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TO FRACTAL GENERATIONS IN FUZZY METRIC

SPACES

Abstract. In this paper, we establish a strong coupled fixed-point
result for a fuzzy contractive coupling, defined between two subsets
of a fuzzy metric space. The coupling is defined by combining the
concepts of coupled fuzzy contractions and cyclic mappings. It is
the main instrument in the paper. Uniqueness of the strong coupled
fixed-point is also shown. There is a corollary and an illustrative
example. An example shows that the main theorem properly con-
tains the strong coupled fixed-point result as a corollary. We discuss
an application, where construct a special type of Iterated Function
System by utilizing a family of fuzzy contractive couplings; this fi-
nally leads to the generation of a strong coupled fractal set in fuzzy
metric space. A fuzzy version of the Hausdorff distance between
compact sets is utilized in the above process. The method of fractal
generation is illustrated.
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strong coupled fixed point, strong coupled fractal
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1. Introduction. The ultimate goal of this research is to establish
a method of generating strong coupled fractals in fuzzy metric spaces.
This is done by an application of a strong coupled fixed-point result, also
proved here. There are several inequivalent extensions of metric spaces
into the domain of fuzzy mathematics, like those in [6], [9], [16], [20]. Out
of these notions, the definition given in [9] has several salient features
including the fact that the space is naturally endowed with a Hausdorff
topology. This is one of the reasons why this version of the fuzzy met-
ric space has been so extensively considered in fuzzy fixed-point theory.
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We concern ourselves exclusively with the definition of the fuzzy met-
ric space given by George and Veeramani [8], [9] and refer to it simply
as ‘fuzzy metric space’. Fuzzy fixed-point theory has experienced very
extensive and versatile development over the last three decades. Refer-
ences [11], [12], [13], [14], [17] are some instances from this domain of
study. Strong coupled fractals are already introduced in metric spaces in
a recent paper by Choudhury et al. [4]. They are generated here through
the construction of the Huchinsion-Barnsley operator [1] corresponding to
a specialized Iterated Function System [1], [15] called Iterated Coupling
System (ICS) [4]. It uses couplings between two subsets of the fuzzy metric
space. Iterated Function Systems (IFS for short) are widely used as means
of generating fractal sets in different spaces by involving contractions of
various kinds. Some instances of these works are noted in [4], [21]. In the
fuzzy domain, there are already works in this direction (e. g., like [28]),
but it appears that there is still much to be explored. This is one of our
motivations for starting this research.

Couplings are basic instruments in our paper. They are cyclic coupled
mappings that have appeared in works like [4]. Couplings are defined by
combining the ideas of coupled mappings and cyclic mappings. Both these
types of mappings have featured prominently in the recent literature on
fixed-point theory on metric and fuzzy metric spaces, along with several
applications. Some instances of the former are [14], [23], while [18], [19]
are works involving the latter-type mappings.

This paper is organized as follows. Firstly, we introduce a fuzzy con-
tractive coupling in fuzzy metric spaces and obtain a strong coupled fixed-
point result for them. The proof depends on the property of the t-norm
that it is stronger than the product t-norm. Then a Fuzzy Iterated Cou-
pling System is introduced with the help of these couplings. Finally, we
utilize the fixed-point result to generate strong coupled fractals through
the Hutchinson-Barnsley operator. In the sequel, we show that our strong
coupled fixed-point result effectively generalizes an existing fuzzy coupled
fixed point result. Both the fixed-point theorem and the process of fractal
generation are illustrated with examples.

2. Preliminaries. Throughout the paper we use the following nota-
tion: N𝑛 denotes the set of first 𝑛 natural numbers; for any topological
space (𝑋, 𝜏), the symbols 𝒫(𝑋) and 𝒦(𝑋) denote, respectively, the set of
all non-empty subsets and the set of non-empty compact subsets.

Definition 1. [26] A binary operator * : [0, 1]2 → [0, 1] is called a t-norm,
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if the following conditions are satisfied:

(i) * is associative and commutative;
(ii) 𝑎 * 1 = 𝑎 for all 𝑎 ∈ [0, 1];

(iii) 𝑎 * 𝑏 ⩽ 𝑐 * 𝑑 whenever 𝑎 ⩽ 𝑐 and 𝑏 ⩽ 𝑑 for each 𝑎, 𝑏, 𝑐, 𝑑 ∈ [0, 1].

