DOI: 10.15393/j3.art.2023.13050

UDC 517.544

S. S. Volosivets

WEIGHTED INTEGRABILITY RESULTS FOR FIRST HANKEL-CLIFFORD TRANSFORM

Abstract. We obtain sufficient conditions for the weighted integrability of the first Hankel-Clifford transforms of functions from generalized integral Lipschitz classes. These conditions are analogues and generalization of well-known Titchmarsh conditions for the classical Fourier transform.

Key words: first Hankel-Clifford transform, Hankel-Clifford translation, generalized Lipschitz spaces, weighted integrability

2020 Mathematical Subject Classification: 44A15, 47A10

1. Introduction. Let $f: \mathbb{R} \to \mathbb{C}$ be an integrable function in Lebesgue's sense over \mathbb{R} $(f \in L^1(\mathbb{R}))$. Then the Fourier transform of f is defined by

$$\widehat{f}(x) = (2\pi)^{-1/2} \int_{\mathbb{R}} f(t)e^{-itx} dt, \quad x \in \mathbb{R}.$$

In the case $1 , the Fourier transform of a function <math>f \in L^p(\mathbb{R})$ is defined as the limit of $(2\pi)^{-1/2} \int\limits_a^b f(x) e^{-itx} \, dx$ in the norm of $L^q(\mathbb{R})$, where 1/p + 1/q = 1 and $a \to -\infty$, $b \to +\infty$.

In particular, $\hat{f} \in L^q(\mathbb{R})$ and the following Hausdorff-Young inequality:

$$\|\widehat{f}\|_q \leqslant C\|f\|_p := C\Big(\int_{\mathbb{R}} |f(t)|^p dt\Big)^{1/p}, \quad f \in L^p(\mathbb{R}), \quad 1 (1)$$

holds. For p=2, the inequality in (1) is substituted by the Plancherel equality. More about these results can be found in [19, Ch. III and IV] or [3, Ch. 5].

[©] Petrozavodsk State University, 2023

For $f \in L^p(\mathbb{R})$, $1 \leq p < \infty$, we consider the modulus of smoothness of order $k \in \mathbb{N}$

$$\omega_k(t, \delta)_p = \sup_{0 \le h \le \delta} \|\mathring{\Delta}_h^k f\|_p, \quad \mathring{\Delta}_h^k f(x) = \sum_{j=0}^k (-1)^j \binom{k}{j} f(x + (k-2j)h/2).$$

The following result of Titchmarsh is well known (see [19, Ch. 4, Theorem 84]):

Theorem 1. Let $1 , <math>0 < \alpha \le 1$, $f \in Lip(\alpha, p)$. Then $\widehat{f}(t) \in L^{\beta}(\mathbb{R})$ for all β satisfying the inequality

$$\frac{p}{p+ap-1} < \beta \leqslant q = \frac{p}{p-1}.$$

We will write that a non-negative measurable function $\lambda(t) \in L^1_{loc}(\mathbb{R}_+)$ belongs to the class A_{γ} , $\gamma \geqslant 1$, if there exists $C(\gamma) \geqslant 1$, such that

$$\left(\int_{2^{i}}^{2^{i+1}} \lambda^{\gamma}(t)dt\right)^{1/\gamma} \leqslant C(\gamma)2^{i(1-\gamma)/\gamma} \int_{2^{i-1}}^{2^{i}} \lambda(t)dt, \quad i \in \mathbb{Z}.$$
 (2)

By the Hölder inequality, it is easy to see that $A_{\gamma_1} \subset A_{\gamma_2}$ for $1 \leq \gamma_2 < \gamma_1$. It is proved in [8], that this embedding is strict. It is clear that a measurable function $\lambda(t) \geq 0$ with the property

$$\sup\{\lambda(t) : 2^{i} \le t < 2^{i+1}\} \le c \inf\{\lambda(t) : 2^{i-1} \le t < 2^{i}\}, \quad i \in \mathbb{Z}$$

is contained in all classes A_{γ} , $\gamma \geqslant 1$. Further, we assume that $\lambda(t) = \lambda(-t)$ for t > 0.

