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RECOVERING THE LAPLACIAN FROM CENTERED
MEANS ON BALLS AND SPHERES OF FIXED RADIUS

Abstract. Various issues related to restrictions on radii in mean-
value formulas are well-known in the theory of harmonic functions.
In particular, using the Brown-Schreiber-Taylor theorem on spec-
tral synthesis for motion-invariant subspaces in 𝐶pR𝑛q, one can
obtain the following strengthening of the classical mean-value theo-
rem for harmonic functions: if a continuous function on R𝑛 satisfies
the mean-value equations for all balls and spheres of a fixed radius
𝑟, then it is harmonic on R𝑛. In connection with this result, the
following problem arises: recover the Laplacian from the deviation
of a function from its average values on balls and spheres of a fixed
radius. The aim of this work is to solve this problem. The article
uses methods of harmonic analysis, as well as the theory of entire
and special functions. The key step in the proof of the main result
is expansion of the Dirac delta function in terms of a system of
radial distributions supported in a fixed ball, biorthogonal to some
system of spherical functions. A similar approach can be used to
invert a number of convolution operators with compactly supported
radial distributions.
Key words: harmonic functions, one-radius theorems, radial dis-
tributions, Fourier-Bessel transform
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1. Introduction. Let 𝑛 > 2 be a fixed natural number, 𝑓 be a con-
tinuous function on the Euclidean space R𝑛, 𝑆𝑟p𝑥q be a sphere in R𝑛 with
center 𝑥 and radius 𝑟, and 𝑑𝜎 be an area element on 𝑆𝑟p𝑥q. The difference

pΩ𝑟𝑓qp𝑥q–
Γp𝑛{2q

2𝜋𝑛{2𝑟𝑛´1

ż

𝑆𝑟p𝑥q

𝑓p𝑦q𝑑𝜎p𝑦q ´ 𝑓p𝑥q
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is called the centered mean of the function 𝑓 on the sphere 𝑆𝑟p𝑥q. The
Laplace operator of a function 𝑓 P 𝐶2pR𝑛q satisfies the Blaschke equality

∆𝑓p𝑥q “ lim
𝑟Ñ0

2𝑛

𝑟2
pΩ𝑟𝑓qp𝑥q (1)

(see, for example, [4], [18, Chap. 2, Sect. 4]). Similarly, if p𝑉𝑟𝑓qp𝑥q is the
centered mean of a function 𝑓 on the ball 𝐵𝑟p𝑥q“t𝑦 P R𝑛 : |𝑦´𝑥| ă 𝑟u, i.e.,

p𝑉𝑟𝑓qp𝑥q “
Γpp𝑛` 2q{2q

𝜋𝑛{2𝑟𝑛

ż

𝐵𝑟p𝑥q

𝑓p𝑦q𝑑𝑦 ´ 𝑓p𝑥q,

then the Privalov formula [17]

∆𝑓p𝑥q “ lim
𝑟Ñ0

2𝑛` 4

𝑟2
p𝑉𝑟𝑓qp𝑥q, 𝑓 P 𝐶2

pR𝑛
q (2)

is valid. Note that for a real analytic function 𝑓 on R𝑛, 𝑥 P R𝑛 and all
sufficiently small 𝑟 ą 0, the following more general expansions, due to
Pizzetti [15], Nicolesco [14] and Poritsky [16] hold:

ż

𝑆𝑟p𝑥q

𝑓p𝑦q𝑑𝜎p𝑦q “ 2𝜋𝑛{2𝑟𝑛´1
8
ÿ

𝑘“0

p∆𝑘𝑓qp𝑥q

𝑘! Γ
`

𝑘 ` 𝑛
2

˘

´𝑟

2

¯2𝑘

,

ż

𝐵𝑟p𝑥q

𝑓p𝑦q𝑑𝑦 “ 𝜋𝑛{2𝑟𝑛
8
ÿ

𝑘“0

p∆𝑘𝑓qp𝑥q

𝑘! Γ
`

𝑘 ` 1` 𝑛
2

˘

´𝑟

2

¯2𝑘

.

Formula (1) (respectively, (2)) allows one to reconstruct ∆𝑓 using an
infinite number of functions Ω𝑟𝑓 (respectively, 𝑉𝑟𝑓). For a fixed 𝑟 ą 0,
the kernel of the operator 𝑓 Ñ

`

Ω𝑟𝑓, 𝑉𝑟𝑓
˘

is invariant under translations
and rotations of the space R𝑛. Such invariant subspaces in 𝐶pR𝑛q can
be characterized by the following Brown-Schreiber-Taylor theorem [5] on
spectral synthesis:

Theorem 1. Every closed translation-invariant rotation-invariant sub-
space 𝐸 in 𝐶pR𝑛q is spanned by the polynomial-exponential functions it
contains, i.e., functions from 𝐸 of the form

𝑓p𝑥q “ 𝑝p𝑥q𝑒𝑖p𝑥1𝜁1`...`𝑥𝑛𝜁𝑛q, 𝑥 “ p𝑥1, . . . ,𝑥𝑛q P R𝑛,

where 𝑝 is a polynomial and 𝜁𝑗 P C, 1 6 𝑗 6 𝑛.
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Using Theorem 1, one can obtain the following strengthening of the
classical mean-value theorem for harmonic functions (see the proof of The-
orem 4.6 in [5] and also [19] for a generalization of the statement).

Theorem 2. Let 𝑟 be a fixed positive number, 𝑓 P 𝐶pR𝑛q, and assume
that

pΩ𝑟𝑓qp𝑥q “ p𝑉𝑟𝑓qp𝑥q “ 0 for all 𝑥 P R𝑛.

Then the function 𝑓 is harmonic in R𝑛.

In connection with Theorem 2, the problem of finding ∆𝑓 from only
two functions Ω𝑟𝑓 and 𝑉𝑟𝑓 arises. The purpose of this article is to solve
this problem. It is closely related to the inversion problems of the classical
Pompeiu transform (see [2, Sect. 3]). For example, in [11] a formula was
found for reconstructing a function 𝑓 P 𝐶1pR𝑛q from the spherical means

ż

𝑆𝑟p𝑥q

𝑓p𝑦q𝑑𝜎p𝑦q,

ż

𝑆𝑟p𝑥q

B𝑓

Bn
p𝑦q𝑑𝜎p𝑦q,

where
B

Bn
means differentiation along the outward normal to 𝑆𝑟p𝑥q. In [1],

the well-known Zalcman problem [26, Sect. 8] about the inversion of the
operator

𝑓 Ñ
´

ż

𝑆𝑟1 p𝑥q

𝑓𝑑𝜎,

ż

𝑆𝑟2 p𝑥q

𝑓𝑑𝜎
¯

, 𝑓 P 𝐶pR𝑛
q

under natural conditions on 𝑟1{𝑟2 was studied (see also [3], [22], where the
case of rank-one Riemannian symmetric spaces of noncompact type was
considered). In paper [23], the problem of finding a function 𝑓 P 𝐶pR𝑛q

by its known integrals
ż

𝑆𝑟p𝑥q

𝑓p𝑦q𝑑𝜎p𝑦q,

ż

𝐵𝑟p𝑥q

𝑓p𝑦q𝑑𝑦

is solved, and an answer is given to a similar question for two-point ho-
mogeneous spaces. All of these problems can be interpreted in terms of
the general deconvolution problem, which has attracted attention of many
authors (see [6], [25] and references therein). We also note that various
questions related to restrictions on radii in mean-value formulas are well-
known in the theory of harmonic functions (see [8], [12], [13, Sect. 3]).
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The formulation of the main result and its discussion is given in Sect. 2
(see Theorem 3 below). Section 3 contains the necessary auxiliary state-
ments. The proof of Theorem 3 is obtained in Sect. 4. Our constructions
are based on the development of the ideas proposed in [21], [25]. For
other methods and results related to recovering from spherical means,
see [1], [11], [24, Part 2, Chap. 3] and the bibliography there.