Now let us define the fuzzy metric space. There are several non-
equivalent definitions in literature; we use the simple definition by George
et. al. [8]:

Definition 2. [8] A 3-tuple (𝑋,𝑀, *) is called a fuzzy metric space if 𝑋
is an arbitrary non-empty set, * is a continuous t-norm, and 𝑀 is a fuzzy
set on 𝑋 × 𝑋 × (0,∞), satisfying the conditions (𝐹𝑀1) – (𝐹𝑀5) for all
𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝑡, 𝑠 > 0;
(𝐹𝑀1) 𝑀(𝑥, 𝑦, 𝑡) > 0;
(𝐹𝑀2) 𝑀(𝑥, 𝑦, 𝑡) = 1 iff 𝑥 = 𝑦;
(𝐹𝑀3) 𝑀(𝑥, 𝑦, 𝑡) =𝑀(𝑦, 𝑥, 𝑡);
(𝐹𝑀4) 𝑀(𝑥, 𝑦, 𝑡) *𝑀(𝑦, 𝑧, 𝑠) ⩽𝑀(𝑥, 𝑧, 𝑡+ 𝑠);
(𝐹𝑀5) 𝑀(𝑥, 𝑦, .) : (0,∞) → (0, 1] is continuous.

We also use the following condition:
(𝐹𝑀6) for all 𝑥, 𝑦 ∈ 𝑋, lim

𝑡→∞
𝑀(𝑥, 𝑦, 𝑡) = 1.

Definition 3. [8] Let (𝑋,𝑀, *) be a fuzzy metric space. The open ball
𝐵(𝑥, 𝑟, 𝑡) with center 𝑥 ∈ 𝑋 for 𝑡 > 0 and 0 < 𝑟 < 1 is defined as
𝐵(𝑥, 𝑟, 𝑡) = {𝑦 ∈ 𝑋 : 𝑀(𝑥, 𝑦, 𝑡) > 1− 𝑟}.

It has been proved in [8] that the family {𝐵(𝑥, 𝑟, 𝑡): 𝑥∈𝑋, 0< 𝑟 < 1,
𝑡>0} is a basis for a Hausdorff topology on 𝑋. The following notions of
convergences are consistent with the topology described above.

Definition 4. [8] Let (𝑋,𝑀, *) be a fuzzy metric space.

(i) A sequence {𝑥𝑛} in 𝑋 is said to be convergent if there exists some
𝑥 ∈ 𝑋, such that lim

𝑛→∞
𝑀(𝑥𝑛, 𝑥, 𝑡) = 1 for all 𝑡 > 0.

(ii) A sequence {𝑥𝑛} in 𝑋 is said to be a Cauchy sequence if
lim

𝑚,𝑛→∞
𝑀(𝑥𝑛, 𝑥𝑚, 𝑡) = 1 for all 𝑡 > 0.

Definition 5. [24] Let 𝐴 and 𝐵 be two non-empty compact subsets of
a fuzzy metric space (𝑋,𝑀, *). The Hausdorff fuzzy metric ℋ𝑀 on 𝒦(𝑋)
is defined by

ℋ𝑀(𝐴,𝐵, 𝑡) = min{𝜔(𝐴,𝐵, 𝑡), �̄�(𝐴,𝐵, 𝑡)}
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where 𝜔(𝐴,𝐵, 𝑡) = inf
𝑎∈𝐴

sup
𝑏∈𝐵

𝑀(𝑎, 𝑏, 𝑡) and �̄�(𝐴,𝐵, 𝑡) = inf
𝑏∈𝐵

sup
𝑎∈𝐴

𝑀(𝑎, 𝑏, 𝑡)

and 𝑡 > 0.

Lemma 1. [24] Let (𝑋,𝑀, *) be a fuzzy metric space. Suppose {𝐴𝑖}𝑚𝑖=1,

{𝐵𝑖}𝑚𝑖=1 ⊆ 𝒦(𝑋), 𝐴 =
𝑚⋃︀
𝑖=1

𝐴𝑖 and 𝐵 =
𝑚⋃︀
𝑖=1

𝐵𝑖. Then, for all 𝑡 > 0,

ℋ𝑀(𝐴,𝐵, 𝑡) ⩾ min
1⩽𝑖⩽𝑚

ℋ𝑀(𝐴𝑖, 𝐵𝑖, 𝑡).

Theorem 1. [24] Let (𝑋,𝑀, *) be a fuzzy metric space. Then
(𝒦(𝑋),ℋ𝑀 , *) is a fuzzy metric space. Further, if (𝑋,𝑀, *) is a complete
fuzzy metric space, then (𝒦(𝑋),ℋ𝑀 , *) is also a complete fuzzy metric
space.

