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1. Introduction and Preliminary Results. Classical orthogo-
nal polynomials (Hermite, Laguerre, Bessel, and Jacobi) are characterized
by several properties: they satisfy Hahn’s property (that the sequence of
monic derivatives of the polynomial is again orthogonal (see [2], [11], [20],
[22]); they are characterized as the polynomial eigenfunctions of a second-
order homogeneous linear differential (or difference) hypergeometric oper-
ator with polynomial coefficients [6], [21], [22]; their corresponding linear
forms satisfy a distribution equation of Pearson type (see [15], [19], [21]);
they satisfy a first structure relation (the Al-Salam and Chihara prop-
erty [2]) and can be characterized by the so-called Rodrigues formula (see,
for instance, [11], [13]).

Another characterization was established by J. L. Geronimus in [15];
in particular, he proved that a classical sequence of monic orthogonal poly-
nomials {𝑃𝑛(𝑥)}𝑛⩾0 can be characterized by the fact that
𝑃𝑛(𝑥) = 𝑄𝑛(𝑥) + 𝑎𝑛𝑄𝑛−1(𝑥) + 𝑏𝑛𝑄𝑛−2(𝑥), where 𝑄𝑛(𝑥) = 1

𝑛+1
𝑃 ′
𝑛+1(𝑥).

This is the so called second structure relation for classical orthogonal poly-
nomials (see also [20], [21], [23]).

In the recent years, many authors (see [7], [8], [9], [10], [17], [24]) have
started to study Dunkl-classical orthogonal polynomials, as analogues of
the Hahn definition of 𝐷-classical orthogonal polynomials [18]. Symmetric
case was studied for the first time by Y. Ben Cheikh and his coworker [4];
in particular, they proved that the only symmetric Dunkl-classical or-
thogonal polynomials are the generalized Hermite polynomials and the

© Petrozavodsk State University, 2023

http://creativecommons.org/licenses/by/4.0/


The Dunkl-classical orthogonal polynomials 87

generalized Gegenbauer polynomials. Later on, M. Sghaier [24] character-
ized the symmetric Dunkl-classical forms by a distributional equation of
the Pearson type and he showed that the corresponding polynomials can
be characterized by a second-order differential-difference equation in the
space of polynomials. Another characterization called the first structure
relation was established by L. Khériji et al [5].

Non-symmetric Dunkl-classical orthogonal polynomials have been stud-
ied in [7], [8], [9], [24]. In particular in [9] the authors showed that the
unique non-symmetric Dunkl-classical linear form for 𝜇 ̸= 0 and 𝜇 > 1

2
is,

up to a dilation, the perturbed generalized Gegenbauer linear form

𝛿1 −
2𝛼

1 + 2𝜇+ 2𝛼
(𝑥− 1)−1𝒢(𝛼, 𝜇− 1

2
).

where 𝑛 + 𝛼 ̸= 0, 2𝜇 + 2𝛼 + 2𝑛 + 1 ̸= 0, 𝑛 ⩾ 0 and 𝒢(𝛼, 𝜇 − 1
2
) is the

generalized Gegenbauer form [1], [3].
The aim of this contribution is to give a new characterization of Dunkl-

classical orthogonal polynomials.
We begin by reviewing some preliminary results needed for the sequel.

Let 𝒫 be the vector space of polynomials with coefficients in C and let
𝒫 ′ be its dual. The action of 𝑢 ∈ 𝒫 ′ on 𝑓 ∈ 𝒫 is denoted by ⟨𝑢, 𝑓⟩. In
particular, we denote by (𝑢)𝑛 = ⟨𝑢, 𝑥𝑛⟩, 𝑛 ⩾ 0, the moments of 𝑢.

Let us define the following operations on 𝒫 ′ [22]:
The left-multiplication of a linear form by a polynomial

⟨𝑔𝑢, 𝑓⟩ = ⟨𝑢, 𝑔𝑓⟩, 𝑓, 𝑔 ∈ 𝒫 , 𝑢 ∈ 𝒫 ′.

The dilation of a linear form

⟨ℎ𝑎𝑢, 𝑓⟩ = ⟨𝑢, ℎ𝑎𝑓⟩ , 𝑓 ∈ 𝒫 , 𝑢 ∈ 𝒫 ′, 𝑎 ∈ C ∖ {0},

where
ℎ𝑎𝑓(𝑥) = 𝑓(𝑎𝑥), 𝑓 ∈ 𝒫 , 𝑎 ∈ C ∖ {0}.

The derivative of a linear form 𝑢 is the linear form 𝐷𝑢, such that

⟨𝐷𝑢, 𝑓⟩ = −⟨𝑢, 𝑓 ′⟩ , 𝑓 ∈ 𝒫 , 𝑢 ∈ 𝒫 ′.

Let {𝑃𝑛}𝑛⩾0 be a sequence of monic polynomials with deg𝑃𝑛 = 𝑛, 𝑛 ⩾ 0,
and let {𝑢𝑛}𝑛⩾0 be its dual sequence, 𝑢𝑛∈𝒫 ′, defined by ⟨𝑢𝑛, 𝑃𝑚⟩ = 𝛿𝑛,𝑚,
𝑛, 𝑚 ⩾ 0.
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The form 𝑢 is called regular if there exists a sequence of polynomials
{𝑃𝑛}𝑛⩾0, such that

⟨𝑢, 𝑃𝑛𝑃𝑚⟩ = 𝑟𝑛𝛿𝑛,𝑚, 𝑛, 𝑚 ⩾ 0, 𝑟𝑛 ̸= 0, 𝑛 ⩾ 0.

