) 𝜓 is increasing;
(𝜓2) 𝜓𝑛(𝑡) → −∞ for every 𝑡 ∈ ℝ.

Lemma 1. [8] If 𝜓 ∈ Ψ, then 𝜓(𝑡) < 𝑡 for all 𝑡 ∈ ℝ.

Definition 5. [8] A mapping 𝑇 : 𝑋 → 𝑋 is said to be an 𝜓F-contraction,
where 𝐹 ∈ ℱ and 𝜓 ∈ Ψ, if

∀𝑥, 𝑦 ∈ 𝑋, 𝑑(𝑇𝑥, 𝑇𝑦) > 0 =⇒ 𝐹 (𝑑(𝑇𝑥, 𝑇𝑦)) ⩽ 𝜓[𝐹 (𝑑(𝑥, 𝑦))].

Remark 1. [8] If we take in Definition 5 𝜓(𝑡) = 𝑡− 𝜏 , 𝜏 > 0, we get the
𝐹 -contraction in Definition 2.

Lemma 2. [7, Lemma 2.2] Let (𝑋, 𝑑) be a metric space and𝐴,𝐵∈ 𝐶𝐵(𝑋).
If there exists 𝛾 > 0, such that:

i) For each 𝑎 ∈ 𝐴, there is a 𝑏 ∈ 𝐵, so that 𝑑(𝑎, 𝑏) ⩽ 𝛾;
ii) For each 𝑏 ∈ 𝐵, there is an 𝑎 ∈ 𝐴, so that 𝑑(𝑏, 𝑎) ⩽ 𝛾,

then 𝐻(𝐴,𝐵) ⩽ 𝛾.

Now, we recall the definition of orthogonal sets, generalized orthogonal
sets, and some related basic concepts.

Definition 6. [4] Let 𝑋 ̸= ∅ and let ⊥⊂ 𝑋 ×𝑋 be a binary relation. If
⊥ satisfies the following assumption:

∃𝑥0 : (∀𝑦, 𝑦 ⊥ 𝑥0) or (∀𝑦, 𝑥0 ⊥ 𝑦), (1)

then it is called an orthogonal set.

Definition 7. [10] Let 𝑋 ̸= ∅ and let ⊥𝑔⊂ 𝑋 ×𝑋 be a binary relation,
such that ⊥𝑔 satisfies the following condition:

∃𝑥0,∀𝑦 ∈ 𝑋 ∖ {𝑥0}, 𝑦 ⊥𝑔 𝑥0 or 𝑥0 ⊥𝑔 𝑦; (2)

then it is called a generalized orthogonal set. We denote it by (𝑋,⊥𝑔).
Also, the element 𝑥0 is said to be a generalized orthogonal element.
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Example 1. [10] Let 𝑋 = ℝ. Define a binary relation ⊥𝑔 on 𝑋 by

𝑥 ⊥𝑔 𝑦 ⇐⇒ 𝑥 < 𝑦. (3)

It is easy to see that (𝑋,⊥𝑔) is a generalized orthogonal set, but not an
orthogonal set.

Remark 2. As noted in [10], the generalized orthogonal element is not
unique. In the above example, one can see that every element 𝑥 ∈ 𝑋 is a
generalized orthogonal element.

Example 2. [10] Let (𝑋, 𝜏) be a topological space. We define a binary
relation ⊥𝑔 on 𝑋 ×𝑋 by

𝐴 ⊥𝑔 𝐵 ⇐⇒ 𝐴 ⊆
∘
𝐵 and 𝐴 ̸= 𝐵;

(𝑋,⊥𝑔) is a generalized orthogonal set, but not an orthogonal set (the
converse is not true) and ∅ is a generalized orthogonal element.

Definition 8. [10] Let (𝑋,⊥𝑔) be a generalized orthogonal set. A se-
quence {𝑥𝑛} ⊂ 𝑋 is called a generalized orthogonal sequence, if for all
𝑛 ∈ ℕ,

𝑥𝑛 ̸= 𝑥𝑛+1 =⇒ 𝑥𝑛 ⊥𝑔 𝑥𝑛+1 or 𝑥𝑛+1 ⊥𝑔 𝑥𝑛.

Definition 9. [10] The triplet (𝑋,⊥𝑔, 𝑑) is said to be a generalized or-
thogonal metric space, if (𝑋, 𝑑) is a metric space and (𝑋,⊥𝑔) is a gener-
alized orthogonal set.

Definition 10. [10] Let (𝑋,⊥𝑔, 𝑑) be a generalized orthogonal metric
space and 𝑇 : 𝑋 → 𝑋 be a self-mapping. 𝑇 is said to be generalized ⊥𝑔

preserving, if for all 𝑥, 𝑦 ∈ 𝑋,

𝑥 ⊥𝑔 𝑦 and 𝑑(𝑇𝑥, 𝑇𝑦) > 0 =⇒ 𝑇𝑥 ⊥𝑔 𝑇𝑦.

Definition 11. [10] Let (𝑋,⊥𝑔, 𝑑) be a generalized orthogonal metric
space. 𝑋 is called a generalized orthogonal complete space, if every
Cauchy generalized orthogonal sequence {𝑥𝑛} ⊂ 𝑋 is convergent.

