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RATIONAL TYPE CYCLIC CONTRACTION
IN 𝐺-METRIC SPACES

Abstract. Rational type cyclic contraction via 𝒞-class func-
tion is established in 𝐺-metric spaces, which can not be re-
duced to the contractive condition in standard metric spaces.
A common fixed-point result is obtained for the pair of (𝐴,𝐵)-
weakly increasing mappings in 𝐺-metric spaces.
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1. Introduction. In 2012, Jleli and Samet [3] observed that some
of the fixed-point theorems in 𝐺-metric spaces can be deduced from
standard metric spaces or quasi-metric spaces (for details see [7], [8]).
Shatanawi and Abodayeh [9] introduced a new contractive condition
and proved fixed-point and common fixed-point results in 𝐺-metric
spaces, for which the techniques of Jleli and Samet [3], Samet et al. [6]
are inapplicable.
In this paper, we introduce rational type cyclic contraction via 𝒞-class
function in 𝐺-metric space that generalizes the contractive condition
of Shatanawi and Abodayeh [9] for larger class of auxiliary functions
and deduced common fixed-point result in 𝐺-metric spaces. Some
examples are also presented to show that our results are effective.

2. Preliminaries.

Definition 1. An altering distance function is a continuous, non-
decreasing mapping 𝜑 : [0,∞) → [0,∞), such that 𝜑−1(0) = 0.

Notation:

(i) Φ is the family of all altering distance functions.
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(ii) Ψ is the family of all mappings 𝜓 : [0,∞) → [0,∞) with the
property: if {𝑡𝑚}𝑚∈N ⊂ [0,∞) and 𝜓(𝑡𝑚) → 0, then 𝑡𝑚 → 0.

Note that Φ ⊂ Ψ.

Definition 2. [5] Let 𝑋 be a nonempty set. Let 𝐺 : 𝑋 ×𝑋 ×𝑋 →
[0,∞) be a function satisfying the following properties:

(𝐺1) 𝐺(𝑥, 𝑦, 𝑧) = 0, if 𝑥 = 𝑦 = 𝑧,

(𝐺2) 𝐺(𝑥, 𝑥, 𝑦) > 0,∀𝑥, 𝑦 ∈ 𝑋 with 𝑥 ̸= 𝑦,

(𝐺3) 𝐺(𝑥, 𝑥, 𝑦) ⩽ 𝐺(𝑥, 𝑦, 𝑧),∀𝑥, 𝑦, 𝑧 ∈ 𝑋 with 𝑧 ̸= 𝑦,

(𝐺4) 𝐺(𝑥, 𝑦, 𝑧) = 𝐺(𝑥, 𝑧, 𝑦) = 𝐺(𝑦, 𝑧, 𝑥) = . . . (symmetry in all three
variables),

(𝐺5) 𝐺(𝑥, 𝑦, 𝑧) ⩽ 𝐺(𝑥, 𝑎, 𝑎) +𝐺(𝑎, 𝑦, 𝑧),∀𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋 (rectangle in-
equality).

The function 𝐺 is called 𝐺-metric on 𝑋 and the pair (𝑋,𝐺) is called
a 𝐺-metric space.

Definition 3. [5] A 𝐺-metric space (𝑋,𝐺) is said to be symmetric
if

𝐺(𝑥, 𝑦, 𝑦) = 𝐺(𝑦, 𝑥, 𝑥),∀𝑥, 𝑦 ∈ 𝑋.

Lemma 1. [5] If (𝑋,𝐺) is a 𝐺-metric space, then

𝐺(𝑥, 𝑦, 𝑦) ⩽ 2𝐺(𝑦, 𝑥, 𝑥),∀𝑥, 𝑦 ∈ 𝑋.

Definition 4. [5] Let (𝑋,𝐺) be a 𝐺-metric space, 𝑥 ∈ 𝑋 be a point,
and {𝑥𝑛} ⊆ 𝑋 be a sequence. We say that:

(1) a sequence {𝑥𝑛} 𝐺-converges to 𝑥, if lim
𝑛,𝑚→∞

𝐺(𝑥𝑛, 𝑥𝑚, 𝑥) =

0; that is, for every 𝜀 > 0 there exists 𝑛0 ∈ N satisfying
𝐺(𝑥𝑛, 𝑥𝑚, 𝑥) < 𝜀, ∀𝑛,𝑚 ⩾ 𝑛0.

(2) a sequence {𝑥𝑛} is 𝐺-Cauchy if lim
𝑛,𝑚,𝑘→∞

𝐺(𝑥𝑛, 𝑥𝑚, 𝑥𝑘) = 0; that

is, for every 𝜀 > 0 there exists 𝑛0 ∈ N satisfying 𝐺(𝑥𝑛, 𝑥𝑚, 𝑥𝑘) <
𝜀, ∀𝑛,𝑚, 𝑘 ⩾ 𝑛0.