Definition 6. [2] Let 𝐹 : 𝑋 × 𝑋 → 𝑋 be a mapping. An element
(𝑥, 𝑦) ∈ 𝑋 ×𝑋 is said to be a coupled fixed point of 𝐹 if 𝐹 (𝑥, 𝑦) = 𝑥 and
𝐹 (𝑦, 𝑥) = 𝑦.

If 𝑥 = 𝑦, then the coupled fixed point is called a strong coupled fixed
point, in which case we have 𝐹 (𝑥, 𝑥) = 𝑥. The point (𝑥, 𝑥) ∈ 𝑋 ×𝑋 (or
simply 𝑥 ∈ 𝑋) is said to be a strong coupled fixed point.

Definition 7. [19] Let 𝐴 and 𝐵 be two non-empty subsets of 𝑋. A map-
ping 𝐹 : 𝑋 → 𝑋 is said to be cyclic (with respect to 𝐴 and 𝐵 ) if 𝐹 (𝐴) ⊂ 𝐵
and 𝐹 (𝐵) ⊂ 𝐴.

The following is the definition of coupling, which is a combination
of the ideas of cyclic mappings and coupled mappings. It is our main
instrument in this paper.

Definition 8. [4] Let 𝐴 and 𝐵 be two non-empty subsets of 𝑋. A
mapping 𝐹 : 𝑋 ×𝑋 → 𝑋 is said to be a coupling with respect to 𝐴 and
𝐵 if 𝐹 (𝑥, 𝑦) ∈ 𝐵 and 𝐹 (𝑦, 𝑥) ∈ 𝐴 whenever 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵.

Fractal generation by iterated system of functions is done through the
construction of the Hutchinson operator [15] in a fuzzy metric space. The
following is the definition of the Hutchinson operator in a fuzzy metric
space.

Definition 9. Let (𝑋,𝑀, *) be a fuzzy metric space and {𝐹𝑖; 𝑖 ∈ N𝑛}
be a finite collection of continuous couplings on 𝑋, each with respect to
two non-empty closed subsets 𝐴 and 𝐵 of 𝑋. The Hutchinson operator,
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corresponding to {𝐹𝑖; 𝑖 ∈ N𝑛}, ̂︀𝐺 : 𝒦(𝑋) × 𝒦(𝑋) → 𝒦(𝑋), is defined aŝ︀𝐺(𝐴,𝐵) =
𝑛⋃︀

𝑖=1

̂︀𝐹𝑖(𝐴,𝐵), where ̂︀𝐹𝑖(𝐴,𝐵) = {𝐹𝑖(𝑎, 𝑏) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

The above definition is valid only with respect to continuous couplings.
Borrowing the concept from [4], in the next two definitions we intro-

duce the following notions in the context of fuzzy metric space.

Definition 10. A Fuzzy Iterated Coupling System (FICS) consists of a
complete fuzzy metric space (𝑋,𝑀, *), two non-empty closed subsets 𝐴,𝐵
of 𝑋, and a finite collection of couplings 𝐹𝑖 : 𝑋 ×𝑋 → 𝑋 with respect to
𝐴,𝐵 for all 𝑖 ∈ N𝑛. We denote it by ⟨(𝑋,𝑀, *);𝐴,𝐵, 𝐹𝑖, 𝑖 ∈ N𝑛⟩.

Definition 11. Let (𝑋,𝑀, *) be a complete fuzzy metric space and̂︀𝑇 : 𝒦(𝑋) × 𝒦(𝑋) → 𝒦(𝑋) be a mapping. 𝐴 ∈ 𝒦(𝑋) is said to be a
strong coupled fractal of ̂︀𝑇 if ̂︀𝑇 (𝐴,𝐴) = 𝐴.

Definition 12. Let (𝑋,𝑀, *) be a fuzzy metric space and 𝐴 and 𝐵 be
two non-empty subsets of 𝑋. We call a coupling 𝐹 : 𝑋 × 𝑋 → 𝑋 with
respect to 𝐴 and 𝐵 a fuzzy contractive coupling if there exists 𝑘 ∈ (0, 1),
such that

𝑀 (𝐹 (𝑥, 𝑦), 𝐹 (𝑢, 𝑣), 𝑘𝑡) ⩾ (𝑀(𝑥, 𝑢, 𝑡))
1
2 * (𝑀(𝑦, 𝑣, 𝑡))

1
2 , (1)

where 𝑥, 𝑣 ∈ 𝐴 and 𝑢, 𝑦 ∈ 𝐵.

