S. Bera, B. Ch. Tripathy

STATISTICAL BOUNDED SEQUENCES OF BI-COMPLEX NUMBERS

Abstract

In this paper, we extend statistical bounded sequences of real or complex numbers to the setting of sequences of bi-complex numbers. We define the statistical bounded sequence space of bicomplex numbers b_{∞}^{*} and also define the statistical bounded sequence spaces of ideals \mathbb{I}_{∞}^{1} and \mathbb{I}_{∞}^{2}. We prove some inclusion relations and provide examples. We establish that b_{∞}^{*} is the direct sum of \mathbb{I}_{∞}^{1} and \mathbb{I}_{∞}^{2}. Also, we prove the decomposition theorem for statistical bounded sequences of bi-complex numbers. Finally, summability properties in the light of J.A. Fridy's work are studied. Key words: natural density, bi-complex, statistical bounded, norm. 2020 Mathematical Subject Classification: 40A35, 40G15, 46445

1. Introduction. In 1892, Segre [12] introduced the notion of bicomplex numbers that form an algebra isomorphic to the tessarines. Thereafter, Srivastava and Srivastava [13], Wagh [17], Sager and Sağır [10], Rochon and Shapiro [9] investigated on sequences of bi-complex numbers. The notion of convergence is one of the main tools of analysis. There are a lot of convergences, e.g., Cesáro, Nörlund and Riesz, etc. Out of these, statistical convergence is one of the most important notions, which brought a back through development in sequence spaces. Many researchers (e.g., Buck [3], Salat [11], Fridy [4], Tripathy [16], Altinok et.al [1], Tripathy and Nath [14], and Tripathy and Sen [15]) studied the statistical convergence and statistical bounded sequences of real or complex numbers. Research work on statistical convergence in sequence spaces has been done by Albayrak et al. [2], Kuzhaev [5], Nath et al. [6].

Throughout the paper, C_{0}, C_{1} and C_{2} denote the set of real, complex, and bi-complex numbers, respectively.
(C) Petrozavodsk State University, 2023

2. Definition and preliminaries.

2.1 Bi-complex numbers. Segre [12] defined a bi-complex number as:

$$
\xi=z_{1}+i_{2} z_{2}=x_{1}+i_{1} x_{2}+i_{2} x_{3}+i_{1} i_{2} x_{4}
$$

where $z_{1}, z_{2} \in C_{1}$ and $x_{1}, x_{2}, x_{3}, x_{4} \in C_{0}$ and the independent units i_{1}, i_{2} are such, that $i_{1}^{2}=i_{2}^{2}=-1$ and $i_{1} i_{2}=i_{2} i_{1}$. Denote the set of bi-complex numbers C_{2}; it is defined as:

$$
C_{2}=\left\{\xi: \xi=z_{1}+i_{2} z_{2} ; z_{1}, z_{2} \in C_{1}\left(i_{1}\right)\right\},
$$

where $C_{1}\left(i_{1}\right)=\left\{x_{1}+i_{1} x_{2}: x_{1}, x_{2} \in C_{0}\right\} . C_{2}$ is a vector space over $C_{1}\left(i_{1}\right)$. There are four idempotent elements in C_{2} : they are $0,1, e_{1}=\frac{1+i_{1} i_{2}}{2}$ and $e_{2}=\frac{1-i_{1} i_{2}}{2}$, out of which e_{1} and e_{2} are nontrivial, such that $e_{1}+e_{2}=1$ and $e_{1} e_{2}=0$.

A bi-complex number $\xi=z_{1}+i_{2} z_{2}$ is said to be singular if and only if $\left|z_{1}^{2}+z_{2}^{2}\right|=0$.

Every bi-complex number $\xi=z_{1}+i_{2} z_{2}$ can be uniquely expressed as the combination of e_{1} and e_{2}; namely,

$$
\xi=z_{1}+i_{2} z_{2}=\left(z_{1}-i_{1} z_{2}\right) e_{1}+\left(z_{1}+i_{1} z_{2}\right) e_{2}=\mu_{1} e_{1}+\mu_{2} e_{2}
$$

where $\mu_{1}=\left(z_{1}-i_{1} z_{2}\right)$ and $\mu_{2}=\left(z_{1}+i_{1} z_{2}\right)$.
(i) The i_{1}-conjugation of a bi-complex number $\xi=z_{1}+i_{2} z_{2}$ is denoted by ξ^{*} and is defined by $\xi^{*}=\overline{z_{1}}+i_{2} \overline{z_{2}}$.
(ii) The i_{2}-conjugation of a bi-complex number $\xi=z_{1}+i_{2} z_{2}$ is denoted by $\bar{\xi}$ and is defined by $\bar{\xi}=z_{1}-i_{2} z_{2}$.
(iii) The $i_{1} i_{2}$-conjugation of a bi-complex number $\xi=z_{1}+i_{2} z_{2}$ is denoted by ξ^{\prime} and is defined by $\xi^{\prime}=\overline{z_{1}}+i_{2} \overline{z_{2}}$, for all $z_{1}, z_{2} \in C_{1}\left(i_{1}\right)$ and \bar{z}_{1}, \bar{z}_{2} are the complex conjugates of z_{1}, z_{2}, respectively.

Each of the three conjugations' moduli are given by
(i) $|\xi|_{i_{1}}=\sqrt{\xi \cdot \bar{\xi}}$
(ii) $|\xi|_{i_{2}}=\sqrt{\xi \cdot \zeta^{*}}$
(iii) $|\xi|_{i_{1} i_{2}}=\sqrt{\xi \cdot \xi^{\prime}}$.