(3) (𝑋,𝐺) is complete if every 𝐺-Cauchy sequence in 𝑋 is 𝐺-
convergent in 𝑋.

Proposition 1. [5] Let (𝑋,𝐺) be a 𝐺-metric space, {𝑥𝑛} ⊆ 𝑋 be
a sequence, and 𝑥 ∈ 𝑋. Then the following are equivalent:
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(a) {𝑥𝑛} 𝐺-converges to 𝑥,
(b) lim

𝑛→∞
𝐺(𝑥𝑛, 𝑥𝑛, 𝑥) = 0,

(c) lim
𝑛→∞

𝐺(𝑥𝑛, 𝑥, 𝑥) = 0.

Proposition 2. [5] A sequence {𝑥𝑛} in a 𝐺-metric space (𝑋,𝐺)
is 𝐺-Cauchy if and only if lim

𝑛,𝑚→∞
𝐺(𝑥𝑛, 𝑥𝑚, 𝑥𝑚) = 0.

Definition 5. [1] A sequence {𝑥𝑛} in a 𝐺-metric space (𝑋,𝐺) is
asymptotically regular if lim

𝑛→∞
𝐺(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) = 0.

Lemma 2. [1] Let {𝑥𝑛} be an asymptotically regular sequence in
a 𝐺-metric space (𝑋,𝐺) and suppose that {𝑥𝑛} is not Cauchy. Then
there exist a positive real number 𝜀 > 0 and two subsequences {𝑥𝑛𝑘

}
and {𝑥𝑚𝑘

} of {𝑥𝑛}, such that ∀𝑘 ∈ N :

𝑘 ⩽ 𝑛𝑘 < 𝑚𝑘 < 𝑛𝑘+1,

𝐺(𝑥𝑛𝑘
, 𝑥𝑛𝑘+1, 𝑥𝑚𝑘−1) ⩽ 𝜀 < 𝐺(𝑥𝑛𝑘

, 𝑥𝑛𝑘+1, 𝑥𝑚𝑘
)

and, also, for all given 𝑝1, 𝑝2, 𝑝3 ∈ Z:

lim
𝑛→∞

𝐺(𝑥𝑛𝑘+𝑝1 , 𝑥𝑚𝑘+𝑝2 , 𝑥𝑚𝑘+𝑝3) = 𝜀.

Definition 6. [5] Let (𝑋,𝐺) be a 𝐺-metric space. We say that a
mapping 𝑇 : 𝑋 → 𝑋 is 𝐺-continuous at 𝑥 ∈ 𝑋 if {𝑇𝑥𝑚} → 𝑇𝑥 for
all sequences {𝑥𝑚} ⊆ 𝑋, such that {𝑥𝑚} → 𝑥.

In 2013, Shatanawi and Postolache [10] introduced (𝐴,𝐵)-weakly in-
creasing functions for a pair of mappings:

Definition 7. Let (𝑋,⪯) be a partially ordered set and 𝐴, 𝐵 be
two closed subsets of 𝑋 with 𝑋 = 𝐴 ∪ 𝐵. Let 𝑓, 𝑔 : 𝑋 → 𝑋 be two
mappings. Then the pair (𝑓, 𝑔) is said to be (𝐴,𝐵)-weakly increasing
if 𝑓𝑥 ⪯ 𝑔𝑓𝑥,∀𝑥 ∈ 𝐴 and 𝑔𝑥 ⪯ 𝑓𝑔𝑥,∀𝑥 ∈ 𝐵.

Kirk et al. [4] introduced cyclic mappings and proved fixed point
results for cyclic mappings:

Definition 8. A self-map 𝑓 : 𝑋 → 𝑋 is cyclic if there exist non-
empty subsets 𝐴0, 𝐴1, . . . , 𝐴𝑝−1 ⊆ 𝑋, such that

𝑋 =

𝑝⋃︁
𝑖=1

𝐴𝑖 and 𝑓(𝐴𝑖) ⊆ 𝐴𝑖+1 for 0 ⩽ 𝑖 ⩽ 𝑝− 1 (where 𝐴𝑝 = 𝐴0).



122 S. V. Puvar, R. G. Vyas

Ansari [2] introduced 𝒞-class functions as follows:

Definition 9. A mapping 𝐹 : [0,∞)2 → R is called a 𝒞-class func-
tion if it is continuous and satisfies the following conditions:

(𝐹1) 𝐹 (𝑠, 𝑡) ⩽ 𝑠, ∀𝑠, 𝑡 ⩾ 0;

(𝐹2) 𝐹 (𝑠, 𝑡) = 𝑠 implies that either 𝑠 = 0 or 𝑡 = 0, ∀ 𝑠, 𝑡 ⩾ 0.