3. Main results. In this section, we start with the following defini-
tion:

Definition 12. Let (𝑋,⊥𝑔, 𝑑) be a generalized orthogonal metric space
and 𝑇 : 𝑋 → 𝐶𝐵(𝑋) be a mutlivalued mapping. 𝑇 is said to be multi-
valued generalized ⊥𝑔-preserving, if for all 𝑥, 𝑦 ∈ 𝑋:

𝑥 ⊥𝑔 𝑦 and 𝐻(𝑇𝑥, 𝑇𝑦) > 0 =⇒ 𝑎 ⊥𝑔 𝑏
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for all 𝑎 ∈ 𝑇𝑥 and 𝑏 ∈ 𝑇𝑦, such that 𝑎 ̸= 𝑏 (in this case we denote it
𝑇𝑥 ⊥𝑔 𝑇𝑦).

Example 3. Let 𝑋 = {1, 2, 3} and 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| for all 𝑥, 𝑦 ∈ 𝑋 be
the usual metric on 𝑋. Define a binary relation on 𝑋 by

𝑥 ⊥𝑔 𝑦 ⇐⇒ 𝑥 < 𝑦, 𝑥𝑦 ∈ {𝑥, 𝑦}.

Therefore, (𝑋,⊥𝑔, 𝑑) is a generalized orthogonal metric space and 1 is an
orthogonal element. Consider the multivalued mapping 𝑇 : 𝑋 → 𝐾(𝑋)
defined by

𝑇 (𝑥) =

{︃
{1, 2}, if 𝑥 = 1, 3;

{2}, if 𝑥 = 2.

Hence, 𝑇 is a multivalued generalized orthogonal preserving. Indeed, let
𝑥, 𝑦 ∈ 𝑋; then 𝑥 ⊥𝑔 𝑦 and 𝐻(𝑇𝑥, 𝑇𝑦) > 0 imply 𝑥 = 1 and 𝑦 = 2 and,
hence, for all 𝑎 ∈ 𝑇𝑥 and 𝑏 ∈ 𝑇𝑦, such that 𝑎 ̸= 𝑏, we have 𝑎 ⊥𝑔 𝑏.

Definition 13. Let (𝑋,⊥𝑔, 𝑑) be a generalized orthogonal metric space;
a mapping 𝑇 : 𝑋 → 𝑋 is called multivalued generalized orthogonal con-
tinuous at 𝑥 ∈ 𝑋 if for any generalized orthogonal sequence {𝑥𝑛} ⊂ 𝑋 we
have

𝑥𝑛 → 𝑥 with respect to 𝑑 =⇒ 𝑇𝑥𝑛 → 𝑇𝑥 with respect to 𝐻.

Example 4. Under the same assumption as in the above example, we
define a multivalued mapping 𝑇 : 𝑋 → 𝐾(𝑋) by

𝑇 (𝑥) =

{︃
{1}, if 𝑥 = 1, 2;

{2, 3}, if 𝑥 = 3.

Then it is clear that 𝑇 is multivalued generalized orthogonal continuous.

Now, we introduce the notion of generalized orthogonal multivalued
𝜓𝐹 -contraction and show some fixed-point theorems for this type of ge-
neralized orthogonal metric spaces.

Definition 14. Let (𝑋,⊥𝑔, 𝑑) be a generalized orthogonal metric space,
such that 𝑥0 is a generalized orthogonal element, 𝐹 ∈ ℱ , and 𝜓 ∈ Ψ. A
multivalued mapping 𝑇 : 𝑋 → 𝐶𝐵(𝑋) is said to be generalized orthog-
onal multivalued 𝜓𝐹 -contraction (multivalued ⊥𝜓𝐹 -contraction) if for all
𝑥, 𝑦 ∈ 𝑋:

𝑥 ⊥𝑔 𝑦 and 𝐻(𝑇𝑥, 𝑇𝑦) > 0 =⇒ 𝐹 (𝐻(𝑇𝑥, 𝑇𝑦)) ⩽ 𝜓(𝐹 (𝑀(𝑥, 𝑦))), (4)
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where

𝑀(𝑥, 𝑦) = max{𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦), 1
2
[𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)]}

and
𝑥0 /∈ 𝑇𝑥0 =⇒

∑︁
𝑛

|𝜓𝑛(𝐷0)|−1/𝜆 is convergent, (5)

where 𝐷0 = 𝐹 (𝐷(𝑥0, 𝑇𝑥0)) = 𝐹
(︁

sup
𝑥∈𝑇𝑥0

𝑑(𝑥0, 𝑥)
)︁

and 𝜆 ∈ (0, 1) is the

constant from (F3) in Definition 1.

The following is the first theorem:

Theorem 2. Let 𝑇 : 𝑋 → 𝐾(𝑋) be a multivalued mapping on a gener-
alized orthogonal metric space (𝑋,⊥𝑔, 𝑑), such that

i) 𝑇 is a multivalued ⊥𝜓𝐹 -contraction;
ii) 𝑇 is multivalued generalized ⊥𝑔-preserving;
iii) 𝑇 is multivalued generalized ⊥𝑔-continuous;
iv) 𝑋 is a generalized orthogonal complete space.