The bi-complex number ξ is invertible if $|\xi|_{i_{1}} \neq 0$. The Euclidean norm $\|\cdot\|$ on C_{2} is defined by

$$
\|\xi\|_{C_{2}}=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}}=\sqrt{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}}=\sqrt{\frac{\left|\mu_{1}\right|^{2}+\left|\mu_{2}\right|^{2}}{2}}
$$

where $\xi=x_{1}+i_{1} x_{2}+i_{2} x_{3}+i_{1} i_{2} x_{4}=z_{1}+i_{2} z_{2}=\mu_{1} e_{1}+\mu_{2} e_{2}$ and $\mu_{1}=z_{1}-i_{1} z_{2}, \mu_{2}=z_{1}+i_{1} z_{2}$; with this, norm C_{2} is a Banach space, also C_{2} is a commutative algebra.

Remark 1. [7] C_{2} becomes a modified Banach algebra with respect to this norm in the sense that

$$
\|\xi \cdot \eta\|_{C_{2}} \leqslant \sqrt{2}\|\xi\|_{C_{2}} \cdot\|\eta\|_{C_{2}}
$$

Using the representation of a bi-complex number, the set C_{2} can be expressed as

$$
C_{2}=X_{1} e_{1}+X_{2} e_{2}
$$

where $X_{1}=\left\{z_{1}-i_{1} z_{2}: z_{1}, z_{2} \in C_{1}\left(i_{1}\right)\right\}$ and $X_{2}=\left\{z_{1}+i_{1} z_{2}: z_{1}, z_{2} \in C_{1}\left(i_{1}\right)\right\}$.
Suppose that X_{1} and X_{2} are normed spaces with the norm $\|\cdot\|_{1},\|\cdot\|_{2}$, respectively. The hyperbolic norm on C_{2} is given by

$$
\|\xi\|_{i_{1} i_{2}}=\left\|\mu_{1}\right\|_{1} e_{1}+\left\|\mu_{2}\right\|_{2} e_{2}
$$

Throughout this article, we consider

$$
\begin{aligned}
& 0_{1}=0+0 i_{1} ; \\
& 0_{2}=0+0 i_{1}+0 i_{2}+0 i_{1} i_{2}=0_{1} e_{1}+0_{1} e_{2} ; \\
& 0_{h}=0+0 i_{1} i_{2}=0 e_{1}+0 e_{2} ; \\
& \theta_{2}=\left(0_{2}, 0_{2}, \ldots\right) .
\end{aligned}
$$

2.2. Statistical boundedness.

The concept of statistical convergence depends on the notion of natural density of a set of natural numbers.

A subset E of \mathbb{N} is said to have natural density $\delta(E)$ if

$$
\delta(E)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \chi_{E}(k)
$$

where χ_{E} is the characteristic function on E.
Let $\left(\xi_{n}\right)$ and $\left(\eta_{n}\right)$ be two sequences, such that $\xi_{k}=\eta_{k}$ for almost all k (in short a.a.k.) if $\delta\left(\left\{k \in \mathbb{N}: \xi_{k} \neq \eta_{k}\right\}\right)=0$.

A sequence of bi-complex numbers $\xi=\left(\xi_{k}\right)$ is said to be statistically convergent to $\xi^{*} \in C_{2}$ with respect to the Euclidean norm on C_{2} if, for every $\varepsilon>0$,

$$
\delta\left(\left\{k \in \mathbb{N}:\left\|\xi_{k}-\xi^{*}\right\|_{C_{2}} \geqslant \varepsilon\right\}\right)=0
$$

It is denoted as stat-lim $\xi_{k}=\xi^{*}$.
If $\xi^{*}=0_{2}$, then the sequence $\left(\xi_{k}\right)$ of bi-complex numbers is said to be statistical null.

A sequence of bi-complex number $\xi=\left(\xi_{k}\right)$ is said to be statistically Cauchy with respect to the Euclidean norm on C_{2} if, for every $\varepsilon>0$, there exists $x_{k_{0}} \in \mathbb{N}$, such that

$$
\delta\left(\left\{k \in N:\left\|\xi_{k}-\xi_{k_{0}}\right\|_{C_{2}} \geqslant \varepsilon\right\}\right)=0 .
$$

A sequence $\xi=\left(\xi_{k}\right)$ of bi-complex numbers is said to be statistically bounded if there exists $0<M \in C_{0}$, such that

$$
\delta\left(\left\{k \in \mathbb{N}:\left\|\xi_{k}\right\|_{C_{2}} \geqslant M\right\}\right)=0 .
$$

Throughout the paper, w^{*} and b^{∞} denote the sets of all and bounded sequences of bi-complex numbers, respectively.
We list the following classes of sequences, which will be used in this article: $b^{*}:=\left\{\xi=\left(\xi_{k}\right) \in w^{*}\right.$: there exists a bi-complex number η such that stat- $\left.-\lim _{k \rightarrow \infty} \xi_{k}=\eta\right\}$.
$b_{0}^{*}:=\left\{\xi=\left(\xi_{k}\right) \in w^{*}:\right.$ stat- $\left.\lim _{k \rightarrow \infty} \xi_{k}=0_{2}\right\}$.
${ }^{c} b^{*}:=\left\{\xi=\left(\xi_{k}\right) \in w^{*}: \xi\right.$ is statistically Cauchy $\}$.
$b_{\infty}^{*}:=\left\{\xi=\left(\xi_{k}\right) \in w^{*}:\right.$ there exists $\left.0<M \in C_{0}: \delta\left(\left\{n:\left\|\xi_{k}\right\| \geqslant M\right\}\right)=0\right\}$.
$\mathbb{I}_{\infty}^{1}:=\left\{\left(\mu_{1 k} e_{1}\right), \mu_{1 k} \in X_{1}:\left(\mu_{1 k}\right)\right.$ is statistically bounded $\}$.
$\mathbb{I}_{\infty}^{2}:=\left\{\left(\mu_{2 k} e_{2}\right), \mu_{2 k} \in X_{2}:\left(\mu_{2 k}\right)\right.$ is statistically bounded $\}$.
$\mathbb{J}_{\infty}^{1}:=\left\{\xi=\left(\xi_{k}\right) \in w^{*}, \xi_{k}=\mu_{1 k} e_{1}+\mu_{2 k} e_{2}:\left(\mu_{1 k}\right)\right.$ is statistically bounded $\}$.
$\mathbb{J}_{\infty}^{2}:=\left\{\xi=\left(\xi_{k}\right) \in w^{*}, \xi_{k}=\mu_{1 k} e_{1}+\mu_{2 k} e_{2}:\left(\mu_{2 k}\right)\right.$ is statistically bounded $\}$.