Example 7. Let 𝑠, 𝑡 ∈ [0,∞); then we have:

(1) 𝐹 (𝑠, 𝑡) = 𝑠− 𝑡,

(2) 𝐹 (𝑠, 𝑡) =
𝑠− 𝑡

1 + 𝑡
,

(3) 𝐹 (𝑠, 𝑡) =
𝑠

1 + 𝑡
,

(2) 𝐹 (𝑠, 𝑡) = 𝑘𝑠, 𝑘 ∈ (0, 1).

3. Main Results. Here we consider functions 𝜓 ∈ Ψ
and generalize the contractivity condition of Shatanawi
and Abodayeh ( [9], Theorem 2.1) by using 𝒞-class
function, and prove common fixed point theorems in
𝐺-metric spaces.

Theorem 1. Let ⪯ be an ordered relation in a set 𝑋. Let (𝑋,𝐺)
be a complete 𝐺-metric space and 𝑋 = 𝐴

⋃︀
𝐵, where 𝐴 and 𝐵 are

nonempty closed subsets of 𝑋. Let 𝑓, 𝑔 be self mappings on 𝑋 that
satisfy the following conditions:

(i) The pair (𝑓, 𝑔) is (𝐴,𝐵)-weakly increasing.

(ii) 𝑓(𝐴) ⊆ 𝐵 𝑎𝑛𝑑 𝑔(𝐵) ⊆ 𝐴.

(iii) There exist two functions 𝜑 ∈ Φ, 𝜓 ∈ Ψ, such that

𝜑(𝐺(𝑓𝑥, 𝑔𝑓𝑥, 𝑔𝑦)) ⩽ 𝐹 (𝜑(𝑀(𝑥, 𝑦)), 𝜓(𝑀(𝑥, 𝑦))) (1)

holds for all comparative elements 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑦 ∈
𝐵 and

𝜑(𝐺(𝑔𝑥, 𝑓𝑔𝑥, 𝑓𝑦)) ⩽ 𝐹 (𝜑(𝑀 ′(𝑥, 𝑦)), 𝜓(𝑀 ′(𝑥, 𝑦))) (2)

holds for all comparative elements 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ∈ 𝐵 𝑎𝑛𝑑 𝑦 ∈
𝐴, where 𝐹 is a 𝒞-class function,
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𝑀(𝑥, 𝑦) = max
{︁
𝐺(𝑥, 𝑓𝑥, 𝑦),

𝐺(𝑓𝑥, 𝑓𝑥, 𝑦)[1 +𝐺(𝑥, 𝑥, 𝑔𝑦)]

1 +𝐺(𝑥, 𝑓𝑥, 𝑦)
,

𝐺(𝑔𝑦, 𝑔𝑦, 𝑦)[1 +𝐺(𝑓𝑥, 𝑓𝑥, 𝑥)]

1 +𝐺(𝑥, 𝑓𝑥, 𝑦)

}︁
and

𝑀 ′(𝑥, 𝑦) = max
{︁
𝐺(𝑥, 𝑔𝑥, 𝑦),

𝐺(𝑔𝑥, 𝑔𝑥, 𝑦)[1 +𝐺(𝑥, 𝑥, 𝑓𝑦)]

1 +𝐺(𝑥, 𝑔𝑥, 𝑦)
,

𝐺(𝑓𝑦, 𝑓𝑦, 𝑦)[1 +𝐺(𝑔𝑥, 𝑔𝑥, 𝑥)]

1 +𝐺(𝑥, 𝑔𝑥, 𝑦)

}︁
.

(iv) 𝑓 or 𝑔 is continuous.

Then, 𝑓 and 𝑔 have a common fixed point in 𝐴
⋂︀
𝐵.

Proof. Start with 𝑥0 ∈ 𝐴. Since 𝑓(𝐴) ⊆ 𝐵, there exists 𝑥1 ∈ 𝐵, such
that 𝑓𝑥0 = 𝑥1 and, since 𝑔(𝐵) ⊆ 𝐴, there exists 𝑥2 ∈ 𝐴, such that
𝑔𝑥1 = 𝑥2. Continuing this way, we construct a sequence {𝑥𝑛} in 𝑋,
such that

𝑓𝑥2𝑛 = 𝑥2𝑛+1, for 𝑥2𝑛 ∈ 𝐴; and 𝑔𝑥2𝑛+1 = 𝑥2𝑛+2, for 𝑥2𝑛+1 ∈ 𝐵, 𝑛 ⩾ 0.

