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WEIGHTED INTEGRABILITY RESULTS FOR FIRST
HANKEL-CLIFFORD TRANSFORM

Abstract. We obtain sufficient conditions for the weighted inte-
grability of the first Hankel-Clifford transforms of functions from
generalized integral Lipschitz classes. These conditions are ana-
logues and generalization of well-known Titchmarsh conditions for
the classical Fourier transform.
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1. Introduction. Let f: R — C be an integrable function in
Lebesgue’s sense over R (f € L'(R)). Then the Fourier transform of
f is defined by

@) = @m)~12 f fBe o dt, zeR.

R
In the case 1 < p < 2, the Fourier transform of a function f € LP(R) is
b
defined as the limit of (27)~Y2 { f(z)e~** dz in the norm of L(R), where

1/p+1/g=1and a > —0, b > +w.
In particular, f € L9(R) and the following Hausdorff-Young inequality:

~ /p
Il <cinty = [1ford)”, fer®, 1<p<z
R

holds. For p = 2, the inequality in (1) is substituted by the Plancherel
equality. More about these results can be found in [19, Ch. III and IV]|
or [3, Ch. 5.
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For f e L’(R), 1 < p < o0, we consider the modulus of smoothness of
order k € N

k
calt: 0y = oup 1871y A450) = (-1 () ¥ (k— 2))h/2).

0<h<d

The following result of Titchmarsh is well known (see [19, Ch. 4,
Theorem 84]):
Theorem 1. Let 1< p<2, 0 <a<1, feLip(a,p). Then f(t)e L°(R)
for all ( satisfying the inequality
p p
— < f<qg=—.
p+ap—1 fsa p—1

We will write that a non-negative measurable function A(¢) € L} (R,)
belongs to the class A,, v > 1, if there exists C'(y) > 1, such that

2i+1 21
1/ .
( f X*(t)dt) T < Cy)2i -0 J At)dt, ieZ. 2)
21 2i—1

By the Holder inequality, it is easy to see that A, c A, for 1<y <. It
is proved in [8], that this embedding is strict. It is clear that a measurable
function A(t) > 0 with the property

sup{A(t): 2° <t < 2} Ceinf{\(): 2"t <t <2}, ieZ

is contained in all classes A, v > 1. Further, we assume that A(t) = A\(—t)
for ¢t > 0.

An analogue of (2) for sequences was introduced by Gogoladze and
Meskhia [6]. The condition (2) was suggested by Méricz [13], who proved
the following result:

Theorem 2. Letl <p<2and fe P(R). If1/p+1/g=1,0<r <q,
and A\ € Ap/p—rp4r), then

| xaorfora < [ aae s m,a
lt[>2 1

A more general result and the proof of its sharpness may be found
in [8].
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The aim of this paper is to obtain an analogue and generalization of
Theorem 2 for the first Hankel-Clifford transform. Also, we estimate the
rate of convergence of the corresponding integral. We generalize some
results of Lahmadi, El Hamma and Mahfoud from [9] and [5]. Note
that in [10] a less general results than in [5] are obtained. Some ana-
logues of Theorem 1 for the Fourier-Bessel (or Hankel) transform were
proved by Platonov [16]. Titchmarsh-type conditions for integrability of
Fourier-Jacobi transforms and its generalization to Sobolev-Nikol’skii type
spaces can be found in [4]. Analogues of Theorem 2 for Fourier-Dunkl and
Fourier-Jacobi transforms can be found in [20] and [22].

2. Definitions. Let 1 <p < o0, p > 0, and L (IR, ) be the space of all
measurable real-valued functions with | f|.» = (S |f(z) [Pzt d) R (i
0

X is the indicator of a set £ < R, and fxg € LL(R,), then f e L7 (E).
By LZO(RJF) we denote the space of bounded functions with the norm
| flre = 1flleo = supger, | f(2)]-

The Bessel-Clifford function of the first kind of order u > 0 (see,
e.g., [7]) is defined by

n Zk'FqukJr 1)’

where I'(«) is the Euler gamma function, and c¢,(x) is a solution of the
differential equation