An analogue of (2) for sequences was introduced by Gogoladze and Meskhia [6]. The condition (2) was suggested by Móricz [13], who proved the following result:

Theorem 2. Let $1 and <math>f \in L^p(\mathbb{R})$. If 1/p + 1/q = 1, 0 < r < q, and $\lambda \in A_{p/(p-rp+r)}$, then

$$\int_{|t| \ge 2} \lambda(t) |\widehat{f}(t)|^r dt \le \int_{1}^{\infty} \lambda(t) t^{-r/q} \omega^r (f, \pi/t)_p dt.$$

A more general result and the proof of its sharpness may be found in [8].

The aim of this paper is to obtain an analogue and generalization of Theorem 2 for the first Hankel-Clifford transform. Also, we estimate the rate of convergence of the corresponding integral. We generalize some results of Lahmadi, El Hamma and Mahfoud from [9] and [5]. Note that in [10] a less general results than in [5] are obtained. Some analogues of Theorem 1 for the Fourier-Bessel (or Hankel) transform were proved by Platonov [16]. Titchmarsh-type conditions for integrability of Fourier-Jacobi transforms and its generalization to Sobolev-Nikol'skii type spaces can be found in [4]. Analogues of Theorem 2 for Fourier-Dunkl and Fourier-Jacobi transforms can be found in [20] and [22].

2. Definitions. Let $1 \leq p < \infty$, $\mu \geqslant 0$, and $L^p_{\mu}(\mathbb{R}_+)$ be the space of all measurable real-valued functions with $\|f\|_{L^p_{\mu}} = \left(\int\limits_0^\infty |f(x)|^p x^{\mu} \, dx\right)^{1/p} < \infty$. If χ_E is the indicator of a set $E \subset \mathbb{R}_+$ and $f\chi_E \in L^p_{\mu}(\mathbb{R}_+)$, then $f \in L^p_{\mu}(E)$. By $L^\infty_{\mu}(\mathbb{R}_+)$ we denote the space of bounded functions with the norm $\|f\|_{L^\infty_{\mu}} = \|f\|_{\infty} = \sup_{x \in \mathbb{R}_+} |f(x)|$.

The Bessel-Clifford function of the first kind of order $\mu \geqslant 0$ (see, e.g., [7]) is defined by

$$c_{\mu}(x) = \sum_{k=0}^{+\infty} \frac{(-1)^k x^k}{k! \Gamma(\mu + k + 1)},$$

where $\Gamma(\alpha)$ is the Euler gamma function, and $c_{\mu}(x)$ is a solution of the differential equation

$$x\frac{d^{2}y}{dx^{2}} + (\mu + 1)\frac{dy}{dx} + y = 0.$$

Let $j_{\nu}(x)$ be the normalized Bessel function of the first kind and order $\nu > -\frac{1}{2}$, given by

$$j_{\nu}(x) = \Gamma(\nu+1) \sum_{n=0}^{\infty} \frac{(-1)^n}{n!\Gamma(n+\nu+1)} (x/2)^{2n}.$$

Then c_{μ} and j_{μ} are connected by

$$c_{\mu}(x) = \Gamma^{-1}(\mu + 1)j_{\mu}(2\sqrt{x}), \quad x \geqslant 0.$$
 (3)

If $\mu \geq 0$, then the first Hankel-Clifford transform $h_{1,\mu}(f)$ is defined for appropriate functions f by

$$h_{2,\mu}(f)(y) = y^{\mu} \int_{0}^{+\infty} c_{\mu}(\lambda x) f(x) dx$$

(see [12]). In [12] it is proved that the space $H_{\mu}(\mathbb{R}_{+})$ consisting of all infinitely differentiable functions $\varphi(x)$ defined on \mathbb{R}_{+} , such that for all $k, l \in \mathbb{Z}_{+} = \{0, 1, \ldots\}$

$$\sup_{x \in \mathbb{R}_+} \left| \frac{x^l d^k(x^{-\mu} \varphi(x))}{dx^k} \right| < \infty$$

is invariant under the operator $h_{1,\mu}$.