Then 𝑇 has a fixed point in 𝑋.

Proof. 𝑋 is a generalized orthogonal metric space; so there exists an
𝑥0 ∈ 𝑋, such that for all 𝑥0 ̸= 𝑦 ∈ 𝑋:

𝑥0 ⊥𝑔 𝑦 or 𝑦 ⊥𝑔 𝑥0. (6)

Since 𝑇𝑥0 is nonempty, we can choose 𝑥1 ∈ 𝑇𝑥0, if 𝑥0 = 𝑥1 or
𝐻(𝑇𝑥0, 𝑇𝑥1) = 0, so the proof is finished. Otherwise, we obtain 𝑥0 ⊥𝑔 𝑥1
or 𝑥1 ⊥𝑔 𝑥0 and 𝐻(𝑇𝑥0, 𝑇𝑥1) > 0. On the other hand, since 𝑇𝑥1 is closed,
we obtain 𝑑(𝑥1, 𝑇𝑥1) > 0 (otherwise 𝑥1 ∈ 𝑇𝑥1), which implies, by (F1)
and (i), that

𝐹 (𝑑(𝑥1, 𝑇𝑥1)) ⩽ 𝐹 (𝐻(𝑇𝑥0, 𝑇𝑥1)) ⩽ 𝜓[𝐹 (𝑀(𝑥0, 𝑥1))] ⩽

⩽𝜓
[︁
𝐹
(︁
max

{︁
𝑑(𝑥0, 𝑥1), 𝑑(𝑥0, 𝑇𝑥0), 𝑑(𝑥1, 𝑇𝑥1),

𝑑(𝑥0, 𝑇𝑥1)+𝑑(𝑥1, 𝑇𝑥0)

2

}︁)︁]︁
⩽

⩽ 𝜓[𝐹 (max{𝑑(𝑥0, 𝑥1),
1

2
𝑑(𝑥0, 𝑇𝑥1)})] ⩽

⩽ 𝜓[𝐹 (max{𝑑(𝑥0, 𝑥1),
1

2
[𝑑(𝑥0, 𝑥1) + 𝑑(𝑥1, 𝑇𝑥1)]})] ⩽
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⩽ 𝜓[𝐹 (max{𝑑(𝑥0, 𝑥1), 𝑑(𝑥1, 𝑇𝑥1)})] ⩽ 𝜓[𝐹 (𝑑(𝑥0, 𝑥1))]. (7)

From (ii) we get
𝑇𝑥0 ⊥𝑔 𝑇𝑥1 or 𝑇𝑥1 ⊥𝑔 𝑇𝑥0. (8)

Since 𝑇𝑥1 is compact, there exists 𝑥2∈𝑇𝑥1, such that 𝑑(𝑥1, 𝑥2)=𝑑(𝑥1, 𝑇𝑥1).
If 𝑥1 = 𝑥2, the proof is finished. We suppose that 𝑥1 ̸= 𝑥2 and, using (8),
we obtain 𝑥1 ⊥𝑔 𝑥2 or 𝑥2 ⊥𝑔 𝑥1. We can suppose that 𝐻(𝑇𝑥1, 𝑇𝑥2) > 0,
which implies, by (i):

𝐹 (𝑑(𝑥1, 𝑥2)) ⩽ 𝐹 (𝐻(𝑇𝑥0, 𝑇𝑥1)) ⩽ 𝜓[𝐹 (𝑑(𝑥0, 𝑥1))]. (9)

By induction, we obtain a sequence {𝑥𝑛} ⊂ 𝑋, such that 𝑥𝑛 ̸= 𝑥𝑛+1,
𝑥𝑛+1 ∈ 𝑇𝑥𝑛, 𝐻(𝑇𝑥𝑛, 𝑇𝑥𝑛+1) > 0, and 𝑥𝑛 ⊥ 𝑥𝑛+1 or 𝑥𝑛+1 ⊥ 𝑥𝑛 with:

𝐹 (𝑑𝑛) = 𝐹 (𝑑(𝑥𝑛, 𝑥𝑛+1)) ⩽ 𝜓[𝐹 (𝑑(𝑥𝑛−1, 𝑥𝑛))] ⩽ . . . ⩽

⩽ 𝜓𝑛[𝐹 (𝑑(𝑥0, 𝑥1))] ⩽ 𝜓𝑛[𝐹 (𝐷0)], (10)

for all 𝑛 ∈ ℕ ∪ {0}. By (𝜓2) and (F2), we obtain

lim
𝑛→∞

𝑑𝑛 = 0. (11)

By (F3), we have
lim
𝑛→∞

𝑑𝜆𝑛𝐹 (𝑑𝑛) = 0. (12)

