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STATISTICAL BOUNDED SEQUENCES
OF BI-COMPLEX NUMBERS

Abstract. In this paper, we extend statistical bounded sequences
of real or complex numbers to the setting of sequences of bi-complex
numbers. We define the statistical bounded sequence space of bi-
complex numbers b% and also define the statistical bounded se-
quence spaces of ideals Il and I2. We prove some inclusion re-
lations and provide examples. We establish that b% is the direct
sum of I}, and I%2. Also, we prove the decomposition theorem
for statistical bounded sequences of bi-complex numbers. Finally,
summability properties in the light of J.A. Fridy’s work are studied.
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1. Introduction. In 1892, Segre [12]| introduced the notion of bi-
complex numbers that form an algebra isomorphic to the tessarines. There-
after, Srivastava and Srivastava [13], Wagh [17], Sager and Sagir [10], Ro-
chon and Shapiro [9] investigated on sequences of bi-complex numbers.
The notion of convergence is one of the main tools of analysis. There are
a lot of convergences, e.g., Cesdro, Norlund and Riesz, etc. Out of these,
statistical convergence is one of the most important notions, which brought
a back through development in sequence spaces. Many researchers (e.g.,
Buck [3], Salat [11], Fridy [4], Tripathy [16], Altinok et.al [1], Tripathy
and Nath [14], and Tripathy and Sen [15]) studied the statistical con-
vergence and statistical bounded sequences of real or complex numbers.
Research work on statistical convergence in sequence spaces has been done
by Albayrak et al. [2], Kuzhaev [5], Nath et al. [6].

Throughout the paper, Cy, C; and C5 denote the set of real, complex,
and bi-complex numbers, respectively.
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2. Definition and preliminaries.
2.1 Bi-complex numbers. Segre [12] defined a bi-complex num-
ber as:
5 =21 + iQZQ = T + i1$2 + i2$3 + i1i2$4,
where 21,20 € C7 and x1, 29, 23,24 € Cy and the independent units 7y, io
are such, that i = i2 = —1 and 4145 = 79%;. Denote the set of bi-complex

numbers Cs; it is defined as:
Cy ={8: & =21 + a2y 21, 20 € C1(i1)},

where C(i1) = {x1 + {129 : 21,29 € Cp}. Cy is a vector space over C(iy).
There are four idempotent elements in Cy: they are 0,1,e; = 1*;—”2 and
ey = #, out of which e; and e, are nontrivial, such that e; + ey = 1
and ejes = 0.

A bi-complex number £ = z1 + i325 is said to be singular if and only if
22 + 23] = 0.

Every bi-complex number & = 2; + 225 can be uniquely expressed as
the combination of e; and es; namely,

=21+ 12 = (21 —i122)er + (21 +i122)e2 = pieq + fuoea,

where p; = (21 — i122) and po = (21 + i122).

(i) The 7;-conjugation of a bi-complex number § = z; + 525 is denoted
by &* and is defined by &* = 2z + i525.

(i) The is-conjugation of a bi-complex number £ = z; +i525 is denoted
by £ and is defined by & = z; — i92o.

(iii) The ijis-conjugation of a bi-complex number { = 2z; + igzy is
denoted by ¢ and is defined by & = 2 + iy%, for all 21,2 € C1(i;) and
Z1, Z3 are the complex conjugates of z1, zo, respectively.

Each of the three conjugations’ moduli are given by

M) i =vEE (i) [éli, = VEE (i) [§lii = V&€

The bi-complex number ¢ is invertible if |£];, # 0. The Euclidean norm
||l on Cy is defined by

2+ 2
lele, = /3 + 53+ 53 + 4 = VI E F el = el el

where f = x1 + il.%'g + igl’g + i1i2$4 = 2z + igZQ = H1€1 + H2€2 and
1 = 21 — 1129, [ = 21 + i129; with this, norm () is a Banach space,
also (5 is a commutative algebra.
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Remark 1. [7] Cy becomes a modified Banach algebra with respect to
this norm in the sense that

Hg'n”Cb < \/ngHCQHn”CQ

Using the representation of a bi-complex number, the set C5 can be
expressed as
Cy = Xie1 + Xae,

where X1 = {Zl—ilzgl 21,29 € Cl<21)} and X2 = {Zl+i1222 21,29 € Cl<21)}

Suppose that X; and X, are normed spaces with the norm || - |4, | - [|2,
respectively. The hyperbolic norm on C5 is given by

1€ livip = lralrer + [[p22e2.