The sequence {𝑃𝑛}𝑛⩾0 is then called orthogonal with respect to 𝑢. In this
case, we have

𝑢𝑛 = 𝑟−1
𝑛 𝑃𝑛𝑢0, 𝑛 ⩾ 0. (1)

Let us recall the following result [20]:

Lemma 1. Let {𝑃𝑛}𝑛⩾0 be a monic orthogonal polynomial sequence
(MOPS, in short) with respect to 𝑢 and let {𝑢𝑛}𝑛⩾0 be its dual sequence.
If 𝑣 is an element of 𝒫 ′, then it can be expressed as

𝑣 =
∞∑︁
𝑛=0

𝛼𝑛𝑢𝑛,

where
𝛼𝑛 = ⟨𝑣, 𝑃𝑛⟩, 𝑛 = 0, 1, 2 . . . .

Moreover, if 𝑣 satisfies ⟨𝑣, 𝑃𝑛⟩ = 0 for 𝑛 ⩾ 𝑚, then

𝑣 =
𝑚−1∑︁
𝑛=0

𝛼𝑛𝑢𝑛.

According to the previous lemma, we have 𝑢 = 𝜆𝑢0, where (𝑢)0=𝜆 ̸= 0.
In what follows, all regular linear forms 𝑢 will be taken normalized, i.e.,
(𝑢)0 = 1. Then 𝑢 = 𝑢0.

According to Favard’s theorem, a MOPS {𝑃𝑛}𝑛⩾0 is characterized by
the following three-term recurrence relation [11]:

𝑃0(𝑥) = 1, 𝑃1(𝑥) = 𝑥− 𝛽0,

𝑃𝑛+2(𝑥) = (𝑥− 𝛽𝑛+1)𝑃𝑛+1(𝑥)− 𝛾𝑛+1𝑃𝑛(𝑥), 𝑛 ⩾ 0,
(2)

where

𝛽𝑛 =
⟨𝑢0, 𝑥𝑃 2

𝑛⟩
⟨𝑢0, 𝑃 2

𝑛⟩
∈ C ; 𝛾𝑛+1 =

⟨𝑢0, 𝑃 2
𝑛+1⟩

⟨𝑢0, 𝑃 2
𝑛⟩

∈ C ∖ {0}, 𝑛 ⩾ 0. (3)

A form 𝑢 is said to be symmetric if and only if (𝑢)2𝑛+1 = 0, 𝑛 ⩾ 0, or,
equivalently, in (2), 𝛽𝑛 = 0, 𝑛 ⩾ 0.
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From (2), we have

𝑃2(𝑥) = 𝑥2 − (𝛽0 + 𝛽1)𝑥+ 𝛽0𝛽1 − 𝛾1. (4)

As a consequence of the orthogonality of {𝑃𝑛}𝑛⩾0 with respect to 𝑢0, we
have

(𝑢0)2 = 𝛽2
0 + 𝛾1. (5)

Let us introduce the Dunkl operator [14]:

𝑇𝜇(𝑓) = 𝑓 ′ + 2𝜇𝐻−1𝑓, (𝐻−1𝑓)(𝑥) =
𝑓(𝑥)− 𝑓(−𝑥)

2𝑥
, 𝑓 ∈ 𝒫 , 𝜇 ∈ C.

By transposition, we define the operator 𝑇𝜇 from 𝒫 ′ to 𝒫 ′ as follows:

⟨𝑇𝜇𝑢, 𝑓⟩ = −⟨𝑢, 𝑇𝜇𝑓⟩, 𝑓 ∈ 𝒫 , 𝑢 ∈ 𝒫 ′.

In particular, this yields

(𝑇𝜇𝑢)𝑛 = −𝜇𝑛(𝑢)𝑛−1, 𝑛 ⩾ 0,

with the convention (𝑢)−1 = 0, where

𝜇𝑛 = 𝑛+ 2𝜇[𝑛], [𝑛] =
1− (−1)𝑛

2
, 𝑛 ⩾ 0.

Note that 𝑇0 is the derivative operator 𝐷.
Using the previous definitions, we get the following formula [7]:

𝑇𝜇(𝑓𝑢) = 𝑓𝑇𝜇𝑢+ (𝑇𝜇𝑓)𝑢+ 2𝜇(𝐻−1𝑓)(ℎ−1𝑢− 𝑢), 𝑓 ∈ 𝒫 , 𝑢 ∈ 𝒫 ′. (6)

In particular, if 𝑢 is a symmetric linear form, then (6) becomes

𝑇𝜇(𝑓𝑢) = 𝑓𝑇𝜇𝑢+ (𝑇𝜇𝑓)𝑢, 𝑓 ∈ 𝒫 , 𝑢 ∈ 𝒫 ′. (7)

Now, consider an MOPS {𝑃𝑛}𝑛⩾0 and let

𝑃 [1]
𝑛 (𝑥, 𝜇) =

1

𝜇𝑛+1

(𝑇𝜇𝑃𝑛+1)(𝑥), 𝜇 ̸= −𝑛− 1

2
, 𝑛 ⩾ 0.

Denoting by {𝑢[1]𝑛 }𝑛⩾0 the dual sequence of {𝑃 [1]
𝑛 (·, 𝜇)}𝑛⩾0, the following

result is proved in [24]:

𝑇𝜇𝑢
[1]
𝑛 = −𝜇𝑛+1𝑢𝑛+1, 𝑛 ⩾ 0. (8)
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Definition 1. [5], [7], [24] An MOPS {𝑃𝑛}𝑛⩾0 is called Dunkl-classical
or 𝑇𝜇-classical if 𝑃 [1]

𝑛 (·, 𝜇) is also an MOPS. In this case, the form 𝑢0 is
called either a Dunkl-classical or a 𝑇𝜇-classical form.