2. Statement of the main result. In the sequel, as usual, C𝑛 is a
𝑛-dimensional complex space with a Hermitian scalar product

p𝜁, 𝜍q “
𝑛
ÿ

𝑗“1

𝜁𝑗 𝜍𝑗, 𝜁 “ p𝜁1, . . . ,𝜁𝑛q, 𝜍 “ p𝜍1, . . . ,𝜍𝑛q,

𝒟1pR𝑛q and ℰ 1pR𝑛q are the spaces of distributions and compactly sup-
ported distributions on R𝑛, respectively.

The Fourier-Laplace transform of a distribution 𝑇 P ℰ 1pR𝑛q is the entire
function

p𝑇 p𝜁q “ x𝑇 p𝑥q, 𝑒´𝑖p𝜁,𝑥qy, 𝜁 P C𝑛.

In this case, p𝑇 grows on R𝑛 not faster than a polynomial and

xp𝑇 , 𝜓y “ x𝑇, p𝜓 y, 𝜓 P 𝒮pR𝑛
q, (3)

where 𝒮pR𝑛q is the Schwartz space of rapidly decreasing functions from
𝐶8pR𝑛q (see [10, Chap. 7]).

If 𝑇1, 𝑇2 P 𝒟1pR𝑛q and at least one of these distributions has compact
support, then their convolution 𝑇1 ˚ 𝑇2 is a distribution in 𝒟1pR𝑛q, acting
according to the rule

x𝑇1 ˚ 𝑇2,𝜙y “ x𝑇2p𝑦q,x𝑇1p𝑥q,𝜙p𝑥` 𝑦qyy , 𝜙 P 𝒟pR𝑛
q, (4)

where 𝒟pR𝑛q is the space of finite infinitely differentiable functions on R𝑛.
For 𝑇1, 𝑇2 P ℰ 1pR𝑛q, the Borel formula

{𝑇1 ˚ 𝑇2 “ p𝑇1 p𝑇2. (5)

is valid.
Let ℰ 16pR𝑛q be the space of radial (invariant under rotations of the space

R𝑛) distributions in ℰ 1pR𝑛q, 𝑛 > 2. The simplest example of a distribution
in the class ℰ 16pR𝑛q is the Dirac delta function 𝛿 with support at the zero.
We put

I𝜈p𝑧q “
𝐽𝜈p𝑧q

𝑧𝜈
, 𝜈 P C,
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where 𝐽𝜈 is the Bessel function of the first kind of order 𝜈. The spherical
transform r𝑇 of a distribution 𝑇 P ℰ 16pR𝑛q is defined by

r𝑇 p𝑧q “ x𝑇, 𝜙𝑧y, 𝑧 P C,

where 𝜙𝑧 is a spherical function on R𝑛, i.e.,

𝜙𝑧p𝑥q “ 2
𝑛
2
´1Γ

´𝑛

2

¯

I𝑛
2
´1p𝑧|𝑥|q, 𝑥 P R𝑛

(see [9, Chap. 4]). The function 𝜙𝑧 is uniquely determined by the following
conditions:

1) 𝜙𝑧 is radial and 𝜙𝑧p0q “ 1;
2) 𝜙𝑧 satisfies the Helmholtz differential equation

∆p𝜙𝑧q ` 𝑧
2𝜙𝑧 “ 0. (6)

Note that r𝑇 is an even entire function of exponential type and the Fourier
transform p𝑇 is expressed in terms of r𝑇 by

p𝑇 p𝜁q “ r𝑇
`

b

𝜁21 ` . . .` 𝜁
2
𝑛

˘

, 𝜁 P C𝑛. (7)

The set of all zeros of the function r𝑇 that lie in the half-plane Re 𝑧 > 0
and do not belong to the negative part of the imaginary axis are denoted
by 𝒵`pr𝑇 q, i.e.,

𝒵`pr𝑇 q “ t𝑧 P C : r𝑇 p𝑧q “ 0,Re 𝑧 > 0, 𝑖𝑧 R p0,`8qu. (8)

Let 𝜒𝑟 be the indicator of the ball 𝐵𝑟 “ t𝑥 P R𝑛 : |𝑥| ă 𝑟u, 𝜎𝑟 be the
surface delta function concentrated on the sphere |𝑥| “ 𝑟, i.e.,

x𝜎𝑟,𝜙y “

ż

𝑆𝑟

𝜙p𝑥q𝑑𝜎p𝑥q, 𝜙 P 𝐶pR𝑛
q.

Set

𝑋𝑟p𝑥q“
1

2𝜋

´

ln
𝑟

|𝑥|

¯

𝜒𝑟p𝑥q, 𝑌𝑟p𝑥q“𝑋𝑟p𝑥q`
1

4𝜋𝑟2
p|𝑥|2´𝑟2q𝜒𝑟p𝑥q, if 𝑛 “ 2,

𝑋𝑟p𝑥q “
Γp𝑛{2q

2p𝑛´ 2q𝜋𝑛{2

ˆ

1

|𝑥|𝑛´2
´

1

𝑟𝑛´2

˙

𝜒𝑟p𝑥q,
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𝑌𝑟p𝑥q “ 𝑋𝑟p𝑥q `
Γp𝑛{2q

4𝜋𝑛{2𝑟𝑛
p|𝑥|2 ´ 𝑟2q𝜒𝑟p𝑥q,

if 𝑛 > 3,

𝒜𝑟 “ 𝛿 ´
Γp𝑛{2q

2𝜋𝑛{2𝑟𝑛´1
𝜎𝑟, 𝒯𝑟 “ 𝛿 ´

Γpp𝑛` 2q{2q

𝜋𝑛{2𝑟𝑛
𝜒𝑟.

For these distributions, we have (see [24, Part 2, Ch. 3, formula (3.90)]
and equalities (17), (41), (42) below):

r𝒜𝑟p𝑧q “ 𝜗𝑛´2p𝑟𝑧q, r𝑋𝑟p𝑧q “
𝜗𝑛´2p𝑟𝑧q

𝑧2
, r𝒯𝑟p𝑧q “ 𝜗𝑛p𝑟𝑧q, r𝑌𝑟p𝑧q “

𝜗𝑛p𝑟𝑧q

𝑧2
,

(9)
where

𝜗𝑛p𝑧q “ 1´ 2
𝑛
2 Γ

ˆ

𝑛` 2

2

˙

I𝑛
2
p𝑧q. (10)

We need some results about the zeros of 𝜗𝑛p𝑧q obtained in [20]. It
follows from the general facts of the theory of entire functions that 𝜗𝑛p𝑧q
has infinitely many zeros. In this case, all zeros except 𝑧 “ 0 are simple,
and 𝑧 “ 0 is a zero of multiplicity 2. Note also that 𝜗𝑛p𝑧q has no real and
purely imaginary zeros except 𝑧 “ 0. We denote by Υ𝑛 “ t𝑧𝑛,1, 𝑧𝑛,2, . . .u
the sequence of all zeros of the function 𝜗𝑛p𝑧q in the half-plane Re 𝑧 ą 0,
numbered in ascending order of the module (if the modules are equal, then
the numbering is arbitrary). The asymptotic equalities

|𝐽𝑛{2`1p𝑧𝑛,𝑘q| “
|𝑧𝑛,𝑘{2|

𝑛{2

𝜋Γpp𝑛` 2q{2q
`𝑂p|𝑧𝑛,𝑘|

𝑛{2´1
q, 𝑘 Ñ 8, (11)

?
𝜋|𝑧𝑛,𝑘|

p𝑛`1q{2
“ 2p𝑛´1q{2Γpp𝑛` 2q{2q𝑒|Im 𝑧𝑛,𝑘| `𝑂p|𝑧𝑛,𝑘|

p𝑛´1q{2
q, 𝑘 Ñ 8.