Further we use the operator $M_{\mu}f(x) = x^{\mu}f(x)$ and its inverse M_{μ}^{-1} . Since $|c_{\mu}(x)| \leq \Gamma^{-1}(\mu + 1)$ for $x \in \mathbb{R}$ (see Lemma 2), the inequality

$$\|(\cdot)^{-\mu}h_{1,\mu}(f)(\cdot)\|_{L^{\infty}_{\mu}} \leqslant \Gamma^{-1}(\mu+1)\|f\|_{L^{1}} = \Gamma^{-1}(\mu+1)\|(\cdot)^{-\mu}f(\cdot)\|_{L^{1}_{\mu}}$$
(4)

holds for $f \in L^1_{\mu}(\mathbb{R}_+)$, i.e., $\|M^{-1}_{\mu}h_{1,\mu}(f)\|_{L^{\infty}_{\mu}} \leqslant \Gamma^{-1}(\mu+1)\|M^{-1}_{\mu}f\|_{L^{1}_{\nu}}$. In [12] it is noted that in [11] several variants of Parseval-Plancherel equality are discussed. In particular, for $f, g \in L^2_{\mu}(\mathbb{R}_+)$ one has

$$\int_{0}^{\infty} x^{-\mu} f(x) g(x) dx = \int_{0}^{\infty} y^{-\mu} F_1(y) G_1(y) dy,$$

where $F_1(y) = h_{1,\mu}(f)(y)$, $G_1(y) = h_{1,\mu}(g)(y)$. Whence,

$$\|M_{\mu}^{-1}h_{1,\mu}(f)\|_{L_{\mu}^{2}} = \|(\cdot)^{-\mu}h_{1,\mu}(f)(\cdot)\|_{L_{\mu}^{2}} = \|(\cdot)^{-\mu}f(\cdot)\|_{L_{\mu}^{2}} = \|M_{\mu}^{-1}f\|_{L_{\mu}^{2}}.$$
 (5)

By the Riesz-Thorin interpolation theorem (see [2, Ch. 1, Theorem 1.1.1]), from (4) and (5) we deduce a Hausdorff-Young type inequality:

$$||M_{\mu}^{-1}h_{1,\mu}(f)||_{L_{\mu}^{q}} \leqslant C(p)||M_{\mu}^{-1}f||_{L_{\mu}^{p}}, \quad 1 \leqslant p \leqslant 2, \quad 1/p + 1/q = 1,$$
 (6)

for $f \in L^p_{\mu}(\mathbb{R}_+)$. Let $\Delta = \Delta(x, y, z)$ be area of the triangle with sides x, y, z $(\Delta(x, y, z) = (p(p - x)(p - y)(p - z))^{1/2}$, where p = (x + y + z)/2. For $\mu \ge 0$, we set

$$D_{\mu}(x,y,z) = \frac{\Delta^{2\mu+1}(x,y,z)}{2^{2\mu}(xyz)^{\mu}\Gamma(\mu+\frac{1}{2})\sqrt{\pi}},$$

if the triangle with sides x, y, z exists, and $D_{\mu}(x, y, z) = 0$ otherwise. Then $D_{\mu}(x, y, z)$ is non-negative and symmetric in x, y, z. In [17], Prasad, Singh, and Dixit introduced the generalized Hankel-Clifford translation of $f \in L^1_{\mu}(\mathbb{R}_+)$ by

$$T_x(f)(y) = \int_{0}^{+\infty} f(z)D_{\mu}(x, y, z)z^{\mu}dz, \quad 0 < x, y < \infty.$$

By Lemma 1.3 in [17], we have the following relation for $f \in L^1_{\mu}(\mathbb{R}_+)$ between the first Hankel-Clifford transform and the generalized Hankel-Clifford translation:

$$h_{1,\mu}(M_{\mu}T_x(f))(t) = c_{\mu}(xt)h_{1,\mu}(M_{\mu}f)(t), \quad t \geqslant 0.$$
 (7)