Any symmetric Dunkl-classical polynomial sequence {𝑃𝑛}𝑛⩾0 can be
characterized taking into account its orthogonality as well as one of the
four difference equations:

• Second-order differential equation of the Bochner type [24]

Φ(𝑥)(𝑇 2
𝜇𝑃𝑛+1)(𝑥)−Ψ(𝑥)(𝑇𝜇𝑃𝑛+1)(𝑥) + 𝜆𝑛𝑃𝑛+1(𝑥) = 0, 𝑛 ⩾ 0. (9)

• First structure relation [5]

Φ(𝑥)𝑃
[1]
𝑛 (𝑥,𝜇) =

𝑛+𝑡∑︁
𝑘=𝑛

𝜆𝑛,𝑘𝑃𝑘(𝑥), 𝑛 ⩾ 0, 0 ⩽ 𝑡 = degΦ ⩽ 2.

𝜆𝑛,𝑛 ̸= 0, 𝑛 ⩾ 0.

(10)

• Rodrigues-type formula [25]

𝑃𝑛𝑢0 = 𝜗𝑛𝑇
𝑛
𝜇 (Φ

𝑛𝑢0), 𝑛 ⩾ 0. (11)

• Its canonical form 𝑢0 satisfies the Pearson differential equation [24]

𝑇𝜇(Φ𝑢0) + Ψ𝑢0 = 0,

Ψ′(0)− Φ′′(0)
2
𝜇𝑛 ̸= 0, 𝑛 ⩾ 0,

(12)

where Φ is a monic polynomial of degree 𝑡, 0 ⩽ 𝑡 ⩽ 2, Ψ is a first
degree polynomial, and {𝜆𝑛,𝑘}𝑛⩾0, 𝑛⩽𝑘⩽𝑛+𝑡 and {𝜗𝑛}𝑛⩾0 are sequences
of complex numbers, such that 𝜗𝑛 ̸= 0, 𝑛 ⩾ 0.

Remark 1. Under conditions of relations (9)–(12), the linear form 𝑢
[1]
0 ,

corresponding to {𝑃 [1]
𝑛 }𝑛⩾0, is given by:

𝑢
[1]
0 = (1 + 2𝜇)−1𝛾−1

1 𝐾Φ𝑢0, (13)

where 𝐾 is a non-zero constant chosen to make Φ monic, and Ψ is given by

Ψ(𝑥) = 𝐾−1(1 + 2𝜇)2𝑃1(𝑥). (14)

On the other hand, some characterizations of non-symmetric Dunkl-classical
orthogonal polynomials have been provided (see [7], [8], [10], [16], [17]).
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2. Main Result. In this section, we prove the characterization theo-
rem in both situations.

2.1. The symmetric case.

Theorem 1. For any symmetric MOPS {𝑃𝑛}𝑛⩾0, the following state-
ments are equivalent

(a) The sequence {𝑃𝑛}𝑛⩾0 is Dunkl-classical.
(b) There exist an integer 𝑡, 0 ⩽ 𝑡 ⩽ 2, and a sequence of complex

numbers {𝜆𝑛,𝑘}𝑛⩾𝑡, 𝑛−𝑡⩽𝑘⩽𝑛, such that

𝑃𝑛(𝑥) =
𝑛∑︁

𝑘=𝑛−𝑡

𝜆𝑛,𝑘𝑃
[1]
𝑘 (𝑥, 𝜇), 𝑛 ⩾ 𝑡, (15)

𝜆𝑛,𝑛 = 1, 𝑛 ⩾ 𝑡, (16)

1 + 2𝜇

𝜆2,0
𝛾2 − 𝜇𝑛 ̸= 0, 𝑛 ⩾ 0 when 𝜆2,0 ̸= 0. (17)

Proof. (𝑎) =⇒ (𝑏) Assume that {𝑃𝑛}𝑛⩾0 is Dunkl-classical; then there
exist polynomials Φ (monic), deg Φ = 𝑡, 0 ⩽ 𝑡 ⩽ 2, and Ψ, degΨ = 1,
such that the canonical regular form 𝑢0 satisfies (12). Moreover, since
𝑃𝑛 is a polynomial of degree 𝑛, then there exists a sequence of complex
numbers {𝜆𝑛,𝑘}𝑛⩾𝑡, 0 ⩽ 𝑘 ⩽ 𝑛, such that

𝑃𝑛(𝑥) =
𝑛∑︁

𝑘=0

𝜆𝑛,𝑘𝑃
[1]
𝑘 (𝑥, 𝜇), 𝑛 ⩾ 𝑡. (18)

By comparing the degrees in the previous equation, we get

𝜆𝑛,𝑛 = 1, 𝑛 ⩾ 𝑡.

Therefore, (18) becomes

𝑃𝑛(𝑥) = 𝑃 [1]
𝑛 (𝑥, 𝜇) +

𝑛−1∑︁
𝑘=0

𝜆𝑛,𝑘𝑃
[1]
𝑘 (𝑥, 𝜇), 𝑛 ⩾ 𝑡. (19)

Multiplying the last equation by 𝑃
[1]
𝑚 (·, 𝜇), 0 ⩽ 𝑚 ⩽ 𝑛 − 1, 𝑛 ⩾ 1, and

applying Φ𝑢0, we get

⟨Φ𝑢0, 𝑃 [1]
𝑚 (·, 𝜇)𝑃𝑛⟩ =



92 Y. Habbachi

= ⟨Φ𝑢0, 𝑃 [1]
𝑚 (·, 𝜇)𝑃 [1]

𝑛 (·, 𝜇)⟩+
𝑛−1∑︁
𝑘=0

𝜆𝑛,𝑘⟨Φ𝑢0, 𝑃 [1]
𝑚 (·, 𝜇)𝑃 [1]

𝑘 (·, 𝜇)⟩ =

= 𝜆𝑛,𝑚⟨Φ𝑢0, (𝑃 [1]
𝑚 (·, 𝜇))2⟩, 𝑛 ⩾ 1.