As lim
𝑛→∞

𝜓𝑛[𝐹 (𝐷0)] = −∞, there exists 𝑁 > 0, such that 𝜓𝑛[𝐹 (𝐷0)] < 0

for all 𝑛 ⩾ 𝑁 and, hence, by (10), we get

𝑑𝜆𝑛𝐹 (𝑑𝑛) ⩽ 𝑑𝜆𝑛 𝜓
𝑛[𝐹 (𝐷0)] < 0, ∀𝑛 ⩾ 𝑁. (13)

Then, by (12), we have lim
𝑛→∞

𝑑𝜆𝑛 𝜓
𝑛[𝐹 (𝑑0)] = 0. Hence, there exists𝑁1 ⩾ 𝑁 ,

such that 𝑑𝜆𝑛|𝜓𝑛[𝐹 (𝐷0)]| ⩽ 1, which implies 𝑑𝑛 ⩽ |𝜓𝑛[𝐹 (𝐷0)]|−1/𝜆 for all
𝑛 ⩾ 𝑁1. Now, let 𝑝 ∈ ℕ and 𝑛 ⩾ 𝑁1; then we have

𝑑(𝑥𝑛, 𝑥𝑛+𝑝) ⩽ 𝑑(𝑥𝑛, 𝑥𝑛+1) + . . .+ 𝑑(𝑥𝑛+𝑝−1, 𝑥𝑛+𝑝) =

= 𝑑𝑛 + . . .+ 𝑑𝑛+𝑝−1 ⩽
𝑛+𝑝−1∑︁
𝑘=𝑛

|𝜓𝑘[𝐹 (𝐷0)]|−1/𝜆. (14)

It follows from
∑︀

𝑛 |𝜓𝑛[𝐹 (𝑑0)]|−1/𝜆 <∞, that {𝑥𝑛} is a Cauchy generalized
orthogonal sequence. Now, since 𝑋 is a generalized orthogonal complete
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metric space, there exists 𝑢 ∈ 𝑋, such that lim
𝑛→∞

𝑥𝑛 = 𝑢. On the other
hand, we have

𝑑(𝑢, 𝑇𝑢) ⩽ 𝑑(𝑢, 𝑥𝑛) + 𝑑(𝑥𝑛, 𝑥𝑛+1) + 𝑑(𝑥𝑛+1, 𝑇𝑢) ⩽

⩽ 𝑑(𝑢, 𝑥𝑛) + 𝑑(𝑥𝑛, 𝑥𝑛+1) +𝐻(𝑇𝑥𝑛, 𝑇𝑢). (15)

Finally, since {𝑥𝑛} is a Cauchy generalized orthogonal sequence and
𝑇 is a multivalued generalized ⊥𝑔-continuous, we deduce from (15) that
𝑢 ∈ 𝑇𝑢. □

Theorem 3. Let (𝑋, ⊥𝑔, 𝑑) be a generalized orthogonal metric space;
Theorem 2 holds also if we replace the condition (iii) by the following
assumption:

(iii’) If {𝑥𝑛} ⊂ 𝑋 is a generalized orthogonal sequence converging
to 𝑥 ∈ 𝑋, then 𝑥𝑛 ⊥𝑔 𝑥 or 𝑥 ⊥𝑔 𝑥𝑛 for all 𝑛 ∈ ℕ.

Proof. From the proof of Theorem 2 we see that the generalized ortho-
gonal sequence {𝑥𝑛} converges to 𝑢 ∈ 𝑋. Put Γ = {𝑛 ∈ ℕ | 𝑥𝑛+1 ∈ 𝑇𝑢}
and consider the following two cases:

Case I: If Γ is an infinite set, choose a subsequence {𝑥𝑛𝑘
} of {𝑥𝑛}

satisfying 𝑥𝑛(𝑘)+1 ∈ 𝑇𝑢 for all 𝑘 ∈ ℕ. Since {𝑥𝑛} converges to 𝑢, we
obtain 𝑢 ∈ 𝑇𝑢.

Case II: If Γ is a finite set, there exists 𝑁 ∈ ℕ, such that 𝑥𝑛+1 /∈ 𝑇𝑢
for all 𝑛 ⩾ 𝑁 , and, hence, 𝐻(𝑇𝑥𝑛, 𝑇𝑢) > 0 for all 𝑛 ⩾ 𝑁 . On the other
hand, as 𝑥𝑛 ⊥𝑔 𝑢 or 𝑢 ⊥𝑔 𝑥𝑛 for all 𝑛 ⩾ 𝑁 , we obtain, by the fact that 𝑇
is a mutlivalued ⊥𝜓𝐹 -contraction:

𝐹 (𝑑(𝑥𝑛+1, 𝑇𝑢)) ⩽ 𝐹 (𝐻(𝑇𝑥𝑛, 𝑇𝑢)) ⩽

⩽ 𝜓
[︀
𝐹
(︀
max{𝑑(𝑥𝑛, 𝑢), 𝑑(𝑥𝑛, 𝑇𝑥𝑛), 𝑑(𝑢, 𝑇𝑢),

1

2
[𝑑(𝑥𝑛,𝑇𝑢) + 𝑑(𝑢,𝑇𝑥𝑛)]}

)︀]︀
⩽

⩽ 𝐹
(︀
max{𝑑(𝑥𝑛, 𝑢), 𝑑(𝑥𝑛, 𝑥𝑛+1) + 𝑑(𝑥𝑛+1, 𝑇𝑥𝑛),

𝑑(𝑢, 𝑇𝑢),
1

2
[𝑑(𝑥𝑛, 𝑇𝑢) + 𝑑(𝑢, 𝑇𝑥𝑛)]}

)︀
⩽

⩽𝐹 (max{𝑑(𝑥𝑛, 𝑢), 𝑑(𝑥𝑛, 𝑥𝑛+1), 𝑑(𝑢, 𝑇𝑢),
1

2
[𝑑(𝑥𝑛, 𝑇𝑢) + 𝑑(𝑢, 𝑥𝑛+1)]})

for all 𝑛 ⩾ 𝑁 . If 𝑢 ∈ 𝑇𝑢, the proof is completed; otherwise, we obtain

𝐹 (𝑑(𝑥𝑛+1, 𝑇𝑢)) ⩽

⩽ max{𝑑(𝑥𝑛, 𝑢), 𝑑(𝑥𝑛, 𝑥𝑛+1), 𝑑(𝑢, 𝑇𝑢),
1

2
[𝑑(𝑥𝑛, 𝑇𝑢) + 𝑑(𝑢, 𝑥𝑛+1)]}.
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On the other hand, since {𝑥𝑛} converges to 𝑢, we have, due to (F2):
lim
𝑛→∞

𝐹 (𝑑(𝑥𝑛+1, 𝑇𝑢)) = −∞; again, by (F2), we conclude that

lim
𝑛→∞

𝑑(𝑥𝑛+1, 𝑇𝑢) = 0,

which implies 𝑢 ∈ 𝑇𝑢. □

Corollary. Let (𝑋, 𝑑) be a complete metric space and 𝑇 : 𝑋 → 𝐾(𝑋) be
a multivalued 𝐹 -contraction. Then 𝑇 has a fixed point.

Proof. Define a binary relation on 𝑋 ×𝑋 as follows:

𝑥 ⊥𝑔 𝑦 ⇔
[︂
𝑑(𝑇𝑥, 𝑇𝑦) > 0 =⇒ 𝐹 (𝑑(𝑇𝑥, 𝑇𝑦)) ⩽ 𝜓[𝐹 (𝑑(𝑥, 𝑦))]

]︂
, (16)

where 𝜓(𝑡) = 𝑡 − 𝜏 for all 𝑡 ∈ ℝ with 𝜏 > 0. Since 𝑇 is a multivalued F-
contraction, we have, for a fixed 𝑥0 ∈ 𝑋: 𝑥0 ⊥ 𝑦 for all 𝑦 ∈ 𝑋 ∖{𝑥0}. Then
(𝑋,⊥𝑔, 𝑑) is a generalized orthogonal complete metric space. On the other
hand, it is easy to see that 𝑇 is a multivalued ⊥𝜓𝐹 -contraction. Further-
more, 𝑇 is generalized orthogonal preserving and generalized orthogonal
continuous. Therefore, 𝑇 satisfies all conditions of Theorem 2. □

Corollary. [10, Theorem 4.3] Let 𝑇 be a self-mapping on a generalized
orthogonal complete metric space (𝑋,⊥𝑔, 𝑑) such that

i) 𝑇 is an ⊥𝜓𝐹 -contraction;
ii) 𝑇 is a generalized ⊥𝑔-preserving;
iii) 𝑇 is a generalized ⊥𝑔-continuous.

Then 𝑇 has a fixed point.

Corollary. [3, Theorem 3.10] Let (𝑋,⊥, 𝑑) be an O-complete orthogonal
metric space. Let 𝑇 : 𝑋 → 𝑋 be a self-mapping, such that:

i) 𝑇 is an ⊥𝐹 -contraction, that is, 𝑇 is an 𝐹 -contraction for all 𝑥, 𝑦 ∈ 𝑋
such that 𝑥 ⊥ 𝑦.

ii) 𝑇 is ⊥-preserving;
iii) 𝑇 is ⊥-continuous.

Then 𝑇 has a fixed point, moreover, 𝑇 is a Picard operator.

Proof. We take 𝜓(𝑡) = 𝑡 − 𝜏 for all 𝑡 ∈ ℝ. On the other hand, since
every generalized orthogonal space is an orthogonal space, we get, from
Theorem 2, the desired result. □
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Example 5. Let 𝑋 = ℕ = {1, 2, 3, . . .} and 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| for all
𝑥, 𝑦 ∈ 𝑋 be the usual metric on 𝑋. Define a binary relation on 𝑋 by

𝑥 ⊥𝑔 𝑦 ⇐⇒ 𝑥 < 𝑦, 𝑥𝑦 ∈ {𝑥, 𝑦}.

Therefore, (𝑋,⊥𝑔, 𝑑) is a generalized orthogonal complete metric space,
and 1 is an orthogonal element. Consider the multivalued mapping 𝑇 :
𝑋 → 𝐾(𝑋) defined by

𝑇 (𝑥) =

{︃
{1}, if 𝑥 = 1, 2;

{2, . . . , 𝑥− 1}, if 𝑥 ⩾ 3.