The difference of order $m \in \mathbb{N}$ with step t > 0 is

$$\Delta_{t,\mu,hc}^m f(x) = (I - \Gamma(\mu + 1)T_t)^m f(x).$$

We define the modulus of smoothness of order $m \in \mathbb{N}$ in $L^p_{\mu}(\mathbb{R}_+)$ by

$$\omega_m(f,\delta)_{p,\mu,hc} = \sup_{0 \leqslant t \leqslant \delta} \|\Delta_{t,\mu,hc}^m f\|_{L^p_\mu}.$$

The complicated form of equality (7) and inequality (6) obstruct to applying of differences of order $m \ge 2$ for $h_{1,\mu}$, e.g., there are doubts in the formula of Lemma 2.1 in [9].

Let $\lambda(t)$ be a non-negative measurable function from $L^1_{loc}(\mathbb{R}_+)$ and $\mu \geqslant 0$. If $\gamma \geqslant 1$ and there exists $C(\gamma) \geqslant 1$, such that

$$||M_{\mu}^{-1}h_{1,\mu}(f)||_{L_{\mu}^{2}} = ||(\cdot)^{-\mu}h_{1,\mu}(f)(\cdot)||_{L_{\mu}^{2}} \left(\int_{y}^{2y} \lambda^{\gamma}(t)t^{\mu} dt\right)^{1/\gamma} \leqslant$$

$$\leqslant C(\gamma)y^{(\mu+1)(1-\gamma)/\gamma} \int_{y/2}^{y} \lambda(t)t^{\mu} dt, \quad t > 0, \quad (8)$$

then $\lambda \in A_{\gamma,\mu}$.

Moricz [13] used similar conditions for $y = 2^i$ and $\gamma = 0$ (see (2)), but in the proof of Theorem 1 it is more useful to apply (7).

3. Auxiliary propositions. From Lemma 1, we easily deduce the correctness of definitions of $\omega_1(f,\delta)_{p,\mu,hc}$.

Lemma 1. Let $1 \le p < \infty$, $\mu \ge 0$, $f \in L^p_{\mu}(\mathbb{R}_+)$. Then $\|\Gamma(\mu+1)T_t f\|_{L^p_{\mu}} \le \|f\|_{L^p_{\mu}}$.

The proof of Lemma 1 can be found in [18, Lemma 1.1]

Lemma 2. Let $\mu \geqslant 0$. Then

- (i) $|j_{\mu}(x)| \leq 1$ for $x \geq 0$ and $j_{\mu}(x) < 1$ for x > 0;
- (ii) $1 j_{\mu}(x) \ge C > 0$ for $x \ge 1$;
- (iii) the inequality $C_1x^2 \le 1 j_{\mu}(x) \le C_2x^2$ holds for some $C_2 > C_1 > 0$ and all $x \in [0, 1]$.

Proof. The assertion of (i) can be found in [15], while the statement of (ii) is proved in [14, Lemma 3.3]. The right-hand inequality of (iii) is well known (see, e.g., [1]), the left-hand one is proved in [21] for $0 \le x \le \eta$. By (i) and the continuity of $j_{\mu}(x)$, we also have the boundedness from below of $(1 - j_{\mu}(x))/x^2$ on $[\eta, 1]$, and (iii) follows. \square

Lemma 3. Let $1 \leq p \leq 2$, $\mu \geq 0$, $f \in L^p_{\mu}(\mathbb{R}_+)$, $y \geq 0$. Then $h_{1,\mu}(M_{\mu}T_yf)(x) = c_{\mu}(yx)h_{1,\mu}(M_{\mu}f)(x)$ a.e. on \mathbb{R}_+ .