(12)
are valid. In addition, for any 𝜀 ą 0,

8
ÿ

𝑘“1

1

|𝑧𝑛,𝑘|1`𝜀
ă `8. (13)

Using the above-listed properties of zeros of the function 𝜗𝑛p𝑧q and
relation (9), one can obtain the corresponding information about the sets
𝒵`p r𝑋𝑟q and 𝒵`pr𝑌𝑟q (see (8)). In particular, all zeros of 𝒵`p r𝑋𝑟q and
𝒵`pr𝑌𝑟q are simple,

𝒵`p r𝑋𝑟q “

!𝑧𝑛´2,1
𝑟

,
𝑧𝑛´2,2
𝑟

, . . .
)

, 𝒵`pr𝑌𝑟q “
!𝑧𝑛,1
𝑟
,
𝑧𝑛,2
𝑟
, . . .

)

, (14)
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and 𝒵`p r𝑋𝑟q X 𝒵`pr𝑌𝑟q “ ∅ (see Lemma 3 below).
For 𝜆 P 𝒵`p r𝑋𝑟q, 𝜇 P 𝒵`pr𝑌𝑟q, we define the functions

𝑋𝜆
𝑟 p𝑥q“

Γp𝑛
2
q𝜒𝑟p𝑥q

4𝜋
𝑛
2
´1𝜆4´𝑛

`

N𝑛
2
´1p𝜆𝑟qI𝑛

2
´1p𝜆|𝑥|q´I𝑛

2
´1p𝜆𝑟qN𝑛

2
´1p𝜆|𝑥|q

˘

´
𝑋𝑟p𝑥q

𝜆2
,

𝑌 𝜇
𝑟 p𝑥q “

𝑛Γp𝑛
2
q𝜒𝑟p𝑥q

4𝜋
𝑛
2
´1𝜇4´𝑛

´

N𝑛
2
p𝜇𝑟qI𝑛

2
´1p𝜇|𝑥|q ´ I𝑛

2
p𝜇𝑟qN𝑛

2
´1p𝜇|𝑥|q`

`
2

𝜋p𝜇𝑟q𝑛

¯

´
𝑌𝑟p𝑥q

𝜇2
,

where N𝜈p𝑧q “ 𝑁𝜈p𝑧q{𝑧
𝜈 , 𝑁𝜈 is the Bessel function of the second kind of

order 𝜈 (the Neumann function).
Let

𝑎p𝑧q “ p𝑧 ` 1qp𝑧 ` 4q, 𝑏p𝑧q “ p𝑧 ´ 1qp𝑧 ´ 4q, (15)

Θ1,𝑟 “ 𝑎p∆q𝑋𝑟, Θ2,𝑟 “ 𝑏p∆q𝑌𝑟. (16)

Then, by virtue of the formula

Č𝑝p∆q𝑓p𝑧q “ 𝑝p´𝑧2q r𝑓p𝑧q p𝑝 is an algebraic polynomialq, (17)

and the equalities in (9), we obtain

rΘ1,𝑟p𝑧q “ 𝑎p´𝑧2q
𝜗𝑛´2p𝑟𝑧q

𝑧2
, rΘ2,𝑟p𝑧q “ 𝑏p´𝑧2q

𝜗𝑛p𝑟𝑧q

𝑧2
, (18)

𝒵`
`

rΘ1,𝑟

˘

“

!𝑧𝑛´2,1
𝑟

,
𝑧𝑛´2,2
𝑟

, . . .
)

Y t1, 2u ,

𝒵`
`

rΘ2,𝑟

˘

“

!𝑧𝑛,1
𝑟
,
𝑧𝑛,2
𝑟
, . . .

)

Y t𝑖, 2𝑖u ,
(19)

and all zeros of rΘ1,𝑟 and rΘ2,𝑟 are simple. In addition,

𝒵`
`

rΘ1,𝑟q X 𝒵`
`

rΘ2,𝑟

˘

“ ∅ (20)

(see Lemma 3 below).
For 𝜆 P 𝒵`

`

rΘ1,𝑟

˘ `

respectively, 𝜇 P 𝒵`
`

rΘ2,𝑟

˘˘

, we put

Θ𝜆
1,𝑟 “ 𝑎p∆q𝑋𝜆

𝑟

`

Θ𝜇
2,𝑟 “ 𝑏p∆q𝑌 𝜇

𝑟

˘

, (21)

if 𝜆 P 𝒵`p r𝑋𝑟q
`

𝜇 P 𝒵`pr𝑌𝑟q
˘

, and

Θ𝜆
1,𝑟 “ 𝑐𝜆p∆q𝑋𝑟

`

Θ𝜇
2,𝑟 “ 𝑑𝜇p∆q𝑌𝑟

˘

, (22)
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if 𝑎p´𝜆2q “ 0
`

𝑏p´𝜇2q “ 0
˘

, where

𝑐𝜆p𝑧q “ ´
𝑎p𝑧q

𝑧 ` 𝜆2

´

𝑑𝜇p𝑧q “ ´
𝑏p𝑧q

𝑧 ` 𝜇2

¯

. (23)

Our main result is

Theorem 3. Let 𝑓 P 𝒟1pR𝑛q, 𝑛 > 2. Then

∆𝑓 “
ÿ

𝜆P𝒵`prΘ1,𝑟q

ÿ

𝜇P𝒵`prΘ2,𝑟q

4𝜆𝜇

p𝜆2 ´ 𝜇2qrΘ
1

1,𝑟p𝜆qrΘ
1

2,𝑟p𝜇q

´

𝑎p∆qp𝑓 ˚𝒜𝑟q ˚Θ𝜇
2,𝑟´

´ 𝑏p∆qp𝑓 ˚ 𝒯𝑟q ˚Θ𝜆
1,𝑟

¯

, (24)

where the series (24) converges unconditionally in the space 𝒟1pR𝑛q.

Using the definition of convolution, it is not difficult to obtain the
equalities

𝑓 ˚𝒜𝑟 “ ´Ω𝑟𝑓, 𝑓 ˚ 𝒯𝑟 “ ´𝑉𝑟𝑓, 𝑓 P 𝐶pR𝑛
q.

Thus, Theorem 3 provides a solution to the problem formulated above
(see (15), (18), (19), (21)–(23)). The key step in the proof of the main
result is the expansion of the Dirac delta function in terms of a system
of radial distributions supported in 𝐵𝑟, biorthogonal to some system of
spherical functions (see the proof of Lemma 7 in Sect. 3 below). A similar
approach can be used to invert a number of convolution operators with
radial distributions in ℰ 1pR𝑛q. Other methods in this direction have been
developed in [1], [3], [11], [24, Part 2, Chap. 3]. However, the constructions
that arise in this case are more cumbersome and less explicit.