3. Main Result.

Theorem 1. If a sequence (ξ_{k}) of bi-complex numbers $\xi_{k}=z_{1 k}+i_{2} z_{2 k}$, $\forall k \in \mathbb{N}$ is statistically bounded, then the sequences $\left(z_{1 n}\right)$ and $\left(z_{2 n}\right)$ are also statistically bounded.

Proof. Let $\left(\xi_{k}\right)$ be statistically bounded; then there exists an M, such that $\delta\left(\left\{k:\left\|\xi_{k}\right\|_{C_{2}} \geqslant M\right\}\right)=0$, which implies $\delta\left(\left\{k:\left\|z_{1 k}+i_{2} z_{2 k}\right\|_{C_{2}} \geqslant M\right\}\right)=0$ and $\delta\left(\left\{k:\left|z_{j k}\right| \geqslant M\right\} \leqslant \delta\left(\left\{k:\left\|z_{1 k}+i_{2} z_{2 k}\right\|_{C_{2}} \geqslant M\right\}\right)=0\right.$ for $j=1,2$. Hence, $\left(z_{1 k}\right)$ and $\left(z_{2 k}\right)$ are statistically bounded.

Conversely, let $\left(z_{1 k}\right)$ and $\left(z_{2 k}\right)$ be statistically bounded. Then, without loss of generality, we can find $M>0$, such that

$$
\delta\left(\left\{k:\left|z_{1 k}\right| \geqslant M\right\}\right)=0
$$

and

$$
\delta\left(\left\{k:\left|z_{2 k}\right| \geqslant M\right\}\right)=0
$$

Then we have the result from the following inequality:
$\delta\left(\left\{k:\left\|z_{1 k}+i_{2} z_{2 k}\right\|_{C_{2}} \geqslant M\right\}\right) \leqslant \delta\left(\left\{k:\left|z_{1 k}\right| \geqslant M\right\}\right)+\delta\left(\left\{k:\left|z_{2 k}\right| \geqslant M\right\}\right)=0$ (by sub-additivity property). Hence, $\left(\xi_{k}\right)$ is statistically bounded. In view of the above theorem, we formulate the following corollaries:
Corollary 1. If a sequence $\left(\xi_{k}\right)$, where $\xi_{k}=x_{1 k}+i_{1} x_{2 k}+i_{2} x_{3 k}+i_{1} i_{2} x_{4 k}$ of bi-complex numbers, is statistically bounded, then the sequences $\left(x_{p n}\right)$, $p=1,2,3,4$. of real numbers are also statistically bounded.
Corollary 2. If a sequence $\left(\xi_{k}\right)$, where $\xi_{k}=\mu_{1 k} e_{1}+\mu_{2 k} e_{2}$ of bi-complex numbers, is statistically bounded, then the sequences ($\mu_{1 k}$) and ($\mu_{2 k}$) are statistically bounded.
Result 1. The inclusion relations

$$
\begin{aligned}
& \text { (i) } b^{*} \subset b_{\infty}^{*} \\
& \left(\text { (ii) }{ }^{\mathcal{C}} b^{*} \subset b_{\infty}^{*}\right.
\end{aligned}
$$

are strict; this follows from the following example:
Example 1. Consider a sequences $\left(\xi_{k}\right)$ and $\left(\eta_{k}\right)$ of bi-complex numbers defined by

$$
\xi_{k}= \begin{cases}k^{3} i_{1}+k^{2} i_{2}+k i_{1} i_{2}, & \text { if } k=n^{3}, n \in \mathbb{N} \\ i_{1}-i_{2}, & \text { if } k=n^{2}+1 ; \\ 0, & \text { otherwise }\end{cases}
$$

From the above example, it can be observed that $\left(\xi_{k}\right) \notin b^{*}$, but $\left(\xi_{k}\right) \in b_{\infty}^{*}$. Result 2. $b^{\infty} \subset b_{\infty}^{*}$.

The converse parts are not true. Let us consider a sequence $\left(\xi_{k}\right)$ of bi-complex numbers, defined by

$$
\xi_{k}= \begin{cases}k^{2} i_{1}+k^{2} i_{2}, & \text { if } k=n^{2}, n \in \mathbb{N} ; \\ e_{1}-e_{2}, & \text { if } k=n^{2}+1 ; \\ e_{1}+e_{2}, & \text { if } k=n^{2}+2 ; \\ e_{1} e_{2}, & \text { otherwise }\end{cases}
$$

We observe that $\left(\xi_{k}\right) \in b_{\infty}^{*}$, but $\left(\xi_{k}\right) \notin b^{\infty}$.

Result 3.

(1) $\mathbb{I}_{\infty}^{1} \subset b_{\infty}^{*}$
(2) $\mathbb{I}_{\infty}^{2} \subset b_{\infty}^{*}$
(3) $\mathbb{J}_{\infty}^{1} \supset b_{\infty}^{*}$
(4) $\mathbb{J}_{\infty}^{2} \supset b_{\infty}^{*}$.