Proof. In the case p=1, see (7). In particular, the formula of Lemma 3 is valid for $f \in S(\mathbb{R}_+)$. By definition, $g(x) \in S(\mathbb{R}_+)$, if the even extension of g to \mathbb{R} belongs to the Schwartz space $S(\mathbb{R})$. It is clear that $S(\mathbb{R}_+)$ is dense in $L^p_{\mu}(\mathbb{R}_+)$. If $f_n \in S(\mathbb{R}_+)$ and $f_n \to f$ in $L^p_{\mu}(\mathbb{R}_+)$, then, by Lemma 1, $T_y f_n \to T_y f$ in $L^p_{\mu}(\mathbb{R}_+)$, and, by (6) for 1 and <math>1/p + 1/q = 1 or by (4) for p = 1 and $q = \infty$, we have

$$\limsup_{n \to \infty} \|M_{\mu}^{-1}(h_{1,\mu}(M_{\mu}T_{y}f_{n}) - h_{1,\mu}(M_{\mu}T_{y}f))\|_{L_{\mu}^{q}} \leq$$

$$\leq C_{1} \limsup_{n \to \infty} \|M_{\mu}^{-1}M_{\mu}(T_{y}f - T_{y}f_{n})\|_{L_{\mu}^{p}} = 0;$$

therefore,

$$\begin{split} 0 &= \lim_{n \to \infty} \| M_{\mu}^{-1}(c_{\mu}(y \cdot) h_{1,\mu}(M_{\mu} f_n) - h_{1,\mu}(M_{\mu} T_y f)) \|_{L_{\mu}^q} = \\ &= \| M_{\mu}^{-1}(c_{\mu}(y \cdot) h_{1,\mu}(M_{\mu} f) - h_{1,\mu}(M_{\mu} T_y f)) \|_{L_{\mu}^q}, \end{split}$$

and the equality of Lemma 3 is proved a.e. on \mathbb{R}_+ . \square

4. Main results.

Theorem 3. Let $\mu \geqslant 0$, 1 , <math>1/p + 1/q = 1, $f \in L^p_{\mu}(\mathbb{R}_+)$. If $\lambda \in A_{q/(q-r),\mu}$ for some $r \in (0,q)$ and the integral

$$\int_{N}^{\infty} \lambda(y) y^{\mu r/p - r/q} \omega_1^r(f, y^{-1})_{p,\mu,hc} y^{\mu} dy$$

converges for all N > 0, then $\lambda(t)|h_{1,\mu}(M_{\mu}f)(t)|^r \in L^1_{\mu}[N, +\infty)$ for all N > 0 and

$$\int_{N}^{\infty} \lambda(t) |h_{1,\mu}(M_{\mu}f)(t)|^{r} t^{\mu} dt \leqslant
\leqslant C \int_{N/2}^{\infty} \lambda(y) y^{\mu r/p - r/q} \omega_{1}^{r} (f, y^{-1})_{p,\mu,hc} y^{\mu} dy.$$
(9)

Proof. By Lemma 3 and the Hausdorff-Young-type inequality (6), we have:

$$\int_{\mathbb{R}_{+}} y^{-q\mu} |h_{1,\mu}(M_{\mu}f)(t)|^{q} (1 - j_{\mu}(2\sqrt{yt}))^{q} y^{\mu} dy \leqslant$$

$$\leqslant C_{1} \left(\int_{0}^{\infty} (x^{-\mu} |M_{\mu}\Delta_{t,\mu,hc}^{1}f(x)|)^{p} x^{\mu} dx \right)^{q/p} \leqslant C_{1} \omega_{m}^{q}(f,t)_{p,\mu,hc}.$$

Let N > 0 be fixed and $D_i = [2^i N, 2^{i+1} N), i \in \mathbb{Z}_+$. Taking $t_i = 2^{-i} N^{-1}$, by Lemma 2 (ii) we obtain

$$\int_{D_{i}} |h_{1,\mu}(M_{\mu}f)(y)|^{q} y^{\mu} dy \leqslant
\leqslant C_{2}(2^{i}N)^{q\mu} \int_{D_{i}} y^{-q\mu} |h_{1,\mu}(M_{\mu}f)(y)|^{q} (1 - j_{\mu}(2\sqrt{yt_{i}}))^{q} y^{\mu} dy \leqslant
\leqslant C_{3}(2^{i}N)^{q\mu} \omega_{m}^{q}(f, t_{i})_{p,\mu,hc}.$$