Throughout this article, we consider
01 = 0+ 07y
02 = 0 4 071 + 022 + 02329 = 01e; + Oye9;
0n, = 0 + 02125 = Oeq + Oes;
0y = (02,09, ...).

2.2. Statistical boundedness.

The concept of statistical convergence depends on the notion of natural
density of a set of natural numbers.

A subset E of N is said to have natural density 6(E) if

58 = fim 15} ),

where yg is the characteristic function on F.

Let (&,) and (7,) be two sequences, such that & = n; for almost all k
(in short a.a.k.) if 6({k € N: & # nx}) = 0.

A sequence of bi-complex numbers £ = (&) is said to be statistically
convergent to £* € Cy with respect to the Euclidean norm on Cs if, for
every € > (),

S({keN: & —&Flc, = €}) =0,

It is denoted as stat-lim &, = &*.
If £* = 0q, then the sequence (&) of bi-complex numbers is said to be
statistical null.
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A sequence of bi-complex number & = (&) is said to be statistically
Cauchy with respect to the Euclidean norm on Cs if, for every ¢ > 0, there
exists zy, € N, such that

S({ke N: & — &polle, = €}) = 0.

A sequence & = (&) of bi-complex numbers is said to be statistically
bounded if there exists 0 < M € Cy, such that

o({k e N: ¢k, = M}) = 0.

Throughout the paper, w* and b* denote the sets of all and bounded
sequences of bi-complex numbers, respectively.
We list the following classes of sequences, which will be used in this article:

b* = {{ = (&) € w*: there exists a bi-complex number 1 such that
stat—]}Lngc & = n}.

b = {€ = (&) € w*: stat-limg_, & = 0a}.

Cp* := {€ = (&) € w*: € is statistically Cauchy}.

b = {& = (&) € w*: there exists 0 < M € Cy: 6({n: |&| = M}) = 0}.

IL = {(prer), par € X1 (p1x) is statistically bounded}.

= {(parea), por € Xo: (uax) is statistically bounded}.

JL = {& = (&) € w*, & = pirer + pogea: (u1x) is statistically bounded}.

J2 = {& = (&) € w*, & = parer + poges: (for) is statistically bounded}.

3. Main Result.

Theorem 1. If a sequence (&) of bi-complex numbers &, = z1; + 229,
Vk e N is statistically bounded, then the sequences (z1,) and (za,) are
also statistically bounded.

Proof. Let (&) be statistically bounded; then there exists an M, such that
S({k : |&kllc, = M}) = 0, which implies §({k : ||z1x + i220k]lc, = M}) =0
and 0({k : |zju| = M} < 0({k : |21k + i220k|c, = M}) = 0 for j = 1,2.
Hence, (z1x) and (z9;) are statistically bounded.

Conversely, let (z1;) and (29x) be statistically bounded. Then, without
loss of generality, we can find M > 0, such that

5({k: |zl = M}) = 0
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and
S({k: |zox| = M}) = 0.

Then we have the result from the following inequality:
0({k « |21k +i2zanllcy, 2 M}) < O({k : [21k] =2 M}) +6({k « |22 2 M}) = 0
(by sub-additivity property). Hence, (&) is statistically bounded. []

In view of the above theorem, we formulate the following corollaries:

Corollary 1. If a sequence (&), where & = w1y + 1129k + G203k + 119224,
of bi-complex numbers, is statistically bounded, then the sequences (x,,),
p =1,2,3,4. of real numbers are also statistically bounded.