Hence, 𝑇 is a multivalued generalized orthogonal preserving. Now, let
𝐹 ∈ ℱ be defined by 𝐹 (𝑡) = 𝑡 + ln 𝑡 for all 𝑡 > 0, and 𝜓 ∈ Ψ be defined
by 𝜓(𝑥) = 𝑥− 1 for all 𝑥 ∈ ℝ.

Let 𝑥, 𝑦 ∈ 𝑋, such that 𝑥 ⊥𝑔 𝑦 and 𝐻(𝑇𝑥, 𝑇𝑦) > 0. We obtain 𝑥 = 1
and 𝑦 ⩾ 3; then

𝐻(𝑇1, 𝑇 𝑦)

𝑀(1, 𝑦)
𝑒𝐻(𝑇1, 𝑇 𝑦)−𝑀(1, 𝑦) ⩽

𝑦 − 2

𝑦 − 1
𝑒𝑦−2−𝑦+1 ⩽ 𝑒−1.

This means that 𝑇 is a generalized multivalued ⊥𝜓𝐹 -contraction; then all
assumptions of Theorem 2 are satisfied and 1 is a fixed point.

Now, since

𝐻(𝑇4, 𝑇𝑆2)

𝑀(4, 2)
𝑒𝐻(𝑇4, 𝑇𝑆2)−𝑀(4, 2) ⩾

3

2
> 𝑒−1,

𝑇 is not a generalized multivalued ⊥𝐹 -contraction.

4. Application. In this section, we give a typical application of
our results to integral inclusions. Inspired by [7], [9], [10], we study the
existence of a solution for a Volterra-type integral inclusion. For this
purpose, let 𝑋 = 𝒞([1, 𝜃], [1,∞)) be the space of all continuous functions
from 𝐼 = [1, 𝜃] into [1,∞) with 𝜃 > 1. Let us consider the Volterra-type
inclusion

𝑥(𝑡) ∈ 𝑓(𝑡) +

𝑡∫︁
1

𝐾(𝑡, 𝑠, 𝑥(𝑠)) 𝑑𝑠, 𝑡 ∈ 𝐼, (17)

where 𝐾 : 𝐼 × 𝐼 × ℝ+ → 𝒫𝑐𝑣(ℝ+) and 𝒫𝑐𝑣(ℝ+) denotes the class of
nonempty compact and convex subsets of ℝ+. For each 𝑥 ∈ 𝑋, the
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multi-valued mapping 𝐾𝑥(𝑡, 𝑠) := 𝐾(𝑡, 𝑠, 𝑥(𝑠)), (𝑡, 𝑠) ∈ [1, 𝜃]2 is lower
semicontinuous and 𝑓 ∈ 𝑋 with 𝑓 ⩾ 2.

We can define a multivalued operator 𝑇 from 𝑋 into 𝒫(𝑋) by

𝑇𝑥(𝑡) =

{︂
𝑣 ∈ 𝑋 : 𝑣(𝑡) ∈ 𝑓(𝑡) +

𝑡∫︁
1

𝐾(𝑡, 𝑠, 𝑥(𝑠)) 𝑑𝑠, 𝑡 ∈ 𝐼

}︂
, (18)

for all 𝑥 ∈ 𝑋.
Let 𝑥 ∈ 𝑋; by Michael’s selection Theorem [5], there exits a continuous

operator 𝑘𝑥 : 𝐼 × 𝐼 → ℝ+, such that 𝑘𝑥(𝑡, 𝑠) ∈ 𝐾𝑥(𝑡, 𝑠) for any 𝑡, 𝑠 ∈ [1, 𝜃],

which implies that 𝑓(𝑡) +
𝑡∫︀
1

𝑘𝑥(𝑡, 𝑠)𝑑𝑠 ∈ 𝑇𝑥(𝑡); then 𝑇 (𝑥) ̸= ∅. On the

other hand, it is obvious to see that 𝑇𝑥 is a closed set.
Now, suppose that for any 𝑥, 𝑦 ∈ 𝒞(𝐼) with

√︀
𝑥(𝑠)𝑦(𝑠) > 𝑦(𝑠) and for

any 𝑠 ∈ 𝐼 we have:

𝐻(𝐾(𝑠, 𝑡, 𝑥(𝑠)), 𝐾(𝑠, 𝑡, 𝑦(𝑠))) ⩽ 𝑒
2√
𝛼(𝑠) |𝑥(𝑠)− 𝑦(𝑠)|, (19)

where 𝛼 is a positive function from 𝒞(𝐼) and

|𝑥(𝑠)− 𝑦(𝑠)| ⩽ 𝐶𝑒𝐴(𝑠) ⩽ 𝛼(𝑠)𝑒𝐴(𝑠) (20)

for all 𝑠 ∈ 𝐼, where 𝐶 is a positive constant and 𝐴(𝑠) :=
𝑠∫︀
1

𝛼(𝑤)𝑑𝑤.

Under the above assumptions, we have the following theorem:

Theorem 4. Suppose that the assumption above are satisfied; then the
integral inclusion (17) has a unique positive solution.