By the Hölder inequality and the condition (8), we see that for 0 < r < q

$$\int_{D_{i}} \lambda(y) |h_{1,\mu}(M_{\mu}f)(y)|^{r} y^{\mu} dy \leqslant
\leqslant \left(\int_{D_{i}} |\lambda(y)|^{q/(q-r)} y^{\mu} dy \right)^{1-r/q} \left(\int_{D_{i}} |h_{1,\mu}(M_{\mu}f)(y)|^{q} y^{\mu} dy \right)^{r/q} \leqslant
\leqslant C_{4} (2^{-i}N^{-1})^{(\mu+1)r/q} (2^{i}N)^{r\mu} \omega_{1}^{r} (f,t_{i})_{p,\mu,hc} \int_{D_{i-1}} \lambda(y) y^{\mu} dy \leqslant
\leqslant C_{5} \int_{D_{i-1}} \omega_{1}^{r} (f,y^{-1})_{p,\mu,hc} \lambda(y) y^{\mu r/p - r/q} y^{\mu} dy. \quad (10)^{n} dy \leqslant
\end{cases}$$

Summing up (10) over $i \in \mathbb{Z}_+$, we obtain (9). \square

From Theorem 3 we deduce an integrability result on the whole \mathbb{R}_+ .

Theorem 4. Let $\mu \ge 0$, 1 , <math>1/p + 1/q = 1, $f \in L^p_{\mu}(\mathbb{R}_+)$. If $\lambda \in A_{q/(q-r),\mu}$ for some $r \in (0,q)$, $\lambda \in L^{q/(q-r)}_{\mu}[0,1)$ and the integral

$$\int_{1}^{\infty} \lambda(y) y^{\mu r/p - r/q} \omega_{1}^{r}(f, y^{-1})_{p,\mu,hc} y^{\mu} dy$$
 (11)

converges, then $\lambda(t)|h_{1,\mu}(M_{\mu}f)(t)|^r \in L^1_{\mu}(\mathbb{R}_+)$.

Proof. By (9), we find that

$$\int_{1}^{\infty} \lambda(t) |h_{1,\mu}(M_{\mu}f)(t)|^{r} t^{\mu} dt \leqslant C \int_{1/2}^{\infty} \lambda(y) y^{\mu r/p - r/q} \omega_{1}^{r}(f, y^{-1})_{p,\mu,hc} y^{\mu} dy. \quad (12)$$

By Lemma 1, we have $\omega_1(f,t)_{p,\mu,hc} \leq C_2 ||f||_{L^p_\mu}$. Using the last inequality, the condition $\lambda \in L^{q/(q-r)}_\mu[0,1)$ and the Hölder inequality, we obtain

$$\int_{1/2}^{1} \lambda(y) y^{\mu r/p - r/q} \omega_{1}^{r}(f, y^{-1})_{p,\mu,hc} y^{\mu} dy \leqslant C_{3} \|f\|_{L_{\mu}^{p}}^{r} \int_{1/2}^{1} \lambda(y) y^{\mu} dy \leqslant
\leqslant C_{4} \left(\int_{0}^{1} |\lambda(y)|^{q/(q-r)} y^{\mu} dy \right)^{1 - r/q} \left(\int_{0}^{1} y^{\mu} dy \right)^{r/q} < \infty$$

and both sides of (12) are finite. Finally, by the condition $\lambda \in L^{q/(q-r)}_{\mu}[0,1)$ we see that

$$\int_{0}^{1} \lambda(y) |h_{1,\mu}(M_{\mu}f)(y)|^{r} y^{\mu} dy \leqslant$$

$$\leqslant \left(\int_{0}^{1} y^{-q\mu} |h_{1,\mu}(M_{\mu}f)(y)|^{q} y^{\mu} dy \right)^{r/q} \left(\int_{0}^{1} |\lambda(y)|^{q/(q-r)} y^{qr\mu/(q-r)} y^{\mu} dy \right)^{1-r/q} \leqslant$$

$$\leqslant C_{5} ||f||_{L_{\mu}^{p}}^{r} \left(\int_{0}^{1} |\lambda(y)|^{q/(q-r)} y^{\mu} dy \right)^{1-r/q} < \infty,$$

since $0 \leqslant y^{qr\mu/(q-r)} \leqslant 1$ for $0 \leqslant y \leqslant 1$. Theorem is proved. \square