Corollary 2. If a sequence (&), where & = ppe1 + figges of bi-complex
numbers, is statistically bounded, then the sequences (ji1;) and (por) are
statistically bounded.

Result 1. The inclusion relations
(i) b* < b,
(i) “b* < b*
are strict; this follows from the following example:
Example 1. Consider a sequences (&) and () of bi-complex numbers
defined by
k’gil + k72i2 + kiliz, if k= 7’L3, n e N;
fk: il—iz, 1fk=n2+1,
0, otherwise.
From the above example, it can be observed that (&) ¢ b*, but (&) € b%,.

Result 2. b* < bk
The converse parts are not true. Let us consider a sequence (&) of
bi-complex numbers, defined by

k% 4+ K%y, ifk=n%neN;

¢ €1 — ég, if k=n?+1;
k= .
e1 + e, if k=n?+2;
e1€a, otherwise.

We observe that (&) € b% ) but (&) ¢ b™.
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Result 3.
(1) TL < v
(2) T2 < b3

(3) I3, 2 b5,

(4) J2 o b

The inclusions are strict; this follows from the following examples:

Example 2. Let us consider a sequence () of bi-complex numbers, de-
fined by

& = pger + poreo,Vk € N

where
kiq, if k=n3neN;
i, if k =n3+1;
Hik = e1 + ey, ifk=n®+2;
e1€a, otherwise.
and
Vkiy, if k=n3neN;
_ k?iy, if k=n%+1;
Hak = —(e1 +ex)k?, it k=n3+2;
e1és, otherwise.

In the above example, it can be observed that (&) is in J2, but not in b%,.
Theorem 2. The space b} is a linear space over C(iy).

Proof. Let (&), (k) € b%,. Therefore, there exists M > 0, such that

o({k € N: [&klc, = M}) =0,
o({k € N: ], = M}) = 0.

Then (& + nx) € b% follows from the following inclusion relation:
{keN: [&tnilc, = 2M} = {k e N: [&]c, = M}u{k e N: |nfc, > M}.

For (&) € b% and « € C (i), similarly, it can be shown that (a&y) € b%.
Therefore, the space b% is a linear space over C(i1). []

Lemma 1. The spaces I}, 12 J! and J? are linear spaces over C(iy).
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Lemma 2. The space b}, is a commutative algebra with the identity
1 =1+ 0i1 + Oiy + 0iy29 under coordinate-wise addition, real scalar mul-
tiplication, and term by term multiplication.

Proof. We know that Cs is a commutative algebra (linear space that is a
commutative ring) with the identity 1 = 1+ 0iy + Oiy + 0iyiy and b% < Cs.
Since b% is a linear space over C}(i1) and a commutative ring with the
product defined on b% , such that

(i) = (& - ame), V(Sk), (i) € b, and Vare Cy(4y).

Hence, we see that 0} is a commutative algebra. []
In view of Remark 1, we have the following lemma:

Lemma 3. The space b}, is a modified Banach algebra with respect to
the norm [§|| = inf ||€kf ¢y, & = (&) € 0%

Proof. We have the following inequality:
1€ nl < V2[€ln], for all & n e b (1)

From the definition of Banach algebra and using the eq.(1), we can easily
prove that b7 is a modified Banach algebra with respect to the norm ||-||. [

Theorem 3. The spaces I, and 12, are commutative Banach algebras.

Proof. Let ,u; € Il be an arbitrary Cauchy sequence in I!. Then ,u;o is
Cauchy sequence in b% . Since b} is complete, there exists n € b% , such
that
Hyp =1
— [, —nle, =0, a8 p —> 0
= inf H,u;) —1)e, =0, as p — o
= inf Hp,llpel + ,u;peg — per — pzeslle, =0, as p —

= inf |y, — puf1 = 0,inf ||y, — piofl2 — 0, as p — 0.
Since ju, € I%, s0 py, = 01 and, hence, pz = 0;. So that n € IL,. Thus, I},
is a commutative Banach algebra and the identity element of I. is (e;).