Proof. Define a generalized orthogonal relation ⊥𝑔 on 𝑋 as follows:

𝑥 ⊥𝑔 𝑦 ⇐⇒
√︀
𝑥(𝑠)𝑦(𝑠) > 𝑦(𝑠) for all 𝑠 ∈ 𝐼. (21)

By (21), it is clear to see that ⊥𝑔 is a generalized orthogonal relation on
𝑋 and 𝑥0 = 1 is a generalized orthogonal element.

We provide 𝑋 with the metric 𝑑 : 𝑋 ×𝑋 → [0,∞) defined by

𝑑(𝑥, 𝑦) = sup
𝑡∈𝐼

𝑒−𝐴(𝑡)|𝑥(𝑡)− 𝑦(𝑡)|

for all 𝑥, 𝑦 ∈ 𝑋 (it is known that such a norm is equivalent to the stan-
dard supremum norm). Therefore, (𝑋,⊥𝑔, 𝑑) is a generalized orthogonal
complete metric space, and, hence, condition (iv) of Theorem 2 is satisfied.
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Condition (ii): 𝑇 is a multivalued generalized ⊥𝑔 preserving.
Let 𝑥, 𝑦 ∈ 𝑋, such that 𝑥 ⊥𝑔 𝑦, 𝐻(𝑇𝑥, 𝑇𝑦) > 0 and 𝑡 ∈ 𝐼; then, for all

𝑎 ∈ 𝑇𝑥 and 𝑏 ∈ 𝑇𝑦, there exist 𝑘𝑥 ∈ 𝐾𝑥 and 𝑘𝑦 ∈ 𝐾𝑦 with

𝑎(𝑡) := 𝑓(𝑡) +

𝑡∫︁
1

𝑘𝑥(𝑠)(𝑡, 𝑠) 𝑑𝑠 = 𝑓(𝑡) +

𝑡∫︁
1

𝑘(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠 ⩾ 2,

𝑏(𝑡) := 𝑓(𝑡) +

𝑡∫︁
1

𝑘𝑦(𝑠)(𝑡, 𝑠) 𝑑𝑠 = 𝑓(𝑡) +

𝑡∫︁
1

𝑘(𝑡, 𝑠, 𝑦(𝑠)) 𝑑𝑠 ⩾ 2,

and, hence,
√︀
𝑎(𝑡)𝑏(𝑡) > 𝑏(𝑡). Then

𝑇𝑥 ⊥𝑔 𝑇𝑦.

Condition (iii): 𝑇 is a multivalued generalized ⊥𝑔 continuous.

It is clear to see from the fact 𝑇𝑥(𝑡) := 𝑓(𝑡)+
𝑡∫︀
1

𝐾(𝑠, 𝑡, 𝑥(𝑠)) 𝑑𝑠 that 𝑇

is a multivalued generalized orthogonal continuous mapping.
It is obvious to see that (17) has a positive solution if only if 𝑇 has a

fixed point, and, hence, it remains to prove:
Condition (i): 𝑇 is a multivalued ⊥𝜓𝐹 contraction.

For this, take 𝐹 (𝑡) = − 1√
𝑡

for all 𝑡 > 0 and 𝜓(𝑧) = −𝑒−𝑧 for all

𝑧 ∈ ℝ. It is easy to show that 𝐹 ∈ ℱ and 𝜓 ∈ Ψ. Now, we show (5) of
Definition 14. Indeed, we have |𝜓(𝑡)| = 𝑒−𝑡 ⩾ 0 and |𝜓2(𝑡)| = 𝑒𝑒

−𝑡
⩾ 1.

Suppose by induction that |𝜓𝑘(𝑡)| ⩾ 𝑘 − 1, for all 𝑘 ∈ ℕ, 𝑡 ∈ ℝ. Hence,

|𝜓𝑘+1(𝑡)| = 𝑒−𝜓
𝑘(𝑡) ⩾ 𝑒𝑘−1 ⩾ 𝑘.

Then ∑︁
𝑘⩾1

|𝜓𝑘(𝑡)|−1/𝜆 ⩽
∑︁
𝑘⩾1

𝑘−1/𝜆 <∞, for all 𝜆 ∈ (0, 1).

Also, let 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⊥𝑔 𝑦. Suppose that 𝐻(𝑇𝑥, 𝑇𝑦) > 0; it follows
from (20) that for any 𝑠 ∈ 𝐼

|𝑥(𝑠)− 𝑦(𝑠)| ⩽ 𝐶𝑒𝐴(𝑠) ⩽ 𝛼(𝑠)𝑒𝐴(𝑠),

and, hence,
𝑑(𝑥, 𝑦) = sup

𝑠∈𝐼
𝑒−𝐴(𝑠)|𝑥(𝑠)− 𝑦(𝑠)| ⩽ 𝛼(𝑠). (22)
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As 𝑡 ↦→ 𝑒
2√
𝑡 is a decreasing function on 𝐼, we obtain the form (22):

𝑒
2√
𝛼(𝑠) ⩽ 𝑒

2√
𝑑(𝑥, 𝑦) . (23)