Corollary 1. Let f, p, q, μ and r are as in Theorem 4. If $\alpha > (r/q - 1)(\mu + 1)$ and the integral

$$\int_{1}^{\infty} y^{\alpha + r\mu/p - r/q} \omega_{1}^{r}(f, y^{-1})_{p,\mu,hc} y^{\mu} dy$$
 (13)

converges, the $t^{\alpha}|h_{1,\mu}(M_{\mu}f)(t)|^r \in L^1_{\mu}(\mathbb{R}_+)$.

Proof. It is easy to see that $\lambda_{\alpha}(t) = t^{\alpha}$ belongs to $A_{q/(q-r),\mu}$ for every $\alpha \in \mathbb{R}$. On the other hand, the condition $\lambda_{\alpha} \in L_{\mu}^{q/(q-r)}[0,1)$ is equivalent to the convergence of integral $\int_{0}^{1} t^{q\alpha/(q-r)+\mu} dt$, or to the inequality $\alpha > (r/q-1)(\mu+1)$. Using Theorem 4, we obtain the statement of Corollary 1. \square

Corollary 2. Let f, p, q, μ , and r are as in Theorem 4 and $\omega_1(f,t)_{p,\mu,hc} \leq Ct^{\delta}$ for some $\delta > 0$ and all $t \geq 0$. If $\alpha > (r/q - 1)(\mu + 1)$, $p\delta + p > \mu + 1$ and

$$\frac{p(\alpha + \mu + 1)}{\delta p + p - \mu - 1} < r < q,\tag{14}$$

then $t^{\alpha}|h_{1,\mu}(M_{\mu}f)(t)|^r \in L^1_{\mu}(\mathbb{R}_+).$

Proof. Under conditions of Corollary 2, the integral (13) converges if $\alpha + r\mu/p - r/q - r\delta + \mu < -1$ and r < q, i.e., r < q and $r(1/q + \delta - \mu/p) > \alpha + \mu + 1$. If $1/q + \delta - \mu/p = \delta + 1 - (\mu + 1)/p \le 0$, then r does not exist, while for $p\delta + p > \mu + 1$ we obtain (14). \square

Remark 1. The result of Corollary 2 in the case $\alpha = 0$ coincides with Theorem 3 in [5]. In a similar manner, one can obtain the result of Theorem 4 in [5].

Acknowledgment. This work was supported by the Program of development of Regional Scientific and Educational Mathematical Center "Mathematics of Future Technologies" (project no. 075-02-2023-949).

References

[1] Abilov V. A., Abilova F. V. Approximation of functions by Fourier-Bessel sums. Russian Math. (Izv. VUZ. Matem.), 2001, vol. 45, no. 8, pp. 1–7.

[2] Bergh J., Löfström J. *Interpolation spaces. An introduction.* Springer-Verlag, Berlin-Heidelberg, 1976.