The inclusions are strict; this follows from the following examples:
Example 2. Let us consider a sequence (ξ_{k}) of bi-complex numbers, defined by

$$
\xi_{k}=\mu_{1 k} e_{1}+\mu_{2 k} e_{2}, \forall k \in \mathbb{N}
$$

where

$$
\mu_{1 k}= \begin{cases}k i_{1}, & \text { if } k=n^{3}, n \in \mathbb{N} \\ i_{1}, & \text { if } k=n^{3}+1 ; \\ e_{1}+e_{2}, & \text { if } k=n^{3}+2 \\ e_{1} e_{2}, & \text { otherwise }\end{cases}
$$

and

$$
\mu_{2 k}= \begin{cases}\sqrt{k} i_{1}, & \text { if } k=n^{3}, n \in \mathbb{N} \\ k^{2} i_{1}, & \text { if } k=n^{3}+1 ; \\ -\left(e_{1}+e_{2}\right) k^{2}, & \text { if } k=n^{3}+2 \\ e_{1} e_{2}, & \text { otherwise }\end{cases}
$$

In the above example, it can be observed that $\left(\xi_{k}\right)$ is in \mathbb{J}_{∞}^{2} but not in b_{∞}^{*}.
Theorem 2. The space b_{∞}^{*} is a linear space over $C_{1}\left(i_{1}\right)$.
Proof. Let $\left(\xi_{k}\right),\left(\eta_{k}\right) \in b_{\infty}^{*}$. Therefore, there exists $M>0$, such that

$$
\begin{aligned}
& \delta\left(\left\{k \in \mathbb{N}:\left\|\xi_{k}\right\|_{C_{2}} \geqslant M\right\}\right)=0, \\
& \delta\left(\left\{k \in \mathbb{N}:\left\|\eta_{k}\right\|_{C_{2}} \geqslant M\right\}\right)=0 .
\end{aligned}
$$

Then $\left(\xi_{k}+\eta_{k}\right) \in b_{\infty}^{*}$ follows from the following inclusion relation:
$\left\{k \in \mathbb{N}:\left\|\xi_{k}+\eta_{k}\right\|_{C_{2}} \geqslant 2 M\right\} \subseteq\left\{k \in \mathbb{N}:\left\|\xi_{k}\right\|_{C_{2}} \geqslant M\right\} \cup\left\{k \in \mathbb{N}:\left\|\eta_{k}\right\|_{C_{2}} \geqslant M\right\}$.
For $\left(\xi_{k}\right) \in b_{\infty}^{*}$ and $\alpha \in C_{1}\left(i_{1}\right)$, similarly, it can be shown that $\left(\alpha \xi_{k}\right) \in b_{\infty}^{*}$.
Therefore, the space b_{∞}^{*} is a linear space over $C_{1}\left(i_{1}\right)$.
Lemma 1. The spaces $\mathbb{I}_{\infty}^{1}, \mathbb{I}_{\infty}^{2}, \mathbb{J}_{\infty}^{1}$ and \mathbb{J}_{∞}^{2} are linear spaces over $C_{1}\left(i_{1}\right)$.

Lemma 2. The space b_{∞}^{*} is a commutative algebra with the identity $1=1+0 i_{1}+0 i_{2}+0 i_{1} i_{2}$ under coordinate-wise addition, real scalar multiplication, and term by term multiplication.

Proof. We know that C_{2} is a commutative algebra (linear space that is a commutative ring) with the identity $1=1+0 i_{1}+0 i_{2}+0 i_{1} i_{2}$ and $b_{\infty}^{*} \subset C_{2}$. Since b_{∞}^{*} is a linear space over $C_{1}\left(i_{1}\right)$ and a commutative ring with the product defined on b_{∞}^{*}, such that

$$
\left(\alpha \xi_{k} \cdot \eta_{k}\right)=\left(\xi_{k} \cdot \alpha \eta_{k}\right), \forall\left(\xi_{k}\right),\left(\eta_{k}\right) \in b_{\infty}^{*} \text { and } \forall \alpha \in C_{1}\left(i_{1}\right) .
$$

Hence, we see that b_{∞}^{*} is a commutative algebra.
In view of Remark 1, we have the following lemma:
Lemma 3. The space b_{∞}^{*} is a modified Banach algebra with respect to the norm $\|\xi\|=\inf \left\|\xi_{k}\right\|_{C_{2}}, \xi=\left(\xi_{k}\right) \in b_{\infty}^{*}$.
Proof. We have the following inequality:

$$
\begin{equation*}
\|\xi \cdot \eta\| \leqslant \sqrt{2}\|\xi\|\|\eta\|, \text { for all } \xi, \eta \in b_{\infty}^{*} . \tag{1}
\end{equation*}
$$

From the definition of Banach algebra and using the eq.(1), we can easily prove that b_{∞}^{*} is a modified Banach algebra with respect to the norm $\|\cdot\|$.
Theorem 3. The spaces \mathbb{I}_{∞}^{1} and \mathbb{I}_{∞}^{2} are commutative Banach algebras.
Proof. Let $\mu_{p}^{\prime} \in \mathbb{I}_{\infty}^{1}$ be an arbitrary Cauchy sequence in \mathbb{I}_{∞}^{1}. Then μ_{p}^{\prime} is Cauchy sequence in b_{∞}^{*}. Since b_{∞}^{*} is complete, there exists $\eta \in b_{\infty}^{*}$, such that

$$
\begin{gathered}
\mu_{p}^{\prime} \rightarrow \eta \\
\Longrightarrow\left\|\mu_{p}^{\prime}-\eta\right\|_{C_{2}}=0, \text { as } p \rightarrow \infty \\
\Longrightarrow \inf \left\|\mu_{p}^{\prime}-\eta\right\|_{C_{2}}=0, \text { as } p \rightarrow \infty \\
\Longrightarrow \inf \left\|\mu_{1 p}^{\prime} e_{1}+\mu_{2 p}^{\prime} e_{2}-\mu_{1} e_{1}-\mu_{2} e_{2}\right\|_{C_{2}}=0, \text { as } p \rightarrow \infty \\
\Longrightarrow \inf \left\|\mu_{1 p}^{\prime}-\mu_{1}\right\|_{1} \rightarrow 0, \inf \left\|\mu_{2 p}^{\prime}-\mu_{2}\right\|_{2} \rightarrow 0, \text { as } p \rightarrow \infty .
\end{gathered}
$$