Now, let 𝑢 ∈ 𝑇𝑥, so there exists 𝑘𝑥(𝑡, 𝑠) ∈ 𝐾𝑥(𝑡, 𝑠) for 𝑡, 𝑠 ∈ [1, 𝜃] with

𝑢(𝑡) = 𝑓(𝑡)+
𝑡∫︀
1

𝑘𝑥(𝑡, 𝑠) 𝑑𝑠. On the other hand, condition (19) implies that

there exists 𝑣(𝑡, 𝑠) ∈ 𝐾𝑦(𝑡, 𝑠), such that

|𝑘𝑥(𝑡, 𝑠)− 𝑣(𝑡, 𝑠)| ⩽ 𝑒
2√
𝛼(𝑠) |𝑥(𝑠)− 𝑦(𝑠)|,

for all 𝑡, 𝑠 ∈ [1, 𝜃].
We define a multivalued operator 𝑆 by

𝑆(𝑡, 𝑠) = 𝐾𝑦(𝑡, 𝑠) ∩ {𝑤 ∈ ℝ : |𝑘𝑥(𝑡, 𝑠)− 𝑤| ⩽ 𝑒
2√
𝛼(𝑠) |𝑥(𝑠)− 𝑦(𝑠)|},

for all 𝑡, 𝑠 ∈ [1, 𝜃].
On the other hand, 𝑆 is lower semicontinuous; it follows that there ex-

ists a continuous mapping 𝑘𝑦 : [1, 𝜃]2 → [1,∞), such that 𝑘𝑦(𝑡, 𝑠) ∈ 𝑆(𝑡, 𝑠),
for all 𝑡, 𝑠 ∈ [1, 𝜃] (see [7], [9]). Then we have

𝑧(𝑡) = 𝑓(𝑡) +

𝑡∫︁
1

𝑘𝑦(𝑡, 𝑠) 𝑑𝑠 ∈ 𝑓(𝑡) +

𝑡∫︁
1

𝐾(𝑡, 𝑠, 𝑦(𝑠)) 𝑑𝑠, 𝑡 ∈ [1, 𝜃]

and for all 𝑡 ∈ [1, 𝜃] we obtain

|𝑢(𝑡)− 𝑧(𝑡)| =
⃒⃒⃒⃒ 𝑡∫︁
1

𝑘𝑥(𝑡, 𝑠) 𝑑𝑠−
𝑡∫︁

1

𝑘𝑦(𝑡, 𝑠) 𝑑𝑠

⃒⃒⃒⃒
⩽

⩽

𝑡∫︁
0

|𝑘𝑥(𝑡, 𝑠)− 𝑘𝑦(𝑡, 𝑠)| 𝑑𝑠 ⩽
𝑡∫︁

1

𝑒
2√
𝛼(𝑠) |𝑥(𝑠)− 𝑦(𝑠)| 𝑑𝑠, (24)

From (22), (23) and (24), we get:

|𝑢(𝑡)− 𝑧(𝑡)| ⩽ 𝑒
2√

𝑑(𝑥, 𝑦)

𝑡∫︁
1

|𝑥(𝑠)− 𝑦(𝑠)| 𝑑𝑠 ⩽
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⩽ 𝑒
2√

𝑑(𝑥, 𝑦)

𝑡∫︁
1

|𝑥(𝑠)− 𝑦(𝑠)|𝑒−𝐴(𝑠)𝑒𝐴(𝑠) 𝑑𝑠 ⩽

⩽ 𝑑(𝑥, 𝑦)𝑒
2√

𝑑(𝑥, 𝑦)

𝑡∫︁
1

1

𝛼(𝑠)
𝛼(𝑠)𝑒𝐴(𝑠)𝑑𝑠 ⩽ 𝑒

2√
𝑑(𝑥, 𝑦)

[︀
𝑒𝐴(𝑡) − 1

]︀
.

Then
𝑒−𝐴(𝑡)|𝑢(𝑡)− 𝑧(𝑡)| ⩽ 𝑒

2√
𝑑(𝑥, 𝑦) .

On the other hand, by interchanging the roles of 𝑥, 𝑦, and using Lemma 2,
we obtain

𝐻(𝑇𝑥, 𝑇𝑦) ⩽ 𝑒
2√

𝑑(𝑥, 𝑦) .

Thus, √︀
𝐻(𝑇𝑥, 𝑇𝑦) ⩽ 𝑒

1√
𝑑(𝑥, 𝑦) .

Therefore,

𝑒
−1√
𝑑(𝑥, 𝑦) ⩽

1√︀
𝐻(𝑇𝑥, 𝑇𝑦)

.

Hence,

− 1√︀
𝐻(𝑇𝑥, 𝑇𝑦)

⩽ −𝑒
−1√
𝑑(𝑥, 𝑦) .

At the end, we have

𝐹
(︀
𝐻(𝑇𝑥, 𝑇𝑦)

)︀
⩽ 𝜓

[︀
𝐹
(︀
𝑑(𝑥, 𝑦)

)︀]︀
.

Theorem 2 implies that the integral inclusion (17) has a positive solu-
tion. □
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