Here the constant 𝑘 is the contractivity factor of the coupling.

3. Coupled fixed-point results.

Theorem 2. Let 𝐴 and 𝐵 be two non-empty closed subsets of a com-
plete fuzzy metric space (𝑋,𝑀, *), satisfying (𝐹𝑀6) of Definition 2. Let
𝐹 : 𝑋 ×𝑋 → 𝑋 be a fuzzy contractive coupling with respect to 𝐴 and 𝐵.
If * is a t-norm, such that * ⩾ *𝑝, then 𝐴 ∩ 𝐵 ̸= 𝜑 and 𝐹 has a unique
strong coupled fixed point. Moreover, for arbitrary choice of 𝑥0 ∈ 𝐴 and
𝑦0 ∈ 𝐵, both sequences {𝑥𝑛}, {𝑦𝑛} constructed as 𝑥𝑛+1 = 𝐹 (𝑦𝑛, 𝑥𝑛) and
𝑦𝑛+1 = 𝐹 (𝑥𝑛, 𝑦𝑛) converge to the strong coupled fixed point.

Proof. From the construction of {𝑥𝑛} and {𝑦𝑛} it follows that for all
𝑛 ⩾ 0, 𝑥𝑛 ∈ 𝐴 and 𝑦𝑛 ∈ 𝐵.
Now,

𝑀(𝑥𝑛, 𝑦𝑛, 𝑡) =𝑀 (𝐹 (𝑦𝑛−1, 𝑥𝑛−1), 𝐹 (𝑥𝑛−1, 𝑦𝑛−1) , 𝑡) ⩾
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⩾
(︁
𝑀
(︁
𝑦𝑛−1, 𝑥𝑛−1,

𝑡

𝑘

)︁)︁ 1
2 *
(︁
𝑀
(︁
𝑥𝑛−1, 𝑦𝑛−1,

𝑡

𝑘

)︁)︁ 1
2
⩾

⩾
(︁
𝑀
(︁
𝑦𝑛−1, 𝑥𝑛−1,

𝑡

𝑘

)︁)︁ 1
2 *𝑝

(︁
𝑀
(︁
𝑥𝑛−1, 𝑦𝑛−1,

𝑡

𝑘

)︁)︁ 1
2
=

=𝑀
(︁
𝑥𝑛−1, 𝑦𝑛−1,

𝑡

𝑘

)︁
=𝑀

(︁
𝐹 (𝑦𝑛−2, 𝑥𝑛−2), 𝐹 (𝑥𝑛−2, 𝑦𝑛−2),

𝑡

𝑘

)︁
⩾

⩾
(︁
𝑀
(︁
𝑦𝑛−2, 𝑥𝑛−2,

𝑡

𝑘2

)︁)︁ 1
2 *
(︁
𝑀
(︁
𝑥𝑛−2, 𝑦𝑛−2,

𝑡

𝑘2

)︁)︁ 1
2
⩾

⩾
(︁
𝑀
(︁
𝑦𝑛−2, 𝑥𝑛−2,

𝑡

𝑘2

)︁)︁ 1
2 *𝑝

(︁
𝑀
(︁
𝑥𝑛−2, 𝑦𝑛−2,

𝑡

𝑘2

)︁)︁ 1
2
=

=𝑀
(︁
𝑥𝑛−2, 𝑦𝑛−2,

𝑡

𝑘2

)︁
. . . ⩾𝑀

(︁
𝑥0, 𝑦0,

𝑡

𝑘𝑛

)︁
.

Letting 𝑛→ ∞ in the above inequality and using (𝐹𝑀6), we get,

lim
𝑛→∞

𝑀(𝑥𝑛, 𝑦𝑛, 𝑡) = 1 for all 𝑡 > 0. (2)

Again for all 𝑛 ∈ N and 𝑡 > 0,

𝑀(𝑥𝑛+1, 𝑦𝑛, 𝑡) =𝑀 (𝐹 (𝑦𝑛, 𝑥𝑛), 𝐹 (𝑥𝑛−1, 𝑦𝑛−1), 𝑡) ⩾

⩾
(︁
𝑀
(︁
𝑥𝑛−1, 𝑦𝑛,

𝑡

𝑘

)︁)︁ 1
2 *
(︁
𝑀
(︁
𝑥𝑛, 𝑦𝑛−1,

𝑡

𝑘

)︁)︁ 1
2
⩾

⩾
(︁
𝑀
(︁
𝑥𝑛−1, 𝑦𝑛,

𝑡

𝑘

)︁)︁
*
(︁
𝑀
(︁
𝑥𝑛, 𝑦𝑛−1,

𝑡

𝑘

)︁)︁
= [t-norm is monotonic]