Since $\mu_{p}^{\prime} \in \mathbb{I}_{\infty}^{1}$, so $\mu_{2 p}^{\prime}=0_{1}$ and, hence, $\mu_{2}=0_{1}$. So that $\eta \in \mathbb{I}_{\infty}^{1}$. Thus, \mathbb{I}_{∞}^{1} is a commutative Banach algebra and the identity element of \mathbb{I}_{∞}^{1} is $\left(e_{1}\right)$. Similarly, we can prove that \mathbb{I}_{∞}^{2} is a commutative Banach algebra with the identity element of \mathbb{I}_{∞}^{2} is $\left(e_{2}\right)$.
Corollary 3. The spaces \mathbb{I}_{∞}^{1} and \mathbb{I}_{∞}^{2} are Gelfand algebras.
Theorem 4. If $a=\left(a_{k}\right) \in \mathbb{I}_{\infty}^{1}$ and $b=\left(b_{k}\right) \in \mathbb{I}_{\infty}^{2}$, then
(1) $e_{1} \cdot a \in \mathbb{I}_{\infty}^{1}$.
(2) $e_{2} \cdot a=\theta_{2}$.
(3) $e_{1} \cdot b=\theta_{2}$.
(4) $e_{2} \cdot b \in \mathbb{I}_{\infty}^{2}$.

Proof. Let $a=\left(a_{k}\right)=\left(\mu_{1 k} e_{1}\right) \in \mathbb{I}_{\infty}^{1}$ and $b=\left(b_{k}\right)=\left(\mu_{2 k} e_{2}\right) \in \mathbb{I}_{\infty}^{2}$.
(1) $a=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$
i.e., $e_{1} \cdot a=\left(a_{1} e_{1}, a_{2} e_{1}, a_{3} e_{1}, \ldots\right)=\left(a_{1}, a_{2}, a_{3}, \ldots\right)=a \in \mathbb{I}_{\infty}^{1}$.
(2) $e_{2} \cdot a=\left(a_{1} e_{2}, a_{2} e_{2}, a_{3} e_{2}, \ldots\right)=\left(0_{2}, 0_{2}, 0_{2}, \ldots\right)=\theta_{2}$.
(3) Similar to (2).
(4) $b=\left(b_{1}, b_{2}, b_{3}, \ldots\right)$
i.e., $e_{2} \cdot b=\left(e_{2} b_{1}, e_{2} b_{2}, e_{2} b_{3}, \ldots\right)=\left(b_{1}, b_{2}, b_{3}, \ldots\right)=b \in \mathbb{I}_{\infty}^{2}$.

Result 4.
(1) $\mathbb{I}_{\infty}^{1} \cup \mathbb{I}_{\infty}^{2}=b_{\infty}^{*}$.
(2) $\mathbb{J}_{\infty}^{1} \cup \mathbb{J}_{\infty}^{2}=b_{\infty}^{*}$.
(3) $\mathbb{I}_{\infty}^{1} \cap \mathbb{I}_{\infty}^{2}=\theta_{2}$.
(4) $\mathbb{J}_{\infty}^{1} \cap \mathbb{J}_{\infty}^{2} \neq \phi$.

Result 5. If $\xi=\left(\xi_{k}\right) \in b_{\infty}^{*}$ and $\mu^{\prime}=\left(e_{1} \mu_{1 k}\right) \in \mathbb{I}_{\infty}^{1}, \mu^{\prime \prime}=\left(e_{2} \mu_{2 k}\right) \in \mathbb{I}_{\infty}^{2}$, then

$$
\xi=\mu^{\prime}+\mu^{\prime \prime} .
$$

Result 6. $b_{\infty}^{*}=\mathbb{I}_{\infty}^{1} \oplus \mathbb{I}_{\infty}^{2}$.
Corollary 4. $b_{\infty}^{*} / \mathbb{I}_{\infty}^{1}$ is isomorphic to \mathbb{I}_{∞}^{2}.
We formulate the following theorem without demo.
Theorem 5. If $\xi=\left(\xi_{k}\right) \in \mathbb{J}_{\infty}^{1} \cap \mathbb{J}_{\infty}^{2}$, where $\xi=e_{1} \mu_{1}+e_{2} \mu_{2}$, then $a \in \mathbb{I}_{\infty}^{1}$ and $b \in \mathbb{I}_{\infty}^{2}, a=e_{1} \mu_{1}, b=e_{2} \mu_{2}$.

Definition 1. Let us define a relation \sim on b_{∞}^{*} as follows:
For $\xi=\left(\xi_{k}\right), \eta=\left(\eta_{k}\right) \in b_{\infty}^{*}$,

$$
\xi \sim \eta \Leftrightarrow\|\xi-\eta\|_{i_{1} i_{2}}=0_{h} .
$$

It can be easily verified that it is equivalence relation on b_{∞}^{*}.