Hence,

𝜆𝑛,𝑚 =
⟨𝑢0, (Φ𝑃 [1]

𝑚 (·, 𝜇))𝑃𝑛⟩
⟨Φ𝑢0, (𝑃 [1]

𝑚 (·, 𝜇))2⟩
, 0 ⩽ 𝑚 ⩽ 𝑛− 1, 𝑛 ⩾ 1. (20)

Since deg(Φ𝑃
[1]
𝑚 (·, 𝜇)) = 𝑚+ 𝑡, the orthogonality of {𝑃𝑛}𝑛⩾0 leads to

⟨𝑢0, (Φ𝑃 [1]
𝑚 (·, 𝜇))𝑃𝑛⟩ = 0, 0 ⩽ 𝑚+ 𝑡 ⩽ 𝑛− 1, 𝑛 ⩾ 1.

So, we have
𝜆𝑛,𝑚 = 0, 0 ⩽ 𝑚 ⩽ 𝑛− 𝑡− 1, 𝑛 ⩾ 1.

Consequently, (19) becomes

𝑃𝑛(𝑥) = 𝑃
[1]
𝑛 (𝑥, 𝜇) +

𝑛−1∑︁
𝑘=𝑛−𝑡

𝜆𝑛,𝑘𝑃
[1]
𝑘 (𝑥, 𝜇), 𝑛 ⩾ 𝑡. (21)

It remains to prove (17). Assume that 𝜆2,0 ̸= 0. From (21), where 𝑛 = 2,
we have

𝑃2(𝑥) = 𝑃
[1]
2 (𝑥, 𝜇) + 𝜆2,0𝑃

[1]
0 (𝑥, 𝜇).

Therefore,
⟨𝑢[1]0 , 𝑃2⟩ = 𝜆2,0.

But from (8) and the fact that Φ is monic, we have

⟨𝑢[1]0 , 𝑃2⟩ = (1 + 2𝜇)−1𝛾−1
1 𝐾𝑟2 = (1 + 2𝜇)−1𝛾2𝐾.

Then

𝐾 =
(1 + 2𝜇)𝜆2,0

𝛾2
. (22)

Substitution of (22) in (14) gives

Ψ(𝑥) =
(1 + 2𝜇)𝛾2

𝜆2,0
𝑃1(𝑥).
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Therefore,

Ψ′(0) =
(1 + 2𝜇)𝛾2

𝜆2,0
.

So, condition (17) becomes an immediate consequence of the second equal-
ity in (12). Thus the desired result (15)–(17).

(𝑏) =⇒ (𝑎) Assume that there exist an integer 𝑡, 0 ⩽ 𝑡 ⩽ 2, and
a sequence of complex numbers {𝜆𝑛,𝑘}𝑛⩾𝑡, 𝑛−𝑡⩽𝑘⩽𝑛, such that (15), (16),
and (17) hold.

Let {𝑃𝑛}𝑛⩾0 and {𝑃 [1]
𝑛 (·, 𝜇)}𝑛⩾0 be sequences of monic polynomials

with {𝑢𝑛}𝑛⩾0 and {𝑢[1]𝑛 }𝑛⩾0 be their respective dual sequences. Using (15)
and (16) for 𝑛 ⩾ 𝑡+ 1, we have

⟨𝑢[1]0 , 𝑃𝑛⟩ = ⟨𝑢[1]0 , 𝑃
[1]
𝑛 (·, 𝜇)⟩+

𝑛−1∑︁
𝑘=𝑛−𝑡

𝜆𝑛,𝑘⟨𝑢[1]0 , 𝑃
[1]
𝑘 (·, 𝜇)⟩ = 0.

Thus, according to Lemma 1, there exist complex numbers 𝛼𝑖, 𝑖 ∈ {0, . . . ,𝑡},
such that

𝑢
[1]
0 =

𝑡∑︁
𝑖=0

𝛼𝑖𝑢𝑖, 0 ⩽ 𝑡 ⩽ 2.

Or, equivalently,
𝑢
[1]
0 = 𝛼0𝑢0 + 𝛼1𝑢1 + 𝛼2𝑢2. (23)

On account of (1), the previous equation becomes

𝑢
[1]
0 = (𝛼0 + 𝛼1𝑟

−1
1 𝑃1 + 𝛼2𝑟

−1
2 𝑃2)𝑢0.

Therefore, there exists a polynomial Φ, deg Φ ⩽ 2, such that

𝑢
[1]
0 = 𝑘Φ𝑢0, (24)

where
𝑘Φ = 𝛼0 + 𝛼1𝑟

−1
1 𝑃1 + 𝛼2𝑟

−1
2 𝑃2, (25)

and the non-zero constant 𝑘 is chosen to make Φ monic.
Moreover, Φ is an even polynomial. Indeed, since 𝑃1(𝑥)=𝑃

[1]
1 (𝑥, 𝜇)=𝑥,

we have

0=⟨𝑢[1]0 , 𝑃
[1]
1 (·, 𝜇)⟩=𝑘

(︁
𝛼0⟨𝑢0, 𝑃1⟩+𝛼1𝑟

−1
1 ⟨𝑢0, 𝑃 2

1 ⟩+𝛼2𝑟
−1
2 ⟨𝑢0, 𝑃1𝑃2⟩

)︁
=𝑘𝛼1.

Hence, 𝛼1 = 0.
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Thus, taking into account (25) and the fact that 𝑃2(𝑥) = 𝑥2 − 𝛾1, we
can easily see that Φ is even.

On the other hand, putting 𝑛 = 0 in (8), we obtain

𝑇𝜇𝑢
[1]
0 = −(1 + 2𝜇)𝑢1.

Substitution of (24) in the previous equation gives (12), with

Ψ(𝑥) = 𝑘−1𝛾−1
1 (1 + 2𝜇)𝑃1(𝑥).

To complete the proof, we will show that the second equality in (12) is
fulfilled. Indeed, from (23) we have

𝛼2 = ⟨𝑢[1]0 , 𝑃2⟩.