Using condition (i), we have 𝑥𝑛 ⪯ 𝑥𝑛+1,∀𝑛 ⩾ 0.
If 𝑥2𝑛 = 𝑥2𝑛+1, for some 𝑛 ∈ N, then 𝑥2𝑛 is a fixed point of 𝑓 in
𝐴
⋂︀
𝐵. Since 𝑥2𝑛 ⪯ 𝑥2𝑛+1, from (1) we have:

𝜑(𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2)) = 𝜑(𝐺(𝑓𝑥2𝑛, 𝑔𝑓𝑥2𝑛, 𝑔𝑥2𝑛+1)) ⩽

⩽ 𝐹 (𝜑(𝑀(𝑥2𝑛, 𝑥2𝑛+1)), 𝜓(𝑀(𝑥2𝑛, 𝑥2𝑛+1))), (3)

where

𝑀(𝑥2𝑛, 𝑥2𝑛+1) =

= max
{︁
𝐺(𝑥2𝑛, 𝑓𝑥2𝑛, 𝑥2𝑛+1),

𝐺(𝑓𝑥2𝑛, 𝑓𝑥2𝑛, 𝑥2𝑛+1)[1+𝐺(𝑥2𝑛, 𝑥2𝑛, 𝑔𝑥2𝑛+1)]

1 +𝐺(𝑥2𝑛, 𝑓𝑥2𝑛, 𝑥2𝑛+1)
,

𝐺(𝑔𝑥2𝑛+1, 𝑔𝑥2𝑛+1, 𝑥2𝑛+1)[1+𝐺(𝑓𝑥2𝑛, 𝑓𝑥2𝑛, 𝑥2𝑛)]

1 +𝐺(𝑥2𝑛, 𝑓𝑥2𝑛, 𝑥2𝑛+1)

}︁
=

= max
{︁
𝐺(𝑥2𝑛, 𝑥2𝑛+1, 𝑥2𝑛+1),

𝐺(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑥2𝑛+1)[1+𝐺(𝑥2𝑛, 𝑥2𝑛, 𝑥2𝑛+2)]

1 +𝐺(𝑥2𝑛, 𝑥2𝑛+1, 𝑥2𝑛+1)
,
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𝐺(𝑥2𝑛+2, 𝑥2𝑛+2, 𝑥2𝑛+1)[1 +𝐺(𝑥2𝑛+1, 𝑥2𝑛+1, 𝑥2𝑛)]

1 +𝐺(𝑥2𝑛, 𝑥2𝑛+1, 𝑥2𝑛+1)

}︁
=

= max{𝐺(𝑥2𝑛, 𝑥2𝑛+1, 𝑥2𝑛+1), 𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2)} =

= 𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2).

From (3) and (𝐹1) we have:

𝜑(𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2)) ⩽

⩽ 𝐹 (𝜑(𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2)), 𝜓(𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2))) ⩽

⩽ 𝜑(𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2)),

which implies

𝐹 (𝜑(𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2)), 𝜓(𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2))) =

= 𝜑(𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2)).

From (𝐹2) we have:

𝜑(𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2) = 0 or 𝜓(𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2) = 0.

Since 𝜑 ∈ Φ and 𝜓 ∈ Ψ, we have 𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2) = 0. That is,
𝑥2𝑛 = 𝑥2𝑛+1 = 𝑥2𝑛+2. Hence, 𝑥2𝑛 is a common fixed point of 𝑓 and 𝑔
in 𝐴

⋂︀
𝐵. Now, assume that 𝑥𝑛 ̸= 𝑥𝑛+1,∀𝑛 ⩾ 0. Since 𝑥2𝑛 ⪯ 𝑥2𝑛+1,

from (1) we have:

𝜑(𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2)) = 𝜑(𝐺(𝑓𝑥2𝑛, 𝑔𝑓𝑥2𝑛, 𝑔𝑥2𝑛+1)) ⩽

⩽ 𝐹 (𝜑(𝑀(𝑥2𝑛, 𝑥2𝑛+1)),𝜓(𝑀(𝑥2𝑛, 𝑥2𝑛+1))),
(4)

where

𝑀(𝑥2𝑛, 𝑥2𝑛+1) = max{𝐺(𝑥2𝑛, 𝑥2𝑛+1, 𝑥2𝑛+1), 𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2)}.

If 𝑀(𝑥2𝑛, 𝑥2𝑛+1) = 𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2), ∀𝑛 ⩾ 0, then from (4) we
have

𝜑(𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2)) ⩽

⩽ 𝐹 (𝜑(𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2)), 𝜓(𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2))).

Since 𝐹 is 𝒞-class function, we have:
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𝐹 (𝜑(𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2)), 𝜓(𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2))) =

= 𝜑(𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2)) =⇒ 𝜑(𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2)) = 0

or
𝜓(𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2)) = 0,∀𝑛 ⩾ 0.