2

d7y dy
— 1)— = 0.
Idx2+(”+ )d:c+y 0
Let j,,( ) be the normalized Bessel function of the first kind and order
v > —=, given by

o) =101 3

(z/2)*"
Then ¢, and j, are connected by

Cu(e) = T (i 4+ 1ju2Va), 220, (3)

If 4 > 0, then the first Hankel-Clifford transform h; ,(f) is defined for
appropriate functions f by
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400

hou )W) = " § (00 () da
0
(see [12]). In [12] it is proved that the space H,(R.) consisting of all
infinitely differentiable functions ¢(z) defined on R, such that for all
kileZ, =1{0,1,..)
wld" (a7 p(x))

sup <
IER+ dxk

is invariant under the operator A ,.
Further we use the operator M, f(z) = «#f(x) and its inverse M.
Since |c,(x)| <K T7H(u + 1) for z € R (see Lemma 2), the inequality

[ P (D Ole ST M+ DIl =T e+ DIO™ Ol (4)
holds for f € LL(R.), Le., [ M hy ()| < T (u+1) [ M f| . In [12]

it is noted that in [11] several variants of Parseval-Plancherel equality are
discussed. In particular, for f,g e L2 (R, ) one has

[ Of “Fy (y)Ga(y) dy,

0

where Fy(y) = hi,(f)(y), Ga(y) = h1u(g)(y). Whenee,

1M h ()l = 1) P () Olzg = 1607 Oz = 1M fllez. (5)

By the Riesz-Thorin interpolation theorem (see |2, Ch. 1, Theorem 1.1.1]),
from (4) and (5) we deduce a Hausdorff-Young type inequality:

1M R (D)ly < COIM g, 1<p<2 p+1ljg=1, (6)

for fe LF(Ry). Let A = A(z,y, z) be area of the triangle with sides ,
by 2 (A@3,2) = (0l — 2)(p — 5)(p — 2)V2, where p = (v + y + 2)/2).
For p > 0, we set

A (z,y,2)
22 (zyz ) T (p + )V
if the triangle with sides x, y, 2 exists, and D,,(z,y, z) = 0 otherwise. Then
D,(x,y, z) is non-negative and symmetric in =z, y, z. In [17], Prasad,

Singh, and Dixit introduced the generalized Hankel-Clifford translation of
feL,(Ry) by

D,(z,y,2) =
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+00
L) = [ FDuen. 22z 0 <y <.
0

By Lemma 1.3 in [17], we have the following relation for f e LL(RJF)
between the first Hankel-Clifford transform and the generalized Hankel-
Clifford translation:

hau(MUT (1)) = cu(at)hnw(Mf)(E), ¢ = 0. (7)

The difference of order m € N with step ¢t > 0 is

Afnef (@) = (I = T(p+ D)T)" f ().

We define the modulus of smoothness of order m € N in L7 (R, ) by

Wm(fﬁ)p,#,hc = sup ||A2Lp,hcfHLﬁ'
0<t<s

The complicated form of equality (7) and inequality (6) obstruct to ap-
plying of differences of order m > 2 for hy ,, e.g., there are doubts in the
formula of Lemma 2.1 in [9)].

Let A(t) be a non-negative measurable function from L} (R.) and
= 0. If v > 1 and there exists C'(y) > 1, such that

2y

||M,I1h1,u(f)”Lﬁ _ |(')_uhlw(f)('”Lﬁ(JM(t)tu dt) 1/ <

Y

Y
< C(y)y(““)“—””fA(t)t“dt, t>0, (8)
y/2

then Ae A, .
Moricz [13] used similar conditions for y = 2° and v = 0 (see (2)), but
in the proof of Theorem 1 it is more useful to apply (7).

3. Auxiliary propositions. From Lemma 1, we easily deduce the
correctness of definitions of wi(f,d), i he-

Lemma 1. Let1<p<oo,u>0,felLf(Ry). Then [['(u+1)Tif|rr <
[ £z

The proof of Lemma 1 can be found in [18, Lemma 1.1]
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Lemma 2. Let > 0. Then

(i) |ju(z)] <1 for x > 0 and j,(x) < 1 for x > 0;

(ii) 1 — ju(z) > C >0 for x > 1;

(iii) the inequality Cy2* < 1—j,(x) < Cya? holds for some Cy > Cy > (
and all x € [0, 1].