But from (15) and (16), where 𝑛 = 2, we have

𝑃2(𝑥) = 𝑃
[1]
2 (𝑥, 𝜇) + 𝜆2,0𝑃

[1]
0 (𝑥, 𝜇).

Thus,
𝛼2 = 𝜆2,0.

On the other hand, taking into account (23) and the fact that 𝑢0 and 𝑢[1]0

are normalized, we get
𝛼0 = 1.

Therefore, (25) becomes

𝑘Φ(𝑥) = 1 + 𝜆2,0𝑟
−1
2 𝑃2(𝑥). (26)

So, we distinguish two cases: 𝜆2,0 = 0 and 𝜆2,0 ̸= 0.
The first case: 𝜆2,0 = 0. In this case, deg Φ = 0; then Φ′′(0) = 0

and, since Φ is monic, we get 𝑘 = 1. Therefore,

Ψ′(0)− Φ′′(0)

2
𝜇𝑛 = Ψ′(0) = 𝛾−1

1 (1 + 2𝜇) ̸= 0, 𝑛 ⩾ 0.

The second case: 𝜆2,0 ̸= 0. In this case, deg Φ = 2. But, since Φ is

monic,
Φ′′(0)

2
= 1. Furthermore, identification of degrees in (26) gives

𝑘 = 𝜆2,0𝑟
−1
2 .
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Therefore,

Ψ′(0)− Φ′′(0)
2

𝜇𝑛 =
(1 + 2𝜇)

𝜆2,0
𝛾2 − 𝜇𝑛 ̸= 0, 𝑛 ⩾ 0 (by (17) ).

So, according to relation (12), the sequence {𝑃𝑛}𝑛⩾0 is Dunkl-classical. □

In the sequel, using the previous theorem, we will determine the sec-
ond structure relation for the generalized Hermite polynomials and the
generalized Gegenbauer polynomials.

Put Φ(𝑥) = Φ′′(0)
2
𝑥2 + Φ(0) and Ψ(𝑥) = Ψ′(0)𝑥 and let {𝑃𝑛}𝑛⩾0 be a

symmetric Dunkl-classical MOPS, such that its associated regular form
𝑢0 satisfies (12). So, from (15)–(16) we have:

𝑃𝑛(𝑥) = 𝑃
[1]
𝑛 (𝑥, 𝜇) + 𝜆𝑛,𝑛−1𝑃

[1]
𝑛−1(𝑥, 𝜇) + 𝜆𝑛,𝑛−2𝑃

[1]
𝑛−2(𝑥, 𝜇), 𝑛 ⩾ 𝑡. (27)

Since the sequences {𝑃𝑛}𝑛⩾0 and {𝑃 [1]
𝑛 (·, 𝜇)}𝑛⩾0 are symmetric,

𝜆𝑛,𝑛−1 = 0, 𝑛 ⩾ 𝑡. (28)

The coefficient 𝜆𝑛,𝑛−2 is given by

𝜆𝑛,𝑛−2 =
Φ′′(0)

2
𝜇𝑛−1

Ψ′(0)− Φ′′(0)
2

𝜇𝑛−2

𝛾𝑛, 𝑛 ⩾ 𝑡, (29)

with the convention 𝜆0,𝑛−2 = 0. Indeed, from (20), we have

𝜆𝑛,𝑛−2 =
⟨𝑢0, (Φ𝑃 [1]

𝑛−2(·, 𝜇))𝑃𝑛⟩
⟨Φ𝑢0, (𝑃 [1]

𝑛−2(·, 𝜇))2⟩
, 𝑛 ⩾ 𝑡.

Writing

Φ(𝑥)𝑃
[1]
𝑛−2(𝑥, 𝜇) =

Φ′′(0)

2
𝑥𝑛 + lower degree terms.

On the one hand, from the orthogonality of {𝑃𝑛}𝑛⩾0 with respect to 𝑢0,
we have

⟨𝑢0, (Φ𝑃 [1]
𝑛−2(·, 𝜇))𝑃𝑛⟩ =

Φ′′(0)

2
⟨𝑢0, 𝑥𝑛𝑃𝑛⟩ =

Φ′′(0)

2
⟨𝑢0, 𝑃 2

𝑛⟩, 𝑛 ⩾ 𝑡.

On the other hand, from (7) and the fact that Φ𝑢0 is symmetric, we have
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⟨Φ𝑢0, (𝑃 [1]
𝑛−2(·, 𝜇))2⟩ = − 1

𝜇𝑛−1

⟨𝑇𝜇(𝑃 [1]
𝑛−2(·, 𝜇)Φ𝑢0), 𝑃𝑛−1⟩ =

= − 1

𝜇𝑛−1

⟨𝑇𝜇(𝑃 [1]
𝑛−2(·, 𝜇))Φ𝑢0 + 𝑃

[1]
𝑛−2(·, 𝜇)𝑇𝜇(Φ𝑢0),𝑃𝑛−1⟩.

Taking into account (12), we get

⟨Φ𝑢0, (𝑃 [1]
𝑛−2(·, 𝜇))2⟩ =

1

𝜇𝑛−1

⟨𝑃 [1]
𝑛−2(·, 𝜇)Ψ𝑢0 − 𝑇𝜇(𝑃

[1]
𝑛−2(·, 𝜇))Φ𝑢0, 𝑃𝑛−1⟩.

Hence, the orthogonality of {𝑃𝑛}𝑛⩾0 with respect to 𝑢0 gives

⟨Φ𝑢0, (𝑃 [1]
𝑛−2(·, 𝜇))2⟩ =

Ψ′(0)− Φ′′(0)
2

𝜇𝑛−2

𝜇𝑛−1

⟨𝑢0, 𝑥𝑛−1𝑃𝑛−1⟩ =

=
Ψ′(0)− Φ′′(0)

2
𝜇𝑛−2

𝜇𝑛−1

⟨𝑢0, 𝑃 2
𝑛−1⟩, 𝑛 ⩾ 𝑡.