Since 𝜑 ∈ Φ, we have 𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2) = 0,∀𝑛 ⩾ 0; this implies
𝑥2𝑛+1 = 𝑥2𝑛+2,∀𝑛 ⩾ 0: a contradiction. Therefore, 𝑀(𝑥2𝑛,𝑥2𝑛+1) =
= 𝐺(𝑥2𝑛, 𝑥2𝑛+1, 𝑥2𝑛+1),∀𝑛 ⩾ 0.
Now, from (4) and (𝐹1), we get

𝜑(𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2)) ⩽

⩽ 𝐹 (𝜑(𝐺(𝑥2𝑛, 𝑥2𝑛+1, 𝑥2𝑛+1)), 𝜓(𝐺(𝑥2𝑛, 𝑥2𝑛+1, 𝑥2𝑛+1))) ⩽

⩽ 𝜑(𝐺(𝑥2𝑛, 𝑥2𝑛+1, 𝑥2𝑛+1)),∀𝑛 ⩾ 0. (5)

Since 𝑥2𝑛+1 ⪯ 𝑥2𝑛+2, from (2) we can prove:

𝜑(𝐺(𝑥2𝑛+2, 𝑥2𝑛+3, 𝑥2𝑛+3)) ⩽

⩽ 𝐹 (𝜑(𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2)), 𝜓(𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2))) ⩽

⩽ 𝜑(𝐺(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑥2𝑛+2)),∀𝑛 ⩾ 0. (6)

From (5) and (6), we conclude that

𝜑(𝐺(𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+2)) ⩽ 𝐹 (𝜑(𝐺(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1)),𝜓(𝐺(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1))) ⩽

⩽ 𝜑(𝐺(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1)),∀𝑛 ⩾ 0. (7)

Since 𝜑 ∈ Φ, we get 𝐺(𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+2) ⩽ 𝐺(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1),∀𝑛 ⩾ 0,
which implies that the sequence {𝐺(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1)} is a non-negative
monotonically decreasing sequence. So, there exists 𝑟 ⩾ 0, such that

lim
𝑛→∞

𝐺(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) = 𝑟. (8)

By taking the limit as 𝑛→ ∞ in (7), we get

𝜑(𝑟) ⩽ 𝐹 (𝜑(𝑟), lim
𝑛→∞

𝜓(𝐺(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1))) ⩽ 𝜑(𝑟),

which implies that 𝐹 (𝜑(𝑟), lim
𝑛→∞

𝜓(𝐺(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1))) = 𝜑(𝑟).
From (𝐹2), we get 𝜑(𝑟) = 0 or lim

𝑛→∞
𝜓(𝐺(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1)) = 0. Since

𝜑 ∈ Φ and 𝜓 ∈ Ψ, we get

𝑟 = lim
𝑛→∞

𝐺(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) = 0. (9)
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From the definition of 𝐺-metric space, we have

lim
𝑛→∞

𝐺(𝑥𝑛, 𝑥𝑛, 𝑥𝑛+1) = 0. (10)

Now, we prove that {𝑥𝑛} is 𝐺-Cauchy. It is sufficient to show that
{𝑥2𝑛} is a 𝐺-Cauchy sequence.
Suppose that {𝑥𝑛} is not Cauchy. Then, by (9), (10), and Lemma 2,
there exist 𝜀 > 0 and two subsequences {𝑥2𝑛𝑘

} and {𝑥2𝑚𝑘
} of {𝑥2𝑛},

such that ∀𝑘 ∈ N, 𝑘 ⩽ 𝑛𝑘 < 𝑚𝑘 < 𝑛𝑘+1 and for all given 𝑝1, 𝑝2, 𝑝3 ∈ Z,

lim
𝑛→∞

𝐺(𝑥2𝑛𝑘+𝑝1 , 𝑥2𝑚𝑘+𝑝2 , 𝑥2𝑚𝑘+𝑝3) = 𝜀. (11)

Since 𝑥2𝑚𝑘
⪯ 𝑥2𝑛𝑘+1, from (1) we have:

𝜑(𝐺(𝑥2𝑚𝑘+1, 𝑥2𝑚𝑘+2, 𝑥2𝑛𝑘+2)) = 𝜑(𝐺(𝑓𝑥2𝑚𝑘
, 𝑔𝑓𝑥2𝑚𝑘

, 𝑔𝑥2𝑛𝑘+1)) ⩽

⩽ 𝐹 (𝜑(𝑀(𝑥2𝑚𝑘
, 𝑥2𝑛𝑘+1)), 𝜓(𝑀(𝑥2𝑚𝑘

, 𝑥2𝑛𝑘+1))), (12)

where

𝑀(𝑥2𝑚𝑘
, 𝑥2𝑛𝑘+1) = max

{︁
𝐺(𝑥2𝑚𝑘

, 𝑥2𝑚𝑘+1, 𝑥2𝑛𝑘+1),

𝐺(𝑥2𝑚𝑘+1, 𝑥2𝑚𝑘+1, 𝑥2𝑛𝑘+1)[1 +𝐺(𝑥2𝑚𝑘
, 𝑥2𝑚𝑘

, 𝑥2𝑛𝑘+2)]