Proof. The assertion of (i) can be found in [15], while the statement of
(i) is proved in [14, Lemma 3.3]. The right-hand inequality of (iii) is well
known (see, e.g., [1]), the left-hand one is proved in [21] for 0 < < 7. By
(i) and the continuity of j,(x), we also have the boundedness from below
of (1 —j,u(x))/z* on [n,1], and (iii) follows. ]

Lemma 3. Let 1 < p < 2, pu >0, f e LE(R,), y > 0. Then
haw(MTy f)(2) = cu(ya)ha w(M, f)(z) ae. on Ry

Proof. In the case p = 1, see (7). In particular, the formula of Lemma 3 is
valid for f € S(R,). By definition, g(x) € S(R.), if the even extension of
g to R belongs to the Schwartz space S(R). It is clear that S(R,) is dense
in LE(Ry). If f, € S(Ry) and f, — f in LF(R,), then, by Lemma I,
Tyfn — T,f in LE(R,), and, by (6) for 1 <p <2and 1/p+1/qg=1or
by (4) for p = 1 and ¢ = o0, we have

lim sup || M (hu(MuTy fr) — hay(MT, )] g, <
n—0o0
< C1 limsup HMu_lMM(Tyf —Tyfo)le = 0;

n—0o0

therefore,

0= nlgrolo ”M;L_l(cu(y‘)hl,u(Mufn) - hl,u(MuTyf))”Lﬁ =
= HM;L_I(Cu(y‘)hLu(Muf> - hl,u(MuTyf»HLﬁa
and the equality of Lemma 3 is proved a.e. on R, . []

4. Main results.

Theorem 3. Letp>0,1<p<2 1/p+1/g=1, felLl(R,). If
A€ Ayjig—r),u for some r € (0,q) and the integral

o0
f ANy PG (™) pney dy
N
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converges for all N > 0, then \(t)|h1,(M,f)(t)]" € L[N, + o) for all
N >0 and

oe]

fxmmumewwﬁ<

N

o0
c f AP T0S (F e dy. (9)
N/2

N

Proof. By Lemma 3 and the Hausdorff-Young-type inequality (6), we
have:

ijWWM@n@Pu—h@w>>“@<

R
* q/p

<O | @ MA@t de) < Oty ()

S——s

Let N > 0 be fixed and D; = [2°N,2"IN), i € Z,. Taking t; = 27'N 1,
by Lemma 2 (ii) we obtain

| I ay <
<@WNnyWWAMJMMM—m@%mWM@<

< C3(2'N)™ Wl (f, ti)p.juhe-

By the Holder inequality and the condition (8), we see that for 0 < r < ¢

memuMw@www<

D;
q
< ([ @y ay) " ( [Iaonnwined)” <
D; D;
<@@%N*W“W%%WWMU@»MCjxwwww<
D; 1

<%JWWw%mMMWW%WUGW
D; 1
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Summing up (10) over i € Z,, we obtain (9). []

From Theorem 3 we deduce an integrability result on the whole R, .
Theorem 4. Letp>0,1<p<2 1/p+1/g=1, fell(R,). If
A€ Agg—r)u for somer e (0,q), A e LY9"710,1) and the integral

0

f AP0 ey dy (11)
1

converges, then \(t)|hy, (M, f)(t)|" € L},(Ry).
Proof. By (9), we find that

AOlbL MOt < C [ Ay g (Fy et dy. (12)

1/2

——s

By Lemma 1, we have wi(f,t)pune < Cof fllzz. Using the last inequality,
the condition A € L¥“7[0,1) and the Halder inequality, we obtain

1

1
| M g e dy < ol [ Ay <
1/2 1/2

1

<C ( fl [A(y)| /00y dy) o ( J y" dy) "
0

0

and both sides of (12) are finite. Finally, by the condition A € L“™"[0, 1)
we see that

1

j ) (M, f) () dy <

0

1 1
1-r/q

T/q
< (Jr i onnwyan) " (|l ey ) <

0 0
1

1-r/q
<l (| Pl enya) " <
0



Weighted integrability of Hankel-Clifford transform 115

since 0 < qu/ (@) <1 for 0 < y < 1. Theorem is proved. []

Corollary 1. Let f, p, q, p and r are as in Theorem 4. If & > (r/q —
— 1)(n + 1) and the integral

o0
f YT (FyY), e dy (13)
1

converges, the t*|hy (M, f)(t)|" € L,(Ry).