3. Auxiliary assertions. First we prove the following simple state-
ment:

Lemma 1. Let 𝑔 : C Ñ C be an even entire function and 𝑔p𝜆q “ 0 for
some 𝜆 P C. Then

ˇ

ˇ

ˇ

ˇ

𝜆𝑔p𝑧q

𝑧2 ´ 𝜆2

ˇ

ˇ

ˇ

ˇ

6 max
|𝜁´𝑧|62

|𝑔p𝜁q|, 𝑧 P C, (25)

where for 𝑧 “ ˘𝜆 the left-hand side in (25) is extended by continuity.

Proof. We have
ˇ

ˇ

ˇ

ˇ

2𝜆𝑔p𝑧q

𝑧2 ´ 𝜆2

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

𝑔p𝑧q

𝑧 ´ 𝜆
´

𝑔p𝑧q

𝑧 ` 𝜆

ˇ

ˇ

ˇ

ˇ

6

ˇ

ˇ

ˇ

ˇ

𝑔p𝑧q

𝑧 ´ 𝜆

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

𝑔p𝑧q

𝑧 ` 𝜆

ˇ

ˇ

ˇ

ˇ

. (26)



104 N. P. Volchkova, Vit. V. Volchkov

Let us estimate the first term in the right-hand side of (26).
If |𝑧 ´ 𝜆| ą 1, then

ˇ

ˇ

ˇ

ˇ

𝑔p𝑧q

𝑧 ´ 𝜆

ˇ

ˇ

ˇ

ˇ

6 |𝑔p𝑧q| 6 max
|𝜁´𝑧|62

|𝑔p𝜁q|. (27)

Assume that |𝑧´𝜆| 6 1. Then, applying the maximum-modulus principle

to the entire function
𝑔p𝜁q

𝜁 ´ 𝜆
, we obtain

ˇ

ˇ

ˇ

ˇ

𝑔p𝑧q

𝑧 ´ 𝜆

ˇ

ˇ

ˇ

ˇ

6 max
|𝜁´𝜆|61

ˇ

ˇ

ˇ

ˇ

𝑔p𝜁q

𝜁 ´ 𝜆

ˇ

ˇ

ˇ

ˇ

“ max
|𝜁´𝜆|“1

|𝑔p𝜁q|.

Bearing in mind that the circle |𝜁´𝜆| “ 1 is contained in the disc |𝜁´𝑧| 6
2, we arrive at the estimate

ˇ

ˇ

ˇ

ˇ

𝑔p𝑧q

𝑧 ´ 𝜆

ˇ

ˇ

ˇ

ˇ

6 max
|𝜁´𝑧|62

|𝑔p𝜁q|, (28)

which is valid for all 𝑧 P C (see (27)).
Similarly,

ˇ

ˇ

ˇ

ˇ

𝑔p𝑧q

𝑧 ` 𝜆

ˇ

ˇ

ˇ

ˇ

6 max
|𝜁´𝑧|62

|𝑔p𝜁q|, 𝑧 P C, (29)

because 𝑔p´𝜆q “ 0. By (28), (29), and (26) the required assertion fol-
lows. l

Let us now give some properties of the functions I𝜈 , which will be
needed later.

Lemma 2. 1) When 𝜈 ą ´1{2, 𝑧 P C, the inequality
ˇ

ˇ

ˇ

2𝜈Γp𝜈 ` 1qI𝜈p𝑧q ´ 1

𝑧2

ˇ

ˇ

ˇ
6 𝑒|Im 𝑧| (30)

takes place.
2) If 𝜈 P R, then

|I𝜈p𝑧q| „
1
?

2𝜋

𝑒|Im 𝑧|

|𝑧|𝜈`
1
2

, Im 𝑧 Ñ 8. (31)

3) Let 𝑧 P Czp´8, 0s. Then

∆pN𝑛
2
´1p𝑧|𝑥|qq ` 𝑧

2N𝑛
2
´1p𝑧|𝑥|q “ 0, (32)
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I𝜈p𝑧qN𝜈´1p𝑧q ´ I𝜈´1p𝑧qN𝜈p𝑧q “
2

𝜋𝑧2𝜈
. (33)

Proof. 1) By the Poisson integral representation [7, Chap. 7, Sect. 7.12,
formula (8)] we have

I𝜈p𝑧q “
21´𝜈

?
𝜋Γp𝜈 ` 1

2
q

1
ż

0

cosp𝑢𝑧qp1´ 𝑢2q𝜈´
1
2𝑑𝑢.

Therefore,

|I𝜈p𝑧q| 6
21´𝜈

?
𝜋Γp𝜈 ` 1

2
q

1
ż

0

𝑒𝑢|Im 𝑧|
p1´ 𝑢2q𝜈´

1
2𝑑𝑢 6

6
21´𝜈

?
𝜋Γp𝜈 ` 1

2
q

1

2
B

ˆ

1

2
, 𝜈 `

1

2

˙

𝑒|Im 𝑧|
“

𝑒|Im 𝑧|

2𝜈Γp𝜈 ` 1q
.

In particular,
ˇ

ˇ

ˇ

sin 𝑧

𝑧

ˇ

ˇ

ˇ
“

´𝜋

2

¯1{2
ˇ

ˇI1{2p𝑧q
ˇ

ˇ 6 𝑒|Im 𝑧|,

ˇ

ˇ

ˇ

cos 𝑧 ´ 1

𝑧2

ˇ

ˇ

ˇ
“

1

2

ˇ

ˇ

ˇ

ˇ

sinp𝑧{2q

𝑧{2

ˇ

ˇ

ˇ

ˇ

2

6
𝑒|Im 𝑧|

2
.

From here, we get
ˇ

ˇ

ˇ

2𝜈Γp𝜈 ` 1qI𝜈p𝑧q ´ 1

𝑧2

ˇ

ˇ

ˇ
“ 2𝜈Γp𝜈 ` 1q

ˇ

ˇ

ˇ

I𝜈p𝑧q ´ I𝜈p0q

𝑧2

ˇ

ˇ

ˇ
“

“
2Γp𝜈 ` 1q
?
𝜋Γp𝜈 ` 1

2
q

ˇ

ˇ

ˇ

1
ż

0

cosp𝑢𝑧q ´ 1

𝑧2
p1´ 𝑢2q𝜈´

1
2𝑑𝑢

ˇ

ˇ

ˇ
6

6
2Γp𝜈 ` 1q
?
𝜋Γp𝜈 ` 1

2
q
𝑒|Im 𝑧|

1
ż

0

p1´ 𝑢2q𝜈´
1
2𝑑𝑢 “ 𝑒|Im 𝑧|,

which is the required result.
2) The asymptotic expansion of Bessel functions [7, Chap. 7, Sect. 7.13.1,

formula (3)] implies the equality

I𝜈p𝑧q“

c

2

𝜋
𝑧´𝜈´

1
2

´

cos
´

𝑧´
𝜋𝜈

2
´
𝜋

4

¯

`𝑂
´𝑒|Im 𝑧|

|𝑧|

¯¯

, 𝑧 Ñ 8,´𝜋 ă arg 𝑧 ă 𝜋.