Similarly, we can prove that I2 is a commutative Banach algebra with the
identity element of T2 is (e). []

Corollary 3. The spaces I, and 12, are Gelfand algebras.
Theorem 4. Ifa = (a;,) € I, and b = (b;) € I, then
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(1) e;-aell.
(2) ex-a = 0s.
(3) e1-b =05
(4) ex-bel2.
Proof. Let a = (a;) = (prer) € IL, and b = (by,) = (uares) € 12
(1) a = (ay,a9,as,...)
i.e., e;-a = (aier,azer,azer,...) = (ay,as,as,...) =acll.
(2) e - a = (a1e9, ases, ages,...) = (09,02,0q,...) = Oy .
(3) Similar to (2).

(4) b= (b, by, b3, ...)
i.e., €9 - b= (62b17€2b2,62b3, .. ) = (bl,bg,b37 .. ) =be Hgo ]

Result 4.
(1) IL UI2 = b
(2) JL uJ2 =bE.
(3) I N T2, = 6.
(4) JL n J2 # ¢.
Result 5. If £ = (&) e b% and ' = (eypap) € IL, 1" = (eaptor) € 12, then
E=p +u.
Result 6. b* =T @I%.
Corollary 4. b* /T. is isomorphic to T2,.
We formulate the following theorem without demo.

Theorem 5. If & = (&) € JL n J%, where £ = ey + eapts, then a € T
and b e 1130, a=ejp,b = esls.

Definition 1. Let us define a relation ~ on b, as follows:
For € = (&).n = (nk) € b,

g ~ 1= Hg - 77Hi1i2 = Op.

It can be easily verified that it is equivalence relation on b},.
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Now,

Hg - 77||i1i2 = Oh
— e1|par — fyln + eallpror — pioglla = 02 = €10 + €50
— ey lpr — pygl = €10 = 0 and ez o, — pay]l2 = €20 = 0.

. . / /
Since, ||le1i,i, = €1 and |ez|si, = €. So we can write uy ~ pq and g ~ po,
/ ’ . .
where py, py € I, and jiy, s € T2, The equivalence class [£] on b%, is

[€] ={¢: &~ ¢}

= [£] =[] + [p2]-

Theorem 6. Let £ = (&) and n = (1) € b% and let B = {k: & # ni}.
Then §(B) = 0 if n € [£].

Proof. Since n € [€],
H£ - 77Hi1i2 = Oh

— [[(parer + paxes) = (Hger + pogeallivi, = On
— [ — pglaer + ok — prog2e2 = Oex + O

= [k — pigls = 0 and [pa — piog 2 = 0.

Now,
_ / 2_|_ o " 2
Sk 16 —nules > ) =0 ({k: \/mk a3 : lpon = iyl 1) =0
Therefore,
0 ({k: & — mlley = €}) = 0.
[

Lemma 4. Let £ = (&) € b% and if §€ € T}, U T2, then ¢ is singular
statistically bounded.

Proof. Here ¢ is statistically bounded. So, we only need to prove that for
all k e N, & is singular.

Let € € Il UIZ; then either € = (p1x€1), par € Xi, or & = (uoes), piok € Xo.
Since e; are singular and 1 € X, so, for all k € N, u;ze; are also singular,
where 7 = 1,2. [
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Definition 1. A sequence & = (&) € b is convergent to £* in | - [|;,4, if
1€k = &% lliriz = On

Definition 2. A sequence £ = (&) € b% is called Cauchy sequence in
if

H : Hiliz
1€k — Eko llirie = On,

or,
§k ~ Eko-

Theorem 7. If a bounded sequence § = (&), &k = e1pu1x + €aflox IS sta-
tistically Cauchy, then £ is a Cauchy sequence in || - |;,-

Proof. Let £ = (&) be statistically Cauchy; then, for each € > 0, there
exists ng € N, such that

o({k: & — &nollc, = €}) = 0.

= O({k: |k — page|1 = €'}) =0

and
— §({k: ||par — prao |2 = €°}) = 0.