Proof. It is easy to see that A\,(t) = t* belongs to Ag/q—r) . for every
a € R. On the other hand, the condition A\, € Lf/(q_r) [0,1) is equiv-

1
alent to the convergence of integral Stqa/ (@=m)*+r gt or to the inequality

0
a > (r/¢ —1)(p + 1). Using Theorem 4, we obtain the statement of
Corollary 1. [

Corollary 2. Let f,p, q, 1, andr are as in Theorem 4 and w1 (f, ), juhe <
Ct® for some § >0 and allt > 0. Ifa > (r/qg—1)(u+ 1), pd+p>p+1
and
pla+p+1)
op+p—pu—1
then t*|hy (M, f)(t)]" € L, (Ry).

Proof. Under conditions of Corollary 2, the integral (13) converges if
a+ru/p—r/g—ré+pu<—landr <gq,ie,r <qgand r(l/g+06—pu/p) >
a+pu+1. If1/g+6—p/p=0+1—(u+1)/p <0, then r does not exist,
while for pd +p > p1+ 1 we obtain (14). []

<r<aq, (14)

Remark 1. The result of Corollary 2 in the case a = 0 coincides with
Theorem 3 in [5]. In a similar manner, one can obtain the result of The-
orem 4 in [5].

Acknowledgment. This work was supported by the Program of de-
velopment of Regional Scientific and Educational Mathematical Center
“Mathematics of Future Technologies” (project no. 075-02-2023-949).

References

[1] Abilov V. A., Abilova F. V. Approzimation of functions by Fourier-Bessel
sums. Russian Math. (Izv. VUZ. Matem.), 2001, vol. 45, no. 8, pp. 1-7.



116

S. S. Volosivets

2]
3]
4]

[5]

(6]

7]

8]

19]

[10]

[11]

[12]

[13]

[14]

Bergh J., Lofstrom J. Interpolation spaces. An introduction. Springer-
Verlag, Berlin-Heidelberg, 1976.

Butzer P. L., Nessel R. J. Fourier analysis and approximation. Birkhauser,
Basel-Stuttgart, 1971.

Daher R., Tyr O. Integrability of the Fourier-Jacobi transform of functions
satisfying Lipschitz and Dini-Lipschitz-type estimates. Integral Transforms
Spec. Funct. (2022, accepted)

DOI: https://doi.org/10.1080/10652469.2021.1913414

El Hamma M., Mahfoud A. Generalization of Titchmarsh’s theorem for
the first Hankel-Clifford transform in the space L},((0, + 00)). Probl. Anal.
Issues Anal., 2022, vol. 11(29), no. 3, pp. 56 —65.

DOI: https://doi.org/10.15393/j3.art.2022.11851

Gogoladze L., Meskhia R. On the absolute convergence of trigonometric
Fourier series. Proc. Razmadze Math. Inst., 2006, vol. 141, pp. 29—46.

Gray A., Matthecos G. B., MacRobert T. M. A treatise on Bessel functions
and their applications to physics., Macmillan, London, 1952.

Krayukhin S. A., Volosivets S. S. Functions of bounded p-variation and
weighted integrability of Fourier transforms. Acta Math. Hung., 2019,
vol. 159, no. 2, pp. 374—399.

DOI: https://doi.org/10.1007/s10474-019-00995-6

Lahmadi H., El Hamma M. On estimates for the Hankel-Clifford transform
in the space LY. J. Anal., 2023, vol. 31, pp. 1479-1486.
DOI: https://doi.org/10.1007/s41478-022-00524-9

Mahfoud A., El Hamma M. Dini Clifford Lipschitz functions for the first
Hankel-Clifford transform in the space Lz. J. Anal., 2022, vol. 30, no. 3,
pp. 909-918. DOI: https://doi.org/10.1007/s41478-021-00377-8

Mendez J. M. La transformacion integral de Hankel-Clifford, Secretariado
de Publicaciones de la Universidad de La Laguna, La Laguna, 1979.