(34)
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Considering

| cos𝑤| „
𝑒|Im𝑤|

2
, Im𝑤 Ñ 8,

by (34) we obtain (31).
3) The Neumann function 𝑁𝜈p𝑧q satisfies the Bessel differential equa-

tion
𝑧2
𝑑2𝑁𝜈p𝑧q

𝑑𝑧2
` 𝑧

𝑑𝑁𝜈p𝑧q

𝑑𝑧
` p𝑧2 ´ 𝜈2q𝑁𝜈p𝑧q “ 0

(see [7, Chap. 7, Sect. 7.2.1, formula (1)]). Using this equality and the
formula

∆
`

𝑓p|𝑥|q
˘

“ 𝑓2p|𝑥|q `
𝑛´ 1

|𝑥|
𝑓 1p|𝑥|q,

we arrive at (32). The relation (33) is a form of writing the well-known
Lommel-Hankel formula (see, for example, [21, Chap. 7, formula (7.6)]). l

Lemma 3. For any 𝑟 ą 0, the functions r𝑋𝑟 and r𝑌𝑟 do not have common
zeros.

Proof. Assume that r𝑋𝑟p𝜆q “ r𝑌𝑟p𝜆q “ 0. Then, from (9), the equalities

2
𝑛´2
2 Γ

´𝑛

2

¯

I𝑛´2
2
p𝜇q “ 1, 2

𝑛
2 Γ

´𝑛` 2

2

¯

I𝑛
2
p𝜇q “ 1

follow, where 𝜇 “ 𝑟𝜆. Hence, we find

𝜇𝐽𝑛´2
2
p𝜇q “ 𝑛𝐽𝑛

2
p𝜇q.

Using this equality and identity

2𝜈𝐽𝜈p𝑧q “ 𝑧p𝐽𝜈´1p𝑧q ` 𝐽𝜈`1p𝑧qq

(see [7, Chap. 7, Sect. 7.2.8, formula (56)]), we have 𝜇𝐽𝑛`2
2
p𝜇q “ 0. Now,

taking into account that all zeros of the function 𝐽𝑛`2
2

are real (see [7,
Chap. 7, Sect. 7.9]), we obtain 𝜆 “ 𝜇{𝑟 P R. This contradicts the proper-
ties of the zeros of the function 𝜗𝑛 given in Sect. 2. l

Lemma 4. The equalities

∆p𝑋𝜆
𝑟 q ` 𝜆

2𝑋𝜆
𝑟 “ ´𝑋𝑟, 𝜆 P 𝒵`p r𝑋𝑟q, (35)

∆p𝑌 𝜇
𝑟 q ` 𝜇

2𝑌 𝜇
𝑟 “ ´𝑌𝑟, 𝜇 P 𝒵`pr𝑌𝑟q (36)

hold.
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Proof. Assume that 𝜇 P Czp´8, 0s. For any function 𝜙 P 𝒟pR𝑛q, we have
@

p∆` 𝜇2
qpN𝑛

2
´1p𝜇|𝑥|q𝜒𝑟p𝑥qq, 𝜙

D

“
@

N𝑛
2
´1p𝜇|𝑥|q𝜒𝑟p𝑥q, p∆` 𝜇2

q𝜙
D

“

“ lim
𝜀Ñ`0

ż

𝜀6|𝑥|6𝑟

N𝑛
2
´1p𝜇|𝑥|q∆𝜙p𝑥q𝑑𝑥` 𝜇

2

ż

|𝑥|6𝑟

N𝑛
2
´1p𝜇|𝑥|q𝜙p𝑥q𝑑𝑥.

We apply Green’s formula
ż

𝐺

p𝑣∆𝑢´ 𝑢∆𝑣q𝑑𝑥 “

ż

B𝐺

´

𝑣
B𝑢

Bn
´ 𝑢

B𝑣

Bn

¯

𝑑𝜎, (37)

to the integral under the sign of the limit, where
B

Bn
is the differentiation

operator in the direction of the external normal. Then
ż

𝜀6|𝑥|6𝑟

N𝑛
2
´1p𝜇|𝑥|q∆𝜙p𝑥q𝑑𝑥 “

ż

𝜀6|𝑥|6𝑟

𝜙p𝑥q∆pN𝑛
2
´1p𝜇|𝑥|qq𝑑𝑥`

`

ż

|𝑥|“𝑟

´

N𝑛
2
´1p𝜇|𝑥|q

B𝜙

Bn
p𝑥q ´ 𝜙p𝑥q

B

Bn

`

N𝑛
2
´1p𝜇|𝑥|q

˘

¯

𝑑𝜎p𝑥q´

´

ż

|𝑥|“𝜀

´

N𝑛
2
´1p𝜇|𝑥|q

B𝜙

Bn
p𝑥q ´ 𝜙p𝑥q

B

Bn

`

N𝑛
2
´1p𝜇|𝑥|q

˘

¯

𝑑𝜎p𝑥q.

Now, using (32), (37), and formulas

N1
𝜈p𝑧q “ ´𝑧N𝜈`1p𝑧q,

B

Bn

`

𝑓p|𝑥|q
˘

“ 𝑓 1p|𝑥|q, n “
𝑥

|𝑥|

(see [7, Chap. 7, Sect. 7.2.8]), we find
ż

𝜀6|𝑥|6𝑟

N𝑛
2
´1p𝜇|𝑥|q∆𝜙p𝑥q𝑑𝑥 “ ´𝜇

2

ż

𝜀6|𝑥|6𝑟

N𝑛
2
´1p𝜇|𝑥|q𝜙p𝑥q𝑑𝑥`

`N𝑛
2
´1p𝜇𝑟qx∆𝜒𝑟, 𝜙y ` 𝜇

2𝑟N𝑛
2
p𝜇𝑟qx𝜎𝑟, 𝜙y ´N𝑛

2
´1p𝜇𝜀q

ż

|𝑥|6𝜀

∆𝜙p𝑥q𝑑𝑥´

´𝜇2𝜀N𝑛
2
p𝜇𝜀q

ż

|𝑥|“𝜀

𝜙p𝑥q𝑑𝜎p𝑥q. (38)
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Since

lim
𝜀Ñ`0

p𝜇𝜀q𝑛N𝑛
2
p𝜇𝜀q “ ´

2𝑛{2Γp𝑛{2q

𝜋

(see [7, Chap. 7, Sect. 7.2, formulas (2), (4), (32)]), equality (38) and the
mean-value theorem for the integral show that

lim
𝜀Ñ`0

ż

𝜀6|𝑥|6𝑟

N𝑛
2
´1p𝜇|𝑥|q∆𝜙p𝑥q𝑑𝑥 “ ´𝜇

2

ż

|𝑥|6𝑟

N𝑛
2
´1p𝜇|𝑥|q𝜙p𝑥q𝑑𝑥`

`N𝑛
2
´1p𝜇𝑟qx∆𝜒𝑟, 𝜙y ` 𝜇

2𝑟N𝑛
2
p𝜇𝑟qx𝜎𝑟, 𝜙y ` 2𝑛{2`1𝜋𝑛{2´1𝜇2´𝑛𝜙p0q.

Thus,

p∆` 𝜇2
q
`

N𝑛
2
´1p𝜇|𝑥|q𝜒𝑟p𝑥q

˘

“ N𝑛
2
´1p𝜇𝑟q∆𝜒𝑟`

`𝜇2𝑟N𝑛
2
p𝜇𝑟q𝜎𝑟 ` 2𝑛{2`1𝜋𝑛{2´1𝜇2´𝑛𝛿, 𝜇 P Czp´8, 0s.