Which implies that &/ are statistical upper bounds of the sequences
(lgj& — 14k | ; and, hence, the statistical least upper bounds of (||t — £k, | ;
are /. Since &’ are arbitrary, so, the statistical least upper bounds of

(Hﬂjk /L]kOHJ are zero.
Hence, |£x — ko llivia = €1llpie — famollt + €2llptor — fokollz = 0n, 7 = 1,2. O

Corollary 5. If a sequence & = (&),&k = e1puux + eapior Is statistically
convergent, then £ is a Cauchy sequence in | - |,

Theorem 8. Let £ = (&) be statistically convergent to £*. If { = ((x) €[£],
then ( is statistically convergent to £* in || - |,

Proof. Since £ is statistically convergent to £*, so
1€ = &l = 0
(e [5] d H£ - CHiﬂ'z =0

Now,
HC - €*Hi1i2 < ||§ - g*HiIiZ + ||C - §||i1i2 =0p

Hence, ( is statistically convergent to £* in | - |;,:,. [
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Tripathy [16] proved the decomposition theorem for statistically bounded
sequences of real numbers.

The following theorem is the decomposition theorem for sequences of
bi-complex numbers.

Theorem 9. If a sequence & = (&) of bi-complex numbers is statistically
bounded, then there exists a bounded sequence n = (ny) of bi-complex
numbers and a statistically null sequence ( = (i) of bi-complex numbers,
such that &€ = n + (.

Proof. Let £ = (&), where & = pirer + pares, be a statistically bounded
sequence. Then 0 (B) = 0, where B = {k: ||&]lc, = M}.
Define the sequences 1 = (n;) and ¢ = (¢;) as follows:

{gk, if k e B
Nk =

e1ea, otherwise.

C - €169, ifke BC,
g &k, otherwise.

From the above construction of 17 and (, we have

5277—1_{7
where 1 € b* and ¢ € 0. [

Following Lemma 1.1 of Salat [11], we state the following result without
proof:

Proposition 1. A sequence (&) of bi-complex numbers is statistically
bounded if and only if there exists a set K = {k; < ky < ...} < N, such
that 6(K) = 1 and (&, ) is bounded.

4. Summability properties.We are going to use the idea by Fridy [4].

Lemma 5. Let us consider a sequence § = (&) of bi-complex numbers,
such that ||, # 07 for infinitely many k; then there exists a sequence
n = (n) € b%, such that

0
D G = 0.
=

Proof. Consider an increasing sequence (ny) of natural numbers, such
that
ng = k* and |€,, |;, # 0.
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Let us consider a sequence 1 = (1) defined by

gL, if k=n;,j€N;
n
M = €1 — €9, lsznj‘i‘]_,]EN,
e1 + e9, otherwise.
Now, {k: |n| =2} < {n: n=k* ke N}.
Thus, 6(k: || = 2}) € 6({n: n =k* ke N}) =0 and

o0
Z Sk = 0.
k=1

O

Let T' = (t, ) be any summability matrix. Let { = (&) € w*; then &
is called a T" bounded sequence if

o0
k=1
The set of all T' bounded sequences is denoted by
bi = {& = (&) € w*: T(€) € 0™}
Theorem 10. There is no row finite matrix T = (t, ), such that b
contains b, .
Proof. Let T' = (t,) be any row finite summability matrix. Choose

|tn1,k’1|z'1 # 0,. Choose k; > k', such that

[t 4l # 01 and [t ks, = O1 for all k > ky.

We can select an increasing sequence of rows and columns, such that for
each r
2
‘tnr,kryil # 07 kr 2 r

and
tn, k=0, for all k& > Ek,.

Define the sequence & = (&) as

n lk [7“ - 221_01 tnr,kigki] , itk =k,

&=\ k2, ik =k 1

(=1)*, otherwise.
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Then & is not a T bounded sequence. But for any sufficiently large M > 0,
we have

{k: |&llc, = M} < {kpkp_1,reNyc {r*:reN} U {r* —1: re N}.

Hence, £ € 0%,. [
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