Consequently, from the second equality of (3) we deduce (29).
Substitution of (28) and (29) in (27) gives

𝑃𝑛(𝑥) = 𝑃 [1]
𝑛 (𝑥, 𝜇) +

Φ′′(0)
2

𝜇𝑛−1

Ψ′(0)− Φ′′(0)
2

𝜇𝑛−2

𝛾𝑛 𝑃
[1]
𝑛−2(𝑥, 𝜇), 𝑛 ⩾ 𝑡. (30)

Corollary.

1) The generalized Hermite polynomial {𝐻(𝜇)
𝑛 }𝑛⩾0 is characterized by

the following second structure relation:

𝐻(𝜇)
𝑛 (𝑥) = (𝐻(𝜇)

𝑛 )[1](𝑥), 𝑛 ⩾ 0. (31)

2) The generalized Gegenbauer polynomial {𝑆(𝛼,𝜇− 1
2
)

𝑛 }𝑛⩾0 is character-
ized by the following second structure relation:

𝑆
(𝛼,𝜇− 1

2
)

𝑛 (𝑥) = (𝑆
(𝛼,𝜇− 1

2
)

𝑛 )[1](𝑥)−

− 𝜇𝑛−1 𝜇𝑛

(2𝑛+ 2𝛼 + 2𝜇− 1)(2𝑛+ 2𝛼 + 2𝜇+ 1)
(𝑆

(𝛼,𝜇− 1
2
)

𝑛−2 )[1](𝑥), 𝑛 ⩾ 2.

(32)

Proof. 1) The sequence of generalized Hermite polynomials {𝐻(𝜇)
𝑛 }𝑛⩾0

satisfies (2) with (see [11]):

𝛽𝑛 = 0, 𝛾𝑛+1 =
𝜇𝑛+1

2
, 𝑛 ⩾ 0, (33)
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where the regularity condition is

𝜇 ̸= −𝑛− 1

2
, 𝑛 ⩾ 0.

This sequence is Dunkl-classical and its associated form ℋ(𝜇) satisfies (12)
with (see [7])

Φ(𝑥) = 1, Ψ(𝑥) = 2𝑥. (34)

So, using (33) and (34) the proof of (31) is an immediate consequence
of (30).

2) The sequence of generalized Gegenbauer polynomials {𝑆(𝛼,𝜇− 1
2
)

𝑛 }𝑛⩾0

satisfies (2) with (see [11]):

𝛽𝑛 = 0, 𝛾𝑛+1 =
(𝑛+ 1 + 𝛿𝑛)(𝑛+ 1 + 2𝛼 + 𝛿𝑛)

(2𝑛+ 2𝛼 + 2𝜇+ 1)(2𝑛+ 2𝛼 + 2𝜇+ 3)
,

𝛿𝑛 = 𝜇(1 + (−1)𝑛), 𝑛 ⩾ 0,

(35)

where the regularity conditions are

𝛼 ̸= −𝑛, 𝛽 ̸= −𝑛, 𝛼 + 𝛽 ̸= −𝑛, 𝑛 ⩾ 1.

This sequence is Dunkl-classical and its associated form 𝒢(𝛼, 𝜇− 1
2
) satis-

fies (12) with (see [7])

Φ(𝑥) = 𝑥2 − 1, Ψ(𝑥) = −2(𝛼 + 1)𝑥. (36)

Then, using (35) and (36), equation (32) is deduced from (30). □

Remark 2.
1) From equation (31), we can recover again the following structure

relation established by T. S. Chihara [12]:

𝑥𝐷ℋ(𝜇)
𝑛+1(𝑥) = −𝜇(1 + (−1)𝑛)ℋ(𝜇)

𝑛+1(𝑥)+

+
(︁
𝑛+ 1 + 𝜇(1 + (−1)𝑛)

)︁
𝑥ℋ(𝜇)

𝑛 (𝑥), 𝑛 ⩾ 0. (37)

Indeed, using the definition of 𝑇𝜇 and the fact {𝐻(𝜇)
𝑛 }𝑛⩾0 is symmet-

ric, equation (31) becomes

𝐷ℋ(𝜇)
𝑛+1(𝑥) + 𝜇(1− (−1)𝑛+1)

ℋ(𝜇)
𝑛+1(𝑥)

𝑥
= 𝜇𝑛+1ℋ(𝜇)

𝑛 (𝑥), 𝑛 ⩾ 0.

Therefore, multiplication of the last equation by 𝑥 gives (37).
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2) The relation (32) can be written of the following form:

𝑆
(𝛼,𝜇− 1

2
)

𝑛 (𝑥) = 𝑆
(𝛼+1,𝜇− 1

2
)

𝑛 (𝑥)−

− 𝜇𝑛 𝜇𝑛−1

(2𝑛+ 2𝛼 + 2𝜇− 1)(2𝑛+ 2𝛼 + 2𝜇+ 1)
𝑆
(𝛼+1,𝜇− 1

2
)

𝑛−2 (𝑥), 𝑛 ⩾ 2.

This result is deduced from (32) and the fact that
𝑇𝜇𝑆

(𝛼,𝜇− 1
2
)

𝑛+1 = 𝜇𝑛+1𝑆
(𝛼+1,𝜇− 1

2
)

𝑛 (see [4]).

2.2. The non-symmetric case. In this subsection, we will present
a second structure relation for non-symmetric Dunkl-classical polynomial
sequences. But first, let us recall the following result.