1 +𝐺(𝑥2𝑚𝑘
, 𝑥2𝑚𝑘+1, 𝑥2𝑛𝑘+1)

,

𝐺(𝑥2𝑛𝑘+2, 𝑥2𝑛𝑘+2, 𝑥2𝑛𝑘+1)[1 +𝐺(𝑥2𝑚𝑘+1, 𝑥2𝑚𝑘+1, 𝑥2𝑚𝑘
)]

1 +𝐺(𝑥2𝑚𝑘
, 𝑥2𝑚𝑘+1, 𝑥2𝑛𝑘+1)

}︁
.

Using (9), (10) and (11), we get lim
𝑘→∞

𝑀(𝑥2𝑚𝑘
, 𝑥2𝑛𝑘+1) = 𝜀. Taking

limit as 𝑘 → ∞ in (12), we get

𝜑(𝜀) ⩽ 𝐹 (𝜑(𝜀), lim
𝑘→∞

𝜓(𝑀(𝑥2𝑚𝑘
, 𝑥2𝑛𝑘+1))).

Since 𝐹 is a 𝒞-class function, we get

𝜑(𝜀) ⩽ 𝐹 (𝜑(𝜀), lim
𝑘→∞

𝜓(𝑀(𝑥2𝑚𝑘
, 𝑥2𝑛𝑘+1))) ⩽ 𝜑(𝜀);

this implies that

𝜑(𝜀) = 0 or lim
𝑘→∞

𝜓(𝑀(𝑥2𝑚𝑘
, 𝑥2𝑛𝑘+1)) = 0;

so we get 𝜀 = lim
𝑘→∞

𝑀(𝑥2𝑚𝑘
, 𝑥2𝑛𝑘+1) = 0: a contradiction. Thus,

{𝑥2𝑛} is a 𝐺-Cauchy sequence in (𝑋,𝐺). So, the sequence {𝑥𝑛} is a 𝐺-
Cauchy sequence in (𝑋,𝐺). Since (𝑋,𝐺) is complete, there exists 𝑢 ∈



Rational type cyclic contraction 127

𝑋, such that {𝑥𝑛} is 𝐺-convergent to 𝑢. Therefore, the subsequences
{𝑥2𝑛} and {𝑥2𝑛+1} are 𝐺-convergent to 𝑢. Since {𝑥2𝑛} ⊆ 𝐴 and 𝐴 are
closed, 𝑢 ∈ 𝐴. Also, {𝑥2𝑛+1} ⊆ 𝐵 and 𝐵 are closed, so 𝑢 ∈ 𝐵. Now,
we may assume that 𝑓 is continuous. So, we have 𝑓𝑢 = lim

𝑛→∞
𝑓𝑥2𝑛 =

lim
𝑛→∞

𝑥2𝑛+1 = 𝑢. By uniqueness of the limit, we have 𝑓𝑢 = 𝑢.
Since 𝑢 ⪯ 𝑢, from (1) we have:

𝜑(𝐺(𝑢, 𝑔𝑢, 𝑔𝑢)) = 𝜑(𝐺(𝑓𝑢, 𝑔𝑓𝑢, 𝑔𝑢)) ⩽ 𝐹 (𝜑(𝑀(𝑢, 𝑢)), 𝜓(𝑀(𝑢, 𝑢))),
(13)

where

𝑀(𝑢, 𝑢) = max
{︁
𝐺(𝑢, 𝑓𝑢, 𝑢),

𝐺(𝑓𝑢, 𝑓𝑢, 𝑢)[1 +𝐺(𝑢, 𝑢, 𝑔𝑢)]

[1 +𝐺(𝑢, 𝑓𝑢, 𝑢)]
,

𝐺(𝑔𝑢, 𝑔𝑢, 𝑢)[1 +𝐺(𝑓𝑢, 𝑓𝑢, 𝑢)]

[1 +𝐺(𝑢, 𝑓𝑢, 𝑢)]

}︁
= 𝐺(𝑢, 𝑔𝑢, 𝑔𝑢).

Using (13), we obtain

𝜑(𝐺(𝑢, 𝑔𝑢, 𝑔𝑢)) ⩽ 𝐹 (𝜑(𝐺(𝑢, 𝑔𝑢, 𝑔𝑢)), 𝜓(𝐺(𝑢, 𝑔𝑢, 𝑔𝑢))).