Now,

$$
\begin{aligned}
& \|\xi-\eta\|_{i_{1} i_{2}}=0_{h} \\
& \Longrightarrow e_{1}\left\|\mu_{1 k}-\mu_{1 k}^{\prime}\right\|_{1}+e_{2}\left\|\mu_{2 k}-\mu_{2 k}^{\prime}\right\|_{2}=0_{2}=e_{1} 0+e_{2} 0 \\
& \Longrightarrow e_{1}\left\|\mu_{1 k}-\mu_{1 k}^{\prime}\right\|_{1}=e_{1} 0=0 \text { and } e_{2}\left\|\mu_{2 k}-\mu_{2 k}^{\prime}\right\|_{2}=e_{2} 0=0 .
\end{aligned}
$$

Since, $\left\|e_{1}\right\|_{i_{1} i_{2}}=e_{1}$ and $\left\|e_{2}\right\|_{i_{1} i_{2}}=e_{2}$. So we can write $\mu_{1} \sim \mu_{1}^{\prime}$ and $\mu_{2} \sim \mu_{2}^{\prime}$, where $\mu_{1}^{\prime}, \mu_{1} \in \mathbb{I}_{\infty}^{1}$ and $\mu_{2}^{\prime}, \mu_{2} \in \mathbb{I}_{\infty}^{2}$. The equivalence class [ξ] on b_{∞}^{*} is

$$
\begin{gathered}
{[\xi]=\{\zeta: \xi \sim \zeta\}} \\
\Longrightarrow[\xi]=\left[\mu_{1}\right]+\left[\mu_{2}\right] .
\end{gathered}
$$

Theorem 6. Let $\xi=\left(\xi_{k}\right)$ and $\eta=\left(\eta_{k}\right) \in b_{\infty}^{*}$ and let $B=\left\{k: \xi_{k} \neq \eta_{k}\right\}$. Then $\delta(B)=0$ if $\eta \in[\xi]$.
Proof. Since $\eta \in[\xi]$,

$$
\begin{gathered}
\|\xi-\eta\|_{i_{1} i_{2}}=0_{h} \\
\Longrightarrow \|\left(\mu_{1 k} e_{1}+\mu_{2 k} e_{2}\right)-\left(\mu_{1 k}^{\prime} e_{1}+\mu_{2 k}^{\prime \prime} e_{2} \|_{i_{1} i_{2}}=0_{h}\right. \\
\Longrightarrow\left\|\mu_{1 k}-\mu_{1 k}^{\prime}\right\|_{1} e_{1}+\left\|\mu_{2 k}-\mu_{2 k}^{\prime \prime}\right\|_{2} e_{2}=0 e_{1}+0 e_{2} \\
\Longrightarrow\left\|\mu_{1 k}-\mu_{1 k}^{\prime}\right\|_{1}=0 \text { and }\left\|\mu_{2 k}-\mu_{2 k}^{\prime \prime}\right\|_{2}=0 .
\end{gathered}
$$

Now,
$\delta\left(\left\{k:\left\|\xi_{k}-\eta_{k}\right\|_{C_{2}} \geqslant \varepsilon\right\}\right)=\delta\left(\left\{k: \sqrt{\frac{\left\|\mu_{1 k}-\mu_{1 k}^{\prime}\right\|_{1}^{2}+\left\|\mu_{2 k}-\mu_{2 k}^{\prime \prime}\right\|_{2}^{2}}{2}} \geqslant \varepsilon\right\}\right)=0$.
Therefore,

$$
\delta\left(\left\{k:\left\|\xi_{k}-\eta_{k}\right\|_{C_{2}} \geqslant \varepsilon\right\}\right)=0 .
$$

Lemma 4. Let $\xi=\left(\xi_{k}\right) \in b_{\infty}^{*}$ and if $\xi \in \mathbb{I}_{\infty}^{1} \cup \mathbb{I}_{\infty}^{2}$, then ξ is singular statistically bounded.
Proof. Here ξ is statistically bounded. So, we only need to prove that for all $k \in \mathbb{N}, \xi_{k}$ is singular.
Let $\xi \in \mathbb{I}_{\infty}^{1} \cup \mathbb{I}_{\infty}^{2}$; then either $\xi=\left(\mu_{1 k} e_{1}\right), \mu_{1 k} \in X_{1}$, or $\xi=\left(\mu_{2 k} e_{2}\right), \mu_{2 k} \in X_{2}$. Since e_{i} are singular and $\mu_{1 k} \in X_{i}$, so, for all $k \in \mathbb{N}, \mu_{i k} e_{i}$ are also singular, where $i=1,2$.

Definition 1. A sequence $\xi=\left(\xi_{k}\right) \in b_{\infty}^{*}$ is convergent to ξ^{*} in $\|\cdot\|_{i_{1} i_{2}}$ if

$$
\left\|\xi_{k}-\xi^{*}\right\|_{i_{1} i_{2}}=0_{h}
$$

Definition 2. A sequence $\xi=\left(\xi_{k}\right) \in b_{\infty}^{*}$ is called Cauchy sequence in $\|\cdot\|_{i_{1} i_{2}}$ if

$$
\left\|\xi_{k}-\xi_{k_{0}}\right\|_{i_{1} i_{2}}=0_{h},
$$

or,

$$
\xi_{k} \sim \xi_{k_{0}}
$$

Theorem 7. If a bounded sequence $\xi=\left(\xi_{k}\right), \xi_{k}=e_{1} \mu_{1 k}+e_{2} \mu_{2 k}$ is statistically Cauchy, then ξ is a Cauchy sequence in $\|\cdot\|_{i_{1} i_{2}}$.
Proof. Let $\xi=\left(\xi_{k}\right)$ be statistically Cauchy; then, for each $\varepsilon>0$, there exists $n_{0} \in \mathbb{N}$, such that

$$
\begin{gathered}
\delta\left(\left\{k:\left\|\xi_{k}-\xi_{n_{0}}\right\|_{C_{2}} \geqslant \varepsilon\right\}\right)=0 . \\
\Longrightarrow \delta\left(\left\{k:\left\|\mu_{1 k}-\mu_{1 k_{0}}\right\|_{1} \geqslant \varepsilon^{1}\right\}\right)=0
\end{gathered}
$$

and

$$
\Longrightarrow \delta\left(\left\{k:\left\|\mu_{2 k}-\mu_{2 k_{0}}\right\|_{2} \geqslant \varepsilon^{2}\right\}\right)=0 .
$$