Hence,

p∆` 𝜇2
q
`

pN𝑛
2
´1p𝜇|𝑥|q ´N𝑛

2
´1p𝜇𝑟qq𝜒𝑟p𝑥q

˘

“ 𝜇2𝑟N𝑛
2
p𝜇𝑟q𝜎𝑟´

´𝜇2N𝑛
2
´1p𝜇𝑟q𝜒𝑟 ` 2𝑛{2`1𝜋𝑛{2´1𝜇2´𝑛𝛿, 𝜇 P Czp´8, 0s. (39)

By the similar reasoning one can verify the correctness of the equalities

p∆` 𝜇2
q
`

pI𝑛
2
´1p𝜇|𝑥|q ´ I𝑛

2
´1p𝜇𝑟qq𝜒𝑟p𝑥q

˘

“

“ 𝜇2𝑟I𝑛
2
p𝜇𝑟q𝜎𝑟 ´ 𝜇

2I𝑛
2
´1p𝜇𝑟q𝜒𝑟, 𝜇 P C, (40)

p∆` 𝜇2
q𝑌𝑟 “ ´𝒯𝑟 ` 𝜇

2𝑌𝑟 “ 𝜇2𝑌𝑟 ´ 𝛿 `
Γpp𝑛` 2q{2q

𝜋𝑛{2𝑟𝑛
𝜒𝑟. (41)

Relations (39), (40), and (33) imply the representation

p∆` 𝜇2
q

ˆ

´

N𝑛
2
p𝜇𝑟qI𝑛

2
´1p𝜇|𝑥|q ´ I𝑛

2
p𝜇𝑟qN𝑛

2
´1p𝜇|𝑥|q `

2

𝜋p𝜇𝑟q𝑛

¯

𝜒𝑟p𝑥q

˙

“

“
2𝜇2´𝑛

𝜋𝑟𝑛
𝜒𝑟 ´ 2𝑛{2`1𝜋𝑛{2´1𝜇2´𝑛I𝑛

2
p𝜇𝑟q𝛿.

Therefore, by virtue of (41) and (9), we have

p∆` 𝜇2
q

ˆ

´

N𝑛
2
p𝜇𝑟qI𝑛

2
´1p𝜇|𝑥|q ´ I𝑛

2
p𝜇𝑟qN𝑛

2
´1p𝜇|𝑥|q `

2

𝜋p𝜇𝑟q𝑛

¯

𝜒𝑟p𝑥q´
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´
2𝜋

𝑛
2
´1𝜇2´𝑛𝑌𝑟

Γpp𝑛` 2q{2q

˙

“
2𝜋

𝑛
2
´1𝜇2´𝑛

Γpp𝑛` 2q{2q
𝜗𝑛p𝜇𝑟q𝛿 ´

2𝜋
𝑛
2
´1𝜇4´𝑛𝑌𝑟

Γpp𝑛` 2q{2q
, 𝜇 P Czp´8, 0s.

For 𝜆 P 𝒵`prΦ𝑟q, this equality can be written as (36).
Similarly, we find

p∆` 𝜆2q𝑋𝑟 “ ´𝒜𝑟 ` 𝜆
2𝑋𝑟 “ 𝜆2𝑋𝑟 ´ 𝛿 `

Γp𝑛{2q

2𝜋𝑛{2𝑟𝑛´1
𝜎𝑟, (42)

p∆` 𝜆2q
``

N𝑛
2
´1p𝜆𝑟qI𝑛

2
´1p𝜆|𝑥|q ´ I𝑛

2
´1p𝜆𝑟qN𝑛

2
´1p𝜆|𝑥|q

˘

𝜒𝑟p𝑥q
˘

“

“
2𝑟1´𝑛𝜆2´𝑛

𝜋
𝜎𝑟 ´ 2𝑛{2`1𝜋𝑛{2´1𝜆2´𝑛I𝑛

2
´1p𝜆𝑟q𝛿,

p∆` 𝜆2q

ˆ

`

N𝑛
2
´1p𝜆𝑟qI𝑛

2
´1p𝜆|𝑥|q ´ I𝑛

2
´1p𝜆𝑟qN𝑛

2
´1p𝜆|𝑥|q

˘

𝜒𝑟p𝑥q´

´
4𝜋

𝑛
2
´1𝜆2´𝑛𝑋𝑟

Γp𝑛{2q

˙

“
4𝜋

𝑛
2
´1𝜆2´𝑛

Γp𝑛{2q
𝜗𝑛´2p𝜆𝑟q𝛿´

4𝜋
𝑛
2
´1𝜆4´𝑛𝑋𝑟

Γp𝑛{2q
, 𝜆 P Czp´8, 0s.

For 𝜆 P 𝒵`p r𝑋𝑟q, this equality is equivalent to (35). l

Remark 1. From (17) and the injectivity of the spherical transform it
follows that for distributions 𝑈, 𝑇 P ℰ 16pR𝑛q and 𝜆 P 𝒵`pr𝑇 q:

∆𝑈 ` 𝜆2𝑈 “ ´𝑇 ô r𝑈p𝑧q “
r𝑇 p𝑧q

𝑧2 ´ 𝜆2
. (43)

So, relations (35) and (36) imply the equalities

Ă𝑋𝜆
𝑟 p𝑧q “

r𝑋𝑟p𝑧q

𝑧2 ´ 𝜆2
, 𝜆 P 𝒵`p r𝑋𝑟q, Ă𝑌 𝜇

𝑟 p𝑧q “
r𝑌𝑟p𝑧q

𝑧2 ´ 𝜇2
, 𝜇 P 𝒵`pr𝑌𝑟q. (44)

Lemma 5. Let 𝜆 P 𝒵`
`

rΘ1,𝑟

˘

, 𝜇 P 𝒵`
`

rΘ2,𝑟

˘

. Then

ĄΘ𝜆
1,𝑟p𝑧q “

rΘ1,𝑟p𝑧q

𝑧2 ´ 𝜆2
, ĄΘ𝜇

2,𝑟p𝑧q “
rΘ2,𝑟p𝑧q

𝑧2 ´ 𝜇2
. (45)

Proof. Formulas in (45) easily follow from (17) and Remark 1. Indeed, if
𝜆 P 𝒵`

`

r𝑋𝑟

˘

, then, due to (21), (17), (44), and (18), we have

ĄΘ𝜆
1,𝑟p𝑧q “ 𝑎p´𝑧2qĂ𝑋𝜆

𝑟 p𝑧q “
𝑎p´𝑧2q r𝑋𝑟p𝑧q

𝑧2 ´ 𝜆2
“

rΘ1,𝑟p𝑧q

𝑧2 ´ 𝜆2
.
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Similarly, if 𝑎p´𝜆2q “ 0, then

ĄΘ𝜆
1,𝑟p𝑧q “ 𝑐𝜆p´𝑧

2
q r𝑋𝑟p𝑧q “

𝑎p´𝑧2q r𝑋𝑟p𝑧q

𝑧2 ´ 𝜆2
“

rΘ1,𝑟p𝑧q

𝑧2 ´ 𝜆2

(see (22), (23), (17), and (18)). The second equality in (45) is proved in
exactly the same way. l

Lemma 6. For any 𝑟 ą 0,

ÿ

𝜆P𝒵`prΘ1,𝑟q

1

|rΘ
1

1,𝑟p𝜆q|
ă `8,

ÿ

𝜇P𝒵`prΘ2,𝑟q

1

|rΘ
1

2,𝑟p𝜇q|
ă `8. (46)

Proof. From (10) and formula

I1𝜈p𝑧q “ ´𝑧I𝜈`1p𝑧q

(see [7, Chap. 7, Sect. 7.2.8]) it follows that

𝜗1𝑛p𝑧q “ 2𝑛{2Γpp𝑛` 2q{2q𝑧I𝑛{2`1p𝑧q. (47)

Using (18) and (47), we find

rΘ
1

2,𝑟p𝑧q “ 2𝑛{2Γpp𝑛` 2q{2q𝑟2𝑧´1𝑏p´𝑧2qI𝑛{2`1p𝑟𝑧q´

´2𝜗𝑛p𝑟𝑧q
`

𝑧´1𝑏1p´𝑧2q ` 𝑧´3𝑏p´𝑧2q
˘

.