Theorem 2. [7] Let {𝑃𝑛}𝑛⩾0 be a MPS orthogonal with respect to a

linear form 𝑢0. For 𝜇 ̸= 0 and 𝜇 ̸= 1

2
, the following statements are

equivalent:

(a) The sequence {𝑃𝑛}𝑛⩾0 is Dunkl-classical.
(b) There exist 𝐾 ∈ C* and three polynomials Φ (monic), 𝐵 and Ψ with

deg Φ ⩽ 2, deg𝐵 ⩽ 3, and degΨ = 1, such that

Ψ′(0) +
𝐾Φ′′(0)

2(1− 4𝜇2)
(4𝜇2[𝑛]− 𝑛) +

𝐾𝐵′′′(0)

3(1− 4𝜇2)
𝜇([𝑛]− 𝑛) ̸= 0, (38)

and
𝑇𝜇

(︁
Φ𝑢0 − 2𝜇ℎ−1(Φ𝑢0)

)︁
+

1− 4𝜇2

𝐾
Ψ𝑢0 = 0, (39)

with
𝑥Φ(𝑥)𝑢0 = ℎ−1(𝐵(𝑥)𝑢0). (40)

The authors [9] used Theorem 2 to classify all Dunkl-classical linear forms.
In particular, they proved that the unique non-symmetric Dunkl-classical

linear form for 𝜇 ̸= 0 and 𝜇 ̸= 1

2
is, up a dilation, the perturbed generalized

Gegenbauer linear form 𝑢0, satisfying

𝑇𝜇

(︁
(𝑥2 − 1)𝑢0

)︁
− 1 + 2𝜇

𝛽0
(𝑥− 𝛽0)𝑢0 = 0, (41)

(𝑥− 1)𝑢0 = ℎ−1((𝑥− 1)𝑢0), (42)

with the regularity conditions:

𝛽0 /∈ {0, 1}, 1 + 2𝜇+ 𝛽0(𝑛− 2𝜇[𝑛]) ̸= 0, 𝑛 ⩾ 0. (43)
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Remark 3. If {𝑃𝑛}𝑛⩾0 is a non-symmetric Dunkl-classical MOPS, then
{𝑃 [1]

𝑛 (·, 𝜇)}𝑛⩾0 is orthogonal with respect to [10]

𝑢
[1]
0 =

1

𝛽0 − 1
(𝑥2 − 1)𝑢0, 𝛽0 /∈ {0, 1}. (44)

Theorem 3. Let {𝑃𝑛(𝑥)}𝑛⩾0 be a MOPS fulfilling (2) with (43). As-
sume that its corresponding linear form 𝑢0 satisfies (42). The following
statements are equivalent:

(a) The sequence {𝑃𝑛}𝑛⩾0 is Dunkl-classical.
(b) {𝑃𝑛}𝑛⩾0 satisfies the second structure relation

𝑃𝑛(𝑥) = 𝑃 [1]
𝑛 (𝑥,𝜇) + 𝜆𝑛,𝑛−1𝑃

[1]
𝑛−1(𝑥, 𝜇) + 𝜆𝑛,𝑛−2𝑃

[1]
𝑛−2(𝑥, 𝜇), 𝑛 ⩾ 0,

(45)
where

𝜆𝑛,𝑛−1 =
⟨𝑢0, (𝑥2 − 1)𝑃

[1]
𝑛−1(·, 𝜇)𝑃𝑛⟩

⟨𝑢0, (𝑥2 − 1)(𝑃
[1]
𝑛−1(·, 𝜇))2⟩

,

𝜆𝑛,𝑛−2 =
⟨𝑢0, (𝑥2 − 1)𝑃

[1]
𝑛−2(·, 𝜇)𝑃𝑛⟩

⟨𝑢0, (𝑥2 − 1)(𝑃
[1]
𝑛−2(·, 𝜇))2⟩

, 𝑛 ⩾ 0.

(46)

Proof. (𝑎) =⇒ (𝑏) Suppose that {𝑃𝑛}𝑛⩾0 is Dunkl-classical; then its
canonical regular form 𝑢0 satisfies (41)–(42). Moreover, since 𝑃𝑛 is a poly-
nomial of degree 𝑛, there exists a sequence of complex numbers {𝜆𝑛,𝑘}𝑛⩾0,
0 ⩽ 𝑘 ⩽ 𝑛, such that

𝑃𝑛(𝑥) =
𝑛∑︁

𝑘=0

𝜆𝑛,𝑘𝑃
[1]
𝑘 (𝑥, 𝜇), 𝑛 ⩾ 0. (47)

By comparing the degrees in the previous equation, we get

𝜆𝑛,𝑛 = 1, 𝑛 ⩾ 0.

Therefore, (47) becomes

𝑃𝑛(𝑥) = 𝑃 [1]
𝑛 (𝑥, 𝜇) +

𝑛−1∑︁
𝑘=0

𝜆𝑛,𝑘𝑃
[1]
𝑘 (𝑥, 𝜇), 𝑛 ⩾ 0. (48)

It is clear that (45) holds for 𝑛 = 0, where 𝜆0,−1 = 𝜆0,−2 = 0. For 𝑛 ⩾ 1,
multiplying the previous equation by 𝑃

[1]
𝑚 (·, 𝜇), 0 ⩽ 𝑚 ⩽ 𝑛 − 1, 𝑛 ⩾ 1,

and applying (𝑥2 − 1)𝑢0, we get
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⟨(𝑥2 − 1)𝑢0, 𝑃
[1]
𝑚 (·, 𝜇)𝑃𝑛⟩ =

=⟨(𝑥2−1)𝑢0, 𝑃
[1]
𝑚 (·, 𝜇)𝑃 [1]

𝑛 (·, 𝜇)⟩+
𝑛−1∑︁
𝑘=0

𝜆𝑛,𝑘⟨(𝑥2−1)𝑢0, 𝑃
[1]
𝑚 (·, 𝜇)𝑃 [1]

𝑘 (·, 𝜇)⟩=

= 𝜆𝑛,𝑚⟨(𝑥2 − 1)𝑢0, (𝑃
[1]
𝑚 (·, 𝜇))2⟩, 𝑛 ⩾ 1.