Since 𝐹 is a 𝒞-class function, we have

𝜑(𝐺(𝑢, 𝑔𝑢, 𝑔𝑢)) = 0 or 𝜓(𝐺(𝑢, 𝑔𝑢, 𝑔𝑢)) = 0.

This implies 𝐺(𝑢, 𝑔𝑢, 𝑔𝑢) = 0. Hence, 𝑔𝑢 = 𝑢. Thus, 𝑢 is a common
fixed point of 𝑓 and 𝑔 in 𝐴

⋂︀
𝐵. □

The following example shows that the condition (iii) defined in
Theorem 1 is more general than the condition (iii) of Theorem 2.1
in [9].

Example 8. Let 𝑋 = {0, 1} and define 𝐺 : 𝑋 ×𝑋 ×𝑋 → [0,∞) as

𝐺(0, 0, 0) = 𝐺(1, 1, 1) = 0, 𝐺(0, 0, 1) = 1 and 𝐺(0, 1, 1) = 2.

Then the function 𝐺 is a 𝐺-metric on X.
Take 𝐴 = 𝐵 = {0, 1}, and 𝑥 ⪯ 𝑦 if and only if 𝑥 ⩽ 𝑦. Define the
mappings 𝑓, 𝑔 : 𝑋 → 𝑋 as follows:

𝑓(0) = 1, 𝑓(1) = 0 and 𝑔(0) = 0, 𝑔(1) = 1.
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Let 𝜑, 𝜓 : [0,∞) → [0,∞) and 𝐹 : [0,∞)× [0,∞) → R be defined by
𝜑(𝑡) = 𝑡/2, 𝜓(𝑡) = 𝑡 and 𝐹 (𝑠, 𝑡) = 𝑠/(1 + 𝑡), for all 𝑠, 𝑡 ∈ [0,∞).
For 𝑥 = 0, 𝑦 = 1,

𝑀(0, 1) = max
{︁
𝐺(0, 𝑓0, 1),

𝐺(𝑓0, 𝑓0, 1)[1 +𝐺(0, 0, 𝑔1)]

1 +𝐺(0, 𝑓0, 1)
,

𝐺(𝑔1, 𝑔1, 1)[1 +𝐺(𝑓0, 𝑓0, 0)]

1 +𝐺(0, 𝑓0, 1)

}︁
= max{2, 0} = 2.

Now,

𝐹 (𝜑(𝑀(0, 1)), 𝜓(𝑀(0, 1))) = 𝐹 (𝜑(2), 𝜓(2)) = 𝐹 (1, 2) =
1

3
⩾

⩾ 𝜑(𝐺(𝑓0, 𝑔𝑓0, 𝑔1)) = 𝜑(0).

For 𝑥 = 1, 𝑦 = 0:

𝑀(1, 0) = max
{︁
𝐺(1, 𝑓1, 0),

𝐺(𝑓1, 𝑓1, 0)[1 +𝐺(1, 1, 𝑔0)]

1 +𝐺(1, 𝑓1, 0)
,

𝐺(𝑔0, 𝑔0, 0)[1 +𝐺(𝑓1, 𝑓1, 1)]

1 +𝐺(1, 𝑓1, 0)

}︁
= max{1, 0} = 1.

Now,

𝐹 (𝜑(𝑀(1, 0)), 𝜓(𝑀(1, 0))) = 𝐹 (𝜑(1), 𝜓(1)) = 𝐹 (
1

2
, 1) =

1

4
⩾

⩾ 𝜑(𝐺(𝑓1, 𝑔𝑓1, 𝑔0)) = 𝜑(0).

Hence, the condition (iii) of Theorem 1 is satisfied.
But 𝜑(𝐺(0, 𝑓0, 1))− 𝜓(𝐺(0, 𝑓0, 1)) = 𝜑(2)− 𝜓(2) = 1− 2 = −1 ⩽ 0.
This shows that the condition (iii) of Theorem 2.1 in [9] does not
hold.

In Theorem 1, if we replace 𝜓 ∈ Ψ with 𝜓 ∈ Φ and take
𝑀(𝑥, 𝑦) = 𝐺(𝑥, 𝑓𝑥, 𝑦), 𝑀 ′(𝑥, 𝑦) = 𝐺(𝑥, 𝑔𝑥, 𝑦) and 𝐹 (𝑠, 𝑡) = 𝑠 − 𝑡,
then we get Theorem 2.1 of [9], as a particular case.
Now, the following example validates Theorem 1.