Which implies that ε^{j} are statistical upper bounds of the sequences ($\left\|\mu_{j k}-\mu_{j k_{0}}\right\|_{j}$ and, hence, the statistical least upper bounds of $\left(\left\|\mu_{j k}-\mu_{j k_{0}}\right\|_{j}\right.$ are ε^{j}. Since ε^{j} are arbitrary, so, the statistical least upper bounds of $\left(\left\|\mu_{j k}-\mu_{j k_{0}}\right\|_{j}\right.$ are zero.
Hence, $\left\|\xi_{k}-\xi_{k_{0}}\right\|_{i_{1} i_{2}}=e_{1}\left\|\mu_{1 k}-\mu_{1 k_{0}}\right\|_{1}+e_{2}\left\|\mu_{2 k}-\mu_{2 k_{0}}\right\|_{2}=0_{h}, j=1,2$.
Corollary 5. If a sequence $\xi=\left(\xi_{k}\right), \xi_{k}=e_{1} \mu_{1 k}+e_{2} \mu_{2 k}$ is statistically convergent, then ξ is a Cauchy sequence in $\|\cdot\|_{i_{1} i_{2}}$.
Theorem 8. Let $\xi=\left(\xi_{k}\right)$ be statistically convergent to ξ^{*}. If $\zeta=\left(\zeta_{k}\right) \in[\xi]$, then ζ is statistically convergent to ξ^{*} in $\|\cdot\|_{i_{1} i_{2}}$.
Proof. Since ξ is statistically convergent to ξ^{*}, so

$$
\left\|\xi-\xi^{*}\right\|_{i_{1} i_{2}}=0_{h}
$$

$\zeta \in[\xi] \Longrightarrow\|\xi-\zeta\|_{i_{1} i_{2}}=0$.
Now,

$$
\left\|\zeta-\xi^{*}\right\|_{i_{1} i_{2}} \leqslant\left\|\xi-\xi^{*}\right\|_{i_{1} i_{2}}+\|\zeta-\xi\|_{i_{1} i_{2}}=0_{h}
$$

Hence, ζ is statistically convergent to ξ^{*} in $\|\cdot\|_{i_{1} i_{2}}$. \square

Tripathy [16] proved the decomposition theorem for statistically bounded sequences of real numbers.

The following theorem is the decomposition theorem for sequences of bi-complex numbers.

Theorem 9. If a sequence $\xi=\left(\xi_{k}\right)$ of bi-complex numbers is statistically bounded, then there exists a bounded sequence $\eta=\left(\eta_{k}\right)$ of bi-complex numbers and a statistically null sequence $\zeta=\left(\zeta_{k}\right)$ of bi-complex numbers, such that $\xi=\eta+\zeta$.
Proof. Let $\xi=\left(\xi_{k}\right)$, where $\xi_{k}=\mu_{1 k} e_{1}+\mu_{2 k} e_{2}$, be a statistically bounded sequence. Then $\delta(B)=0$, where $B=\left\{k:\left\|\xi_{k}\right\|_{C_{2}} \geqslant M\right\}$.
Define the sequences $\eta=\left(\eta_{k}\right)$ and $\zeta=\left(\zeta_{k}\right)$ as follows:

$$
\begin{aligned}
& \eta_{k}= \begin{cases}\xi_{k}, & \text { if } k \in B^{c} ; \\
e_{1} e_{2}, & \text { otherwise. }\end{cases} \\
& \zeta_{k}= \begin{cases}e_{1} e_{2}, & \text { if } k \in B^{c} ; \\
\xi_{k}, & \text { otherwise. }\end{cases}
\end{aligned}
$$

From the above construction of η and ζ, we have

$$
\xi=\eta+\zeta,
$$

where $\eta \in b^{\infty}$ and $\zeta \in b_{0}^{*}$. \square
Following Lemma 1.1 of Salat [11], we state the following result without proof:
Proposition 1. A sequence $\left(\xi_{k}\right)$ of bi-complex numbers is statistically bounded if and only if there exists a set $K=\left\{k_{1}<k_{2}<\ldots\right\} \subset \mathbb{N}$, such that $\delta(K)=1$ and $\left(\xi_{k_{n}}\right)$ is bounded.
4. Summability properties.We are going to use the idea by Fridy [4].

Lemma 5. Let us consider a sequence $\xi=\left(\xi_{k}\right)$ of bi-complex numbers, such that $\left|\xi_{k}\right|_{i_{1}} \neq 0_{1}$ for infinitely many k; then there exists a sequence $\eta=(\eta) \in b_{\infty}^{*}$, such that

$$
\sum_{k=1}^{\infty} \xi_{k} \eta_{k}=\infty
$$

Proof. Consider an increasing sequence $\left(n_{k}\right)$ of natural numbers, such that

$$
n_{k} \geqslant k^{2} \text { and }\left|\xi_{n_{k}}\right|_{i_{1}} \neq 0_{1}
$$

Let us consider a sequence $\eta=\left(\eta_{k}\right)$ defined by

$$
\eta_{k}= \begin{cases}\frac{1}{\xi_{n_{k}}}, & \text { if } k=n_{j}, j \in \mathbb{N} ; \\ e_{1}-e_{2}, & \text { if } k=n_{j}+1, j \in \mathbb{N} ; \\ e_{1}+e_{2}, & \text { otherwise }\end{cases}
$$

Now, $\left\{k:\left\|\eta_{k}\right\| \geqslant 2\right\} \subset\left\{n: n=k^{2}, k \in \mathbb{N}\right\}$.
Thus, $\left.\delta\left(k:\left\|\eta_{k}\right\| \geqslant 2\right\}\right) \subset \delta\left(\left\{n: n=k^{2}, k \in \mathbb{N}\right\}\right)=0$ and

$$
\sum_{k=1}^{\infty} \xi_{k} \eta_{k}=\infty
$$

Let $T=\left(t_{n, k}\right)$ be any summability matrix. Let $\xi=\left(\xi_{k}\right) \in w^{*}$; then ξ is called a T bounded sequence if

$$
T(\xi)=\left(\sum_{k=1}^{\infty} t_{n, k} \xi_{k}\right) \in b^{\infty} .
$$

The set of all T bounded sequences is denoted by

$$
b_{\infty}^{T}=\left\{\xi=\left(\xi_{k}\right) \in w^{*}: T(\xi) \in b^{\infty}\right\} .
$$