Hence,

𝜆𝑛,𝑚 =
⟨𝑢0, ((𝑥2 − 1)𝑃

[1]
𝑚 (·, 𝜇))𝑃𝑛⟩

⟨(𝑥2 − 1)𝑢0, (𝑃
[1]
𝑚 (·, 𝜇))2⟩

, 0 ⩽ 𝑚 ⩽ 𝑛− 1, 𝑛 ⩾ 1. (49)

Since deg((𝑥2−1)𝑃
[1]
𝑚 (·, 𝜇)) = 𝑚+2, the orthogonality of {𝑃𝑛}𝑛⩾0 leads to

⟨𝑢0, ((𝑥2 − 1)𝑃 [1]
𝑚 (·, 𝜇))𝑃𝑛⟩ = 0, 0 ⩽ 𝑚+ 2 ⩽ 𝑛− 1.

So, we have
𝜆𝑛,𝑚 = 0, 0 ⩽ 𝑚 ⩽ 𝑛− 3, 𝑛 ⩾ 3.

Consequently, (48) becomes

𝑃𝑛(𝑥) = 𝑃 [1]
𝑛 (𝑥, 𝜇) + 𝜆𝑛,𝑛−1𝑃

[1]
𝑛−1(𝑥, 𝜇) + 𝜆𝑛,𝑛−2𝑃

[1]
𝑛−2(𝑥, 𝜇), 𝑛 ⩾ 0

with the equalities in (46) are obtained by (49). Therefore, (45) holds.
(𝑏) =⇒ (𝑎) Let {𝑃𝑛}𝑛⩾0 and {𝑃 [1]

𝑛 (·, 𝜇)}𝑛⩾0 be sequences of monic
polynomials with {𝑢𝑛}𝑛⩾0 and {𝑢[1]𝑛 }𝑛⩾0 be their respective dual sequences.
Suppose that {𝑃𝑛}𝑛⩾0 satisfies (45).

From (45) for 𝑛 ⩾ 3, we have

⟨𝑢[1]0 , 𝑃𝑛⟩ =
= ⟨𝑢[1]0 , 𝑃

[1]
𝑛 (·, 𝜇)⟩+ 𝜆𝑛,𝑛−1⟨𝑢[1]0 , 𝑃

[1]
𝑛−1(·, 𝜇) + 𝜆𝑛,𝑛−2⟨𝑢[1]0 , 𝑃

[1]
𝑛−2(·, 𝜇)⟩ = 0.

Thus, according to Lemma 1, there exist complex numbers 𝛼𝑘, 0 ⩽ 𝑘 ⩽ 2,
such that

𝑢
[1]
0 = 𝛼0𝑢0 + 𝛼1𝑢1 + 𝛼2𝑢2. (50)

On account of (1), the previous equation becomes

𝑢
[1]
0 = (𝛼0 + 𝛼1𝑟

−1
1 𝑃1 + 𝛼2𝑟

−1
2 𝑃2)𝑢0. (51)

Taking into account (50) and the fact that 𝑢0 and 𝑢[1]0 are normalized, we
get

𝛼0 = 1. (52)
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According to (50), we have

𝛼1 = ⟨𝑢[1]0 , 𝑃1⟩.

Making 𝑛 = 1 in (45), we get

𝑃1(𝑥) = 𝑃
[1]
1 (𝑥, 𝜇) + 𝜆1,0𝑃

[1]
0 (𝑥, 𝜇).

Therefore,
𝛼1 = 𝜆1,0.

Using the first equality in (46) for 𝑛 = 1, we have

𝜆1,0 =
𝛽0 + 𝛽1
(𝑢0)2 − 1

𝑟1.

Then
𝛼1 =

𝛽0 + 𝛽1
(𝑢0)2 − 1

𝑟1. (53)

From (50), we have
𝛼2 = ⟨𝑢[1]0 , 𝑃2⟩.

But from (45), where 𝑛 = 2, we have

𝑃2(𝑥) = 𝑃
[1]
2 (𝑥, 𝜇) + 𝜆2,1𝑃

[1]
1 (𝑥, 𝜇) + 𝜆2,0𝑃

[1]
0 (𝑥, 𝜇).

Thus,
𝛼2 = 𝜆2,0.

On the other hand, from the second equality in (46) for 𝑛 = 2, we deduce

𝛼2 = 𝜆2,0 =
𝑟2

(𝑢0)2 − 1
. (54)

Substitution of (52), (53) and (54) in (51) gives

𝑢
[1]
0 =

(︁
1 +

𝛽0 + 𝛽1
(𝑢0)2 − 1

𝑃1 +
1

(𝑢0)2 − 1
𝑃2

)︁
𝑢0.

Using (4)–(5) and the fact that 𝑃1(𝑥) = 𝑥−𝛽0, the last equation becomes

𝑢
[1]
0 =

1

𝛽2
0 + 𝛾1 − 1

(𝑥2 − 1)𝑢0. (55)
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But from (42), it is easy to see that

(𝑢0)2 = (𝑢0)1.

Since (𝑢0)1 = 𝛽0, from (5) we have

𝛾1 = 𝛽0 − 𝛽2
0 . (56)

Therefore, equation (55) becomes

𝑢
[1]
0 =

1

𝛽0 − 1
(𝑥2 − 1)𝑢0. (57)

For 𝑛 = 0 in (8), we obtain

𝑇𝜇𝑢
[1]
0 = −(1 + 2𝜇)𝛾−1

1 (𝑥− 𝛽0)𝑢0. (58)

Substitution of (56) and (57) in (58) gives (41).
So, according to Theorem 2, the sequence {𝑃𝑛}𝑛⩾0 is Dunkl-classical. □

Remark 4. Theorems 1 and 3 are the main results of this paper. From
them, we carry out the complete study of the Dunkl-classical orthogonal
polynomials.
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