Now, from (14) we have

ÿ

𝜇P𝒵`pr𝑌𝑟q

1

|rΘ
1

2,𝑟p𝜇q|
“

8
ÿ

𝑘“1

|𝑧𝑛,𝑘|

2𝑛{2Γpp𝑛` 2q{2q𝑟3|𝑏p´𝑧2𝑛,𝑘{𝑟
2q||I𝑛

2
`1p𝑧𝑛,𝑘q|

.

This series is comparable with the convergent series

8
ÿ

𝑘“1

1

|𝑧𝑛,𝑘|2

(see (11), (13) and (15)). Hence, we obtain the convergence of the sec-
ond series in (46). The convergence of the first series in (46) is proved
similarly. l
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Lemma 7. Let

Ψ𝜆
1,𝑟 “

2𝜆

rΘ
1

1,𝑟p𝜆q
Θ𝜆

1,𝑟, 𝜆 P 𝒵`
`

rΘ1,𝑟

˘

, Ψ𝜇
2,𝑟 “

2𝜇

rΘ
1

2,𝑟p𝜇q
Θ𝜇

2,𝑟, 𝜇 P 𝒵`
`

rΘ2,𝑟

˘

.

(48)
Then

ÿ

𝜆P𝒵`prΘ1,𝑟q

Ψ𝜆
1,𝑟 “

ÿ

𝜇P𝒵`prΘ2,𝑟q

Ψ𝜇
2,𝑟 “ 𝛿, (49)

where the series in (49) converge unconditionally in the space 𝒟1pR𝑛q.

Proof. For an arbitrary function 𝜙 P 𝒟pR𝑛q, we define the function 𝜓 P
𝒮pR𝑛q by

𝜓p𝑦q “
1

p2𝜋q𝑛

ż

R𝑛

𝜙p𝑥q𝑒𝑖p𝑥,𝑦q𝑑𝑥, 𝑦 P R𝑛.

Then (see (3), (7), and (45))

@

Ψ𝜆
1,𝑟,𝜙

D

“
@

Ψ𝜆
1,𝑟,

p𝜓
D

“
@

yΨ𝜆
1,𝑟,𝜓

D

“

“

ż

R𝑛

𝜓p𝑥qĄΨ𝜆
1,𝑟p|𝑥|q𝑑𝑥 “

2

rΘ
1

1,𝑟p𝜆q

ż

R𝑛

𝜓p𝑥q
𝜆rΘ1,𝑟p|𝑥|q

|𝑥|2 ´ 𝜆2
𝑑𝑥.

Using this representation and Lemma 1, we get

ˇ

ˇxΨ𝜆
1,𝑟,𝜙y

ˇ

ˇ 6
2

ˇ

ˇrΘ
1

1,𝑟p𝜆q
ˇ

ˇ

ż

R𝑛

|𝜓p𝑥q| max
|𝜁´|𝑥||62

ˇ

ˇrΘ1,𝑟p𝜁q
ˇ

ˇ𝑑𝑥.

From (18), (9) and (30) we have

max
|𝜁´|𝑥||62

ˇ

ˇrΘ1,𝑟p𝜁q
ˇ

ˇ “ 𝑟2 max
|𝜁´|𝑥||62

ˇ

ˇ𝑎p´𝜁2q
ˇ

ˇ𝑒𝑟|Im𝜁| 6 𝑟2 𝑒2𝑟 max
|𝜁´|𝑥||62

ˇ

ˇ𝑎p´𝜁2q
ˇ

ˇ.

Therefore,

ˇ

ˇxΨ𝜆
1,𝑟,𝜙y

ˇ

ˇ 6
2𝑟2 𝑒2𝑟
ˇ

ˇrΘ
1

1,𝑟p𝜆q
ˇ

ˇ

ż

R𝑛

|𝜓p𝑥q| max
|𝜁´|𝑥||62

ˇ

ˇ𝑎p´𝜁2q
ˇ

ˇ𝑑𝑥. (50)

This inequality and Lemma 6 show that the first series in (49) converges
unconditionally in the space 𝒟1pR𝑛q to some distribution 𝑓 supported in
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𝐵𝑟. By Lemma 5, the spherical transform of this distribution satisfies the
equality

r𝑓p𝑧q “
ÿ

𝜆P𝒵`prΘ1,𝑟q

ĄΨ𝜆
1,𝑟p𝑧q “

ÿ

𝜆P𝒵`prΘ1,𝑟q

2𝜆

rΘ
1

1,𝑟p𝜆q

rΘ1,𝑟p𝑧q

𝑧2 ´ 𝜆2
. (51)

In this case, if 𝜉 P 𝒵`prΘ1,𝑟q, then

r𝑓p𝜉q “
2𝜉

rΘ
1

1,𝑟p𝜉q
lim
𝑧Ñ𝜉

rΘ1,𝑟p𝑧q

𝑧2 ´ 𝜉2
“ 1. (52)

Next, since r𝑓p𝑧q´1 and rΘ1,𝑟p𝑧q are even entire functions of the exponential
type, then, by virtue of (52) and the simplicity of the zeros of rΘ1,𝑟, their
ratio

𝐻p𝑧q “
r𝑓p𝑧q ´ 1

rΘ1,𝑟p𝑧q

is an entire function of at most the first order. In view of equality (12),
there exists 𝑅 ą 0, such that |arg 𝜆| ă 𝜋{12 for 𝜆 P 𝒵`prΘ1,𝑟q, |𝜆| > 𝑅.
Therefore, for Im 𝑧 “ ˘Re 𝑧, |𝑧| ą 𝑅, the function 𝐻 is evaluated as
follows:

|𝐻p𝑧q| 6
| r𝑓p𝑧q|

|rΘ1,𝑟p𝑧q|
`

1

|rΘ1,𝑟p𝑧q|
6

6
ÿ

𝜆P𝒵`prΘ1,𝑟q

1
ˇ

ˇrΘ
1

1,𝑟p𝜆q
ˇ

ˇ

´ 1

|𝑧 ´ 𝜆|
`

1

|𝑧 ` 𝜆|

¯

`
1

|rΘ1,𝑟p𝑧q|
6

6
ÿ

𝜆P𝒵`p rΘ1,𝑟q

|𝜆|ă𝑅

1
ˇ

ˇrΘ
1

1,𝑟p𝜆q
ˇ

ˇ

´ 1

|𝑧 ´ 𝜆|
`

1

|𝑧 ` 𝜆|

¯

`
4

|𝑧|

ÿ

𝜆P𝒵`p rΘ1,𝑟q

|𝜆|>𝑅

1
ˇ

ˇrΘ
1

1,𝑟p𝜆q
ˇ

ˇ

`
1

|rΘ1,𝑟p𝑧q|
.