Méndez Pérez J. M. R., Socas Robayna M. M. A pair of generalized Hankel-
Clifford transformation and their applications. J. Math. Anal. Appl., 1991,
vol. 154, no. 2, pp. 543—-557.

DOI https://doi.org/10.1016/0022-247X(91)90057-7

Moricz F. Sufficient conditions for the Lebesgue integrability of Fourier
transforms. Anal. Math., 2010, vol. 36, no. 2, pp. 121-129.

Platonov S. S. Generalized Bessel translations and some problems of
aprrozimation of functions theory in metric Ls.Il. Proc. Petrozavodsk
State Univ. Matematika., 2001, vol. 8, pp. 20-36 (in Russian).


https://doi.org/10.1080/10652469.2021.1913414
https://doi.org/10.15393/j3.art.2022.11851
https://doi.org/10.1007/s10474-019-00995-6
https://doi.org/10.1007/s41478-022-00524-9
https://doi.org/10.1007/s41478-021-00377-8
https://doi.org/ 10.1016/0022-247X(91)90057-7

Weighted integrability of Hankel-Clifford transform 117

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Platonov S. S. Bessel harmonic analysis and approzimation of functions
on the half-line. Izv Math., 2007, vol. 71, no. 5, pp. 1001-1048.
DOI https://doi.org/10.1070/IM2007v07 1n05ABEH002379

Platonov S. S. On the Hankel transform of functions from Nikol’skii classes.
Integral Transforms Spec. Funct., 2021, vol. 32, no. 10, pp. 823 —838.
DOI: https://doi.org/10.1080/10652469.2020.1849184

Prasad A., Singh V. K., Dixit M. M. Pseudo-differential operators involving
Hankel-Clifford transformations, Asian-European. J. Math., 2012, vol. 5,
no. 3, paper 1250040 (15 pages).

DOI: https://doi.org/10.1142/S1793557112500404

Prasad A., Singh V. K. Pseudo-differential operators associated to a pair of
Hankel-Clifford transformations on certain Beurling type function spaces.
Asian-European J. Math., 2013, vol. 6, no. 3, paper 1350039 (22 pages).
DOI: https://doi.org/10.1142/51793557113500393

Titchmarsh, E.: Introduction to the theory of Fourier integrals. Clarendon
press, Oxford (1937).

Volosivets S. Weighted integrability of Fourier-Dunkl transforms and gen-
eralized Lipschitz classes. Analysis Math. Phys., 2022, vol. 12, paper 115.
DOI: https://doi.org/10.1007/s13324-022-00728-2

Volosivets S. S. Fourier-Bessel transforms and generalized uniform Lip-

schitz classes. Integral Transforms Spec. Funct., 2022, vol. 33, no. 7,
pp. 559-569. DOI: https://doi.org/10.1080/10652469.2021.1986815
Volosivets S. S. Weighted integrability of Fourier-Jacobi transforms. Inte-
gral Transforms Spec. Funct. (accepted).

DOI: https://doi.org/10.1080/10652469.2022.2140801

Younis, M.S.: Fourier transforms of Dini-Lipschitz functions. Int. J. Math.
Math. Sci. 9 (2), 301-312 (1986).

Received January 4, 2025.
Accepted March 16, 2023.
Published online March 24, 2025.

Saratov State University
83 Astrakhanskaya St., Saratov 410012, Russia
E-mail: VolosivetsSS@mail.ru


https://doi.org/10.1070/IM2007v071n05ABEH002379
https://doi.org/10.1080/10652469.2020.1849184
https://doi.org/10.1142/S1793557112500404
https://doi.org/10.1142/S1793557113500393
https://doi.org/10.1007/s13324-022-00728-z
https://doi.org/10.1080/10652469.2021.1986815
https://doi.org/10.1080/10652469.2022.2140801