Example 9. Let 𝑋 = [0, 1/2] and let 𝑓, 𝑔 : 𝑋 → 𝑋 be given as

𝑓(𝑥) =
𝑥2

1 + 𝑥
and 𝑔(𝑥) =

𝑥

2
. Take 𝐴 = [0, 1/2] and 𝐵 = [0, 1/2].
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Define the function 𝐺 : 𝑋 ×𝑋 ×𝑋 → [0,∞) as

𝐺(𝑥, 𝑦, 𝑧) =

{︃
0, if 𝑥 = 𝑦 = 𝑧,

max{𝑥, 𝑦, 𝑧}, otherwise.

Clearly, 𝐺 is a complete 𝐺-metric on 𝑋. We introduce a relation on 𝑋
by 𝑥 ⪯ 𝑦 if and only if 𝑦 ⩽ 𝑥. Also, define the functions 𝐹 : [0,∞)2→R
by 𝐹 (𝑠, 𝑡) = 𝑠 − 𝑡 and 𝜑, 𝜓 : [0,∞) → [0,∞) by 𝜑(𝑡) = 2𝑡 and

𝜓(𝑡) =
𝑡

1 + 2𝑡
.

Note that 𝑓(𝐴) = [0, 1/4] ⊆ 𝐵 and 𝑔(𝐵) = [0, 1/2] ⊆ 𝐴.
To prove (i), given 𝑥 ∈ 𝑋,

𝑔𝑓𝑥 =
𝑥2

2(1 + 𝑥)
.

Since 𝑥 ∈ [0, 1/2],
𝑥2

2(1 + 𝑥)
<

𝑥2

(1 + 𝑥)
. Thus, 𝑔𝑓𝑥 ⩽ 𝑓𝑥 and, hence,

𝑓𝑥 ⪯ 𝑔𝑓𝑥 for all 𝑥 ∈ 𝑋.
To prove (iii), given 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵 with 𝑦 ⩾ 𝑥. Then

𝐺(𝑓𝑥, 𝑔𝑓𝑥, 𝑔𝑦) = max
{︁ 𝑥2

(1 + 𝑥)
,

𝑥2

2(1 + 𝑥)
,
𝑦

2

}︁
=
𝑦

2

and
𝑀(𝑥, 𝑦) = max

{︁
𝑦,
𝑦(1 + 𝑥)

(1 + 𝑦)
,
𝑦(1 + 𝑦

2
)

(1 + 𝑦)

}︁
= 𝑦.

Since
2𝑦

2
⩽ 2𝑦 − 𝑦

(1 + 2𝑦)
,

we have

𝜑(𝐺(𝑓𝑥, 𝑔𝑓𝑥, 𝑓𝑦)) ⩽ 𝐹 (𝜑(𝑀(𝑥, 𝑦)), 𝜓(𝑀(𝑥, 𝑦))).

Hence, all the conditions of Theorem 1 are satisfied. Notice that 0 is
the unique common fixed point of 𝑓 and 𝑔.

Corollary 1. Let ⪯ be an ordered relation in a set 𝑋. Let (𝑋,𝐺)
be a complete 𝐺-metric space and 𝑋 = 𝐴 ∪ 𝐵, where 𝐴 and 𝐵 are
nonempty closed subsets of 𝑋. Let 𝑓 be a continuous self map on 𝑋
that satisfies the following conditions:
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(1) 𝑓𝑥 ⪯ 𝑓 2𝑥, ∀𝑥 ∈ 𝑋.
(2) 𝑓(𝐴) ⊆ 𝐵 and 𝑓(𝐵) ⊆ 𝐴.
(3) There exist two functions 𝜑 ∈ Φ, 𝜓 ∈ Ψ, such that

𝜑(𝐺(𝑓𝑥, 𝑓 2𝑥, 𝑓𝑦)) ⩽ 𝐹 (𝜑(𝑀(𝑥, 𝑦)), 𝜓(𝑀(𝑥, 𝑦))) (14)

holds for all comparative elements 𝑥, 𝑦 ∈ 𝑋, where 𝐹 is a 𝒞-class
function,

𝑀(𝑥, 𝑦) =max
{︁
𝐺(𝑥, 𝑓𝑥, 𝑦),

𝐺(𝑓𝑥, 𝑓𝑥, 𝑦)[1 +𝐺(𝑥, 𝑥, 𝑓𝑦)]

1 +𝐺(𝑥, 𝑓𝑥, 𝑦)
,

𝐺(𝑓𝑦, 𝑓𝑦, 𝑦)[1 +𝐺(𝑓𝑥, 𝑓𝑥, 𝑥)]

1 +𝐺(𝑥, 𝑓𝑥, 𝑦)

}︁
.

Then 𝑓 has a fixed point in 𝐴 ∩𝐵.

Proof. The proof follows from Theorem 1 by taking 𝑔 = 𝑓 . □
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