It can be seen from this estimate and relations (46) and (31) that

lim
𝑧Ñ8

Im 𝑧“˘Re 𝑧

𝐻p𝑧q “ 0. (53)

Then, according to the Phragmén-Lindel :of principle, 𝐻 is bounded on
C. Now it follows from (53) and Liouville’s theorem that 𝐻 “ 0. Hence
r𝑓 “ 1, i.e., 𝑓 “ 𝛿. Similarly, we obtain that the second series in (49)
converges unconditionally in the space 𝒟1pR𝑛q to the delta function 𝛿.
Thus, Lemma 7 is proved. l
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Lemma 8. Let 𝜆 P 𝒵`prΘ1,𝑟q, 𝜇 P 𝒵`prΘ2,𝑟q. Then

p𝜆2 ´ 𝜇2
qΨ𝜆

1,𝑟 ˚Ψ𝜇
2,𝑟 “

4𝜆𝜇

rΘ
1

1,𝑟p𝜆qrΘ
1

2,𝑟p𝜇q

`

Θ2,𝑟 ˚Θ𝜆
1,𝑟 ´Θ1,𝑟 ˚Θ𝜇

2,𝑟

˘

. (54)

Proof. By (45), (43) and (48) we have

p∆` 𝜆2q
`

Ψ𝜆
1,𝑟

˘

“ ´
2𝜆

rΘ
1

1,𝑟p𝜆q
Θ1,𝑟, (55)

p∆` 𝜇2
q
`

Ψ𝜇
2,𝑟

˘

“ ´
2𝜇

rΘ
1

2,𝑟p𝜇q
Θ2,𝑟. (56)

From (55), (48), and the permutation of the differentiation operator with
convolution, we obtain

p∆` 𝜆2q
`

Ψ𝜆
1,𝑟 ˚Ψ𝜇

2,𝑟

˘

“
´4𝜆𝜇

rΘ
1

1,𝑟p𝜆qrΘ
1

2,𝑟p𝜇q
Θ1,𝑟 ˚Θ𝜇

2,𝑟.

Similarly, it follows from (56) that

´p∆` 𝜇2
q
`

Ψ𝜆
1,𝑟 ˚Ψ𝜇

2,𝑟

˘

“
4𝜆𝜇

rΘ
1

1,𝑟p𝜆qrΘ
1

2,𝑟p𝜇q
Θ2,𝑟 ˚Θ𝜆

1,𝑟.

Adding the last two equalities, we arrive at relation (54). l

4. Proof of Theorem 3.
We claim that

ÿ

𝜆P𝒵`prΘ1,𝑟q

ÿ

𝜇P𝒵`prΘ2,𝑟q

Ψ𝜆
1,𝑟 ˚Ψ𝜇

2,𝑟 “ 𝛿, (57)

where the series in (57) converges unconditionally in the space 𝒟1pR𝑛q.
Let 𝜙 P 𝒟pR𝑛q, 𝜓 P 𝒮pR𝑛q, and 𝜙 “ p𝜓. For 𝜆 P 𝒵`prΘ1,𝑟q, 𝜇 P 𝒵`prΘ2,𝑟q,
we have (see (5) and the proof of estimate (50)):

ˇ

ˇ

@

Ψ𝜆
1,𝑟 ˚Ψ𝜇

2,𝑟,𝜙
D
ˇ

ˇ “
ˇ

ˇ

@

Ψ𝜆
1,𝑟 ˚Ψ𝜇

2,𝑟,
p𝜓
D
ˇ

ˇ “
ˇ

ˇ

@

yΨ𝜆
1,𝑟

yΨ𝜇
2,𝑟,𝜓

D
ˇ

ˇ “

“

ˇ

ˇ

ˇ

ż

R𝑛

𝜓p𝑥qĄΨ𝜆
1,𝑟p|𝑥|q

ĄΨ𝜇
2,𝑟p|𝑥|q𝑑𝑥

ˇ

ˇ

ˇ
“
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“
4

ˇ

ˇrΘ
1

1,𝑟p𝜆qrΘ
1

2,𝑟p𝜇q
ˇ

ˇ

ˇ

ˇ

ˇ

ż

R𝑛

𝜓p𝑥q
𝜆rΘ1,𝑟p|𝑥|q

|𝑥|2 ´ 𝜆2
𝜇rΘ2,𝑟p|𝑥|q

|𝑥|2 ´ 𝜇2
𝑑𝑥

ˇ

ˇ

ˇ
6

6
4𝑟4𝑒4𝑟

ˇ

ˇrΘ
1

1,𝑟p𝜆qrΘ
1

2,𝑟p𝜇q
ˇ

ˇ

ż

R𝑛

|𝜓p𝑥q| max
|𝜁´|𝑥||62

ˇ

ˇ𝑎p´𝜁2q
ˇ

ˇ max
|𝜁´|𝑥||62

ˇ

ˇ𝑏p´𝜁2q
ˇ

ˇ𝑑𝑥.

Hence, from (46) it follows that
ÿ

𝜆P𝒵`prΘ1,𝑟q

´

ÿ

𝜇P𝒵`prΘ2,𝑟q

ˇ

ˇ

@

Ψ𝜆
1,𝑟 ˚Ψ𝜇

2,𝑟,𝜙
D
ˇ

ˇ

¯

ă 8.

Therefore, the series in (57) converges unconditionally in the space 𝒟1pR𝑛q.
In addition (see (4), (49)),

ÿ

𝜆P𝒵`prΘ1,𝑟q

ÿ

𝜇P𝒵`prΘ2,𝑟q

xΨ𝜆
1,𝑟 ˚Ψ𝜇

2,𝑟,𝜙
D

“

“
ÿ

𝜆P𝒵`prΘ1,𝑟q

´

ÿ

𝜇P𝒵`prΘ2,𝑟q

@

Ψ𝜇
2,𝑟p𝑦q, xΨ

𝜆
1,𝑟p𝑥q,𝜙p𝑥` 𝑦qy

D

¯

“

“
ÿ

𝜆P𝒵`prΘ1,𝑟q

xΨ𝜆
1,𝑟p𝑥q, 𝜙p𝑥qy “ 𝜙p0q,

which proves (57).
Convolving both parts of (57) with ∆𝑓 and taking into account the

separate continuity of the convolution of 𝑓 P 𝒟1pR𝑛q with 𝑔 P ℰ 1pR𝑛q, (54),
and (20), we find

∆𝑓 “
ÿ

𝜆P𝒵`prΘ1,𝑟q

ÿ

𝜇P𝒵`prΘ2,𝑟q

4𝜆𝜇

p𝜆2 ´ 𝜇2qrΘ
1

1,𝑟p𝜆qrΘ
1

2,𝑟p𝜇q

`

∆𝑓 ˚Θ2,𝑟 ˚Θ𝜆
1,𝑟´

´∆𝑓 ˚Θ1,𝑟 ˚Θ𝜇
2,𝑟

˘

. (58)

Finally, using (58), (16), (41), (42) and the commutativity of the convolu-
tion operator with the differentiation operator, we arrive at formula (24).
Thus, Theorem 3 is proved. l
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de Pompéiu locale dans l’espace hyperbolique quaternique - Cas des deux
boules. J. Complex Variables, 2000, vol. 43, pp. 29–57.
DOI: https://doi.org/10.1080/17476930008815300

[4] Blaschke W. Ein Mittelwersatz und eine kennzeichnende Eigenschaft des
logaritmischen Potentials. Ber. Ver. S :achs Akad. Wiss. Leipzig, 1916,
vol. 68, pp. 3–7.

[5] Brown L., Schreiber B. M., Taylor B.A. Spectral synthesis and the Pompeiu
problem. Ann. Inst. Fourier, Grenoble, 1973, vol. 23, no. 3, pp. 125–154.

[6] Casey S.D., Walnut D. F. Systems of convolution equations, deconvolution,
Shannon sampling, and the wavelet and Gabor transforms. Siam Review,
1994, vol. 36, no. 4, pp. 537–577.
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