Theorem 10. There is no row finite matrix $T=\left(t_{n, k}\right)$, such that b_{∞}^{T} contains b_{∞}^{*}.
Proof. Let $T=\left(t_{n, k}\right)$ be any row finite summability matrix. Choose $\left|t_{n_{1}, k_{1}^{\prime}}\right|_{i_{1}} \neq 0_{1}$. Choose $k_{1}^{\prime \prime} \geqslant k^{\prime}$, such that

$$
\left|t_{n_{1}, k_{1}^{\prime \prime}}\right|_{i_{1}} \neq 0_{1} \text { and }\left|t_{n_{1}, k}\right|_{i_{1}}=0_{1} \text { for all } k \geqslant k_{1}^{\prime \prime} .
$$

We can select an increasing sequence of rows and columns, such that for each r

$$
\left|t_{n_{r}, k_{r}}\right|_{i_{1}} \neq 0, k_{r} \geqslant r^{2}
$$

and

$$
t_{n_{r}, k}=0, \text { for all } k>k_{r} .
$$

Define the sequence $\xi=\left(\xi_{k}\right)$ as

$$
\xi_{k}= \begin{cases}\frac{1}{t_{n_{r}, k_{r}}}\left[r-\sum_{i=0}^{m-1} t_{n_{r}, k_{i}} \xi_{k_{i}}\right], & \text { if } k=k_{r} \\ k^{2}, & \text { if } k=k_{r-1} \\ (-1)^{k}, & \text { otherwise }\end{cases}
$$

Then ξ is not a T bounded sequence. But for any sufficiently large $M>0$, we have

$$
\left\{k:\left\|\xi_{k}\right\|_{C_{2}} \geqslant M\right\} \subset\left\{k_{r}, k_{r-1}, r \in \mathbb{N}\right\} \subset\left\{r^{2}: r \in \mathbb{N}\right\} \cup\left\{r^{2}-1: r \in \mathbb{N}\right\} .
$$

Hence, $\xi \in b_{\infty}^{*}$.

References

[1] Altinok M., Kucukaslan M. and Kaya U. Statistical extension of bounded sequence space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 2021, vol. 70, no. 1, pp. 82-99.
[2] Albayrak H., Babaarslan F., Ölmez Ö. and Aytar S. On the statistical convergence of nested sequences of sets. Probl. Anal. Issues Anal., 2022, vol. 11 (29), no. 3, pp. 3-14.
DOI: https://doi.org/10.15393/j3.art.2022.11850
[3] Buck R. C. Generalized asymptotic density. Amer. Jour. Math., 1953, vol. 75, pp. 335-346.
[4] Fridy J. A. On statistically convergence. Analysis, 1985, vol. 5, pp. 301-313.
[5] Kuzhaev A. F. On the necessary and sufficient conditions for the measurability of a positive sequence. Probl. Anal. Issues Anal., 2019, vol. 8(26), no. 3, pp. 63-72. DOI: https://doi.org/10.15393/j3.art.2019.6470
[6] Nath J., Tripathy B. C. and Bhattacharya B. On strongly almost convergence of double sequenes via complex uncertain variable. Probl. Anal. Issues Anal., 2022, vol. 11 (29), no. 1, pp. 102-121.
DOI: https://doi.org/10.15393/j3.art.2022.10450
[7] Price G. B. An introduction to multicomplex space and function. Marcel Dekker Inc., 1991.
[8] Rath D., Tripathy B. C. Matrix maps on sequence spaces associated with sets of integers. Indian Jour. Pure Appl. Math., 1996, vol. 27, no. 2, pp. 197-206.
[9] Rochon D., Shapiro M. On algebraic properties of bi-complex and hyperbolic numbers. Anal. Univ. Oradea, fasc. Math., 2004, vol. 11, pp. 71-110.
[10] Sager N., Sağır B. On completeness of some bi-complex sequence space. Palestine Journal of Mathematics, 2020, vol. 9, no. 2, pp. 891-902.
[11] Salat T. On statistically convergent sequences of real numbers. Math. Slovaca, 1980, vol. 30, no. 2, pp. 139-150.
[12] Segre C. Le rappresentazioni reali delle forme complessee gli enti iperalgebrici. Math. Anu. 1892, vol. 40, pp. 413-467.
[13] Srivastava R. K., Srivastava N. K. On a class of entire bi-complex sequences., South East Asian J. Math.\& Math. Sc., 2007, vol. 5, no. 3, pp. 47-68.
[14] Tripathy B. C., Nath P. K. Statistical convergence of complex uncertain sequences. New Mathematics and Natural Computation, 2017, vol. 13, no. 3, pp. 359-374.
[15] Tripathy B. C., Sen M. On generalized statistically convergent sequences. Indian J. Pure Appl. Math. 2001, vol. 32, no. 11, pp. 1689-1694.
[16] Tripathy B. C. On statistically convergent and statistically bounded sequences. Bull. Malaysian Math. Soc.(second series), 1997, vol. 20, pp. 31-33.
[17] Wagh M. A. On certain spaces of bi-complex sequences. Inter. J. Phy. Chem. and Math. Fund., 2014, vol. 7, no. 1, 1-6.

Received January 08, 2023.
In revised form, May 12, 2023.
Accepted May 21, 2023.
Published online June 10, 2023.

Department of Mathematics, Tripura University
Suryamaninagar, Agartala-799022, Tripura(W), India
Subhajit Bera
E-mail: berasubhajit0@gmail.com
Binod Chandra Tripathy
E-mail: tripathybc@gmail.com