- [3] Butzer P. L., Nessel R. J. Fourier analysis and approximation. Birkhauser, Basel-Stuttgart, 1971.
- [4] Daher R., Tyr O. Integrability of the Fourier-Jacobi transform of functions satisfying Lipschitz and Dini-Lipschitz-type estimates. Integral Transforms Spec. Funct. (2022, accepted)
 DOI: https://doi.org/10.1080/10652469.2021.1913414
- [5] El Hamma M., Mahfoud A. Generalization of Titchmarsh's theorem for the first Hankel-Clifford transform in the space L^p_μ((0, +∞)). Probl. Anal. Issues Anal., 2022, vol. 11(29), no. 3, pp. 56-65.
 DOI: https://doi.org/10.15393/j3.art.2022.11851
- [6] Gogoladze L., Meskhia R. On the absolute convergence of trigonometric Fourier series. Proc. Razmadze Math. Inst., 2006, vol. 141, pp. 29–46.
- [7] Gray A., Matthecos G. B., MacRobert T. M. A treatise on Bessel functions and their applications to physics., Macmillan, London, 1952.
- [8] Krayukhin S. A., Volosivets S. S. Functions of bounded p-variation and weighted integrability of Fourier transforms. Acta Math. Hung., 2019, vol. 159, no. 2, pp. 374-399.
 DOI: https://doi.org/10.1007/s10474-019-00995-6
- [9] Lahmadi H., El Hamma M. On estimates for the Hankel-Clifford transform in the space L^p_μ . J. Anal., 2023, vol. 31, pp. 1479–1486. DOI: https://doi.org/10.1007/s41478-022-00524-9
- [10] Mahfoud A., El Hamma M. Dini Clifford Lipschitz functions for the first Hankel-Clifford transform in the space L^2_{μ} . J. Anal., 2022, vol. 30, no. 3, pp. 909–918. DOI: https://doi.org/10.1007/s41478-021-00377-8
- [11] Mendez J. M. La transformacion integral de Hankel-Clifford, Secretariado de Publicaciones de la Universidad de La Laguna, La Laguna, 1979.
- Méndez Pérez J. M. R., Socas Robayna M. M. A pair of generalized Hankel-Clifford transformation and their applications. J. Math. Anal. Appl., 1991, vol. 154, no. 2, pp. 543-557.
 DOI https://doi.org/10.1016/0022-247X(91)90057-7
- [13] Móricz F. Sufficient conditions for the Lebesgue integrability of Fourier transforms. Anal. Math., 2010, vol. 36, no. 2, pp. 121–129.
- [14] Platonov S. S. Generalized Bessel translations and some problems of approximation of functions theory in metric $L_2.II$. Proc. Petrozavodsk State Univ. Matematika., 2001, vol. 8, pp. 20–36 (in Russian).

- [15] Platonov S. S. Bessel harmonic analysis and approximation of functions on the half-line. Izv Math., 2007, vol. 71, no. 5, pp. 1001-1048. DOI https://doi.org/10.1070/IM2007v071n05ABEH002379
- [16] Platonov S. S. On the Hankel transform of functions from Nikol'skii classes. Integral Transforms Spec. Funct., 2021, vol. 32, no. 10, pp. 823-838. DOI: https://doi.org/10.1080/10652469.2020.1849184
- [17] Prasad A., Singh V. K., Dixit M. M. Pseudo-differential operators involving Hankel-Clifford transformations, Asian-European. J. Math., 2012, vol. 5, no. 3, paper 1250040 (15 pages). DOI: https://doi.org/10.1142/S1793557112500404
- [18] Prasad A., Singh V. K. Pseudo-differential operators associated to a pair of Hankel-Clifford transformations on certain Beurling type function spaces. Asian-European J. Math., 2013, vol. 6, no. 3, paper 1350039 (22 pages). DOI: https://doi.org/10.1142/S1793557113500393
- [19] Titchmarsh, E.: Introduction to the theory of Fourier integrals. Clarendon press, Oxford (1937).
- [20] Volosivets S. Weighted integrability of Fourier-Dunkl transforms and generalized Lipschitz classes. Analysis Math. Phys., 2022, vol. 12, paper 115. DOI: https://doi.org/10.1007/s13324-022-00728-z
- [21] Volosivets S. S. Fourier-Bessel transforms and generalized uniform Lipschitz classes. Integral Transforms Spec. Funct., 2022, vol. 33, no. 7, pp. 559–569. DOI: https://doi.org/10.1080/10652469.2021.1986815
- [22] Volosivets S. S. Weighted integrability of Fourier-Jacobi transforms. Integral Transforms Spec. Funct. (accepted).
 DOI: https://doi.org/10.1080/10652469.2022.2140801
- [23] Younis, M.S.: Fourier transforms of Dini-Lipschitz functions. Int. J. Math. Math. Sci. 9 (2), 301–312 (1986).

Received January 4, 2023. Accepted March 16, 2023. Published online March 24, 2023.

Saratov State University 83 Astrakhanskaya St., Saratov 410012, Russia E-mail: VolosivetsSS@mail.ru