=𝑀
(︁
𝐹 (𝑦𝑛−2, 𝑥𝑛−2), 𝐹 (𝑥𝑛−1, 𝑦𝑛−1),

𝑡

𝑘

)︁
*𝑀
(︁
𝐹 (𝑦𝑛−1, 𝑥𝑛−1), 𝐹 (𝑥𝑛−2, 𝑦𝑛−2),

𝑡

𝑘

)︁
⩾

⩾

(︂(︁
𝑀
(︁
𝑥𝑛−1, 𝑦𝑛−2,

𝑡

𝑘2

)︁)︁ 1
2 *
(︁
𝑀
(︁
𝑥𝑛−2, 𝑦𝑛−1,

𝑡

𝑘2

)︁)︁ 1
2

)︂
*

*
(︂(︁

𝑀
(︁
𝑥𝑛−2, 𝑦𝑛−1,

𝑡

𝑘2

)︁)︁ 1
2 *
(︁
𝑀
(︁
𝑥𝑛−1, 𝑦𝑛−2,

𝑡

𝑘2

)︁)︁ 1
2

)︂
⩾

⩾

(︂(︁
𝑀
(︁
𝑥𝑛−1, 𝑦𝑛−2,

𝑡

𝑘2

)︁)︁ 1
2 *𝑝

(︁
𝑀
(︁
𝑥𝑛−2, 𝑦𝑛−1,

𝑡

𝑘2

)︁)︁ 1
2

)︂
*𝑝

*𝑝
(︂(︁

𝑀
(︁
𝑥𝑛−2, 𝑦𝑛−1,

𝑡

𝑘2

)︁)︁ 1
2 *𝑝

(︁
𝑀
(︁
𝑥𝑛−1, 𝑦𝑛−2,

𝑡

𝑘2

)︁)︁ 1
2

)︂
=

=𝑀
(︁
𝑥𝑛−1, 𝑦𝑛−2,

𝑡

𝑘2

)︁
*𝑝 𝑀

(︁
𝑥𝑛−2, 𝑦𝑛−1,

𝑡

𝑘2

)︁
=

=𝑀
(︁
𝐹 (𝑦𝑛−2, 𝑥𝑛−2), 𝐹 (𝑥𝑛−3, 𝑦𝑛−3),

𝑡

𝑘2

)︁
*𝑝

*𝑝 𝑀
(︁
𝐹 (𝑦𝑛−3, 𝑥𝑛−3), 𝐹 (𝑥𝑛−2, 𝑦𝑛−2),

𝑡

𝑘2

)︁
⩾
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⩾

(︂(︁
𝑀
(︁
𝑥𝑛−3, 𝑦𝑛−2,

𝑡

𝑘3

)︁)︁ 1
2 *
(︁
𝑀
(︁
𝑥𝑛−2, 𝑦𝑛−3,

𝑡

𝑘3

)︁)︁ 1
2

)︂
*𝑝

*𝑝
(︂(︁

𝑀
(︁
𝑥𝑛−2, 𝑦𝑛−3,

𝑡

𝑘3

)︁)︁ 1
2 *
(︁
𝑀
(︁
𝑥𝑛−3, 𝑦𝑛−2,

𝑡

𝑘3

)︁)︁ 1
2

)︂
⩾

⩾

(︂(︁
𝑀
(︁
𝑥𝑛−3, 𝑦𝑛−2,

𝑡

𝑘3

)︁)︁ 1
2 *𝑝

(︁
𝑀
(︁
𝑥𝑛−2, 𝑦𝑛−3,

𝑡

𝑘3

)︁)︁ 1
2

)︂
*𝑝

*𝑝
(︂(︁

𝑀
(︁
𝑥𝑛−2, 𝑦𝑛−3,

𝑡

𝑘3

)︁)︁ 1
2 *𝑝

(︁
𝑀
(︁
𝑥𝑛−3, 𝑦𝑛−2,

𝑡

𝑘3

)︁)︁ 1
2

)︂
=

=𝑀
(︁
𝑥𝑛−3, 𝑦𝑛−2,

𝑡

𝑘3

)︁
*𝑝 𝑀

(︁
𝑥𝑛−2, 𝑦𝑛−3,

𝑡

𝑘3

)︁
= . . . =

=𝑀
(︁
𝑥0, 𝑦1,

𝑡

𝑘𝑛

)︁
*𝑝 𝑀

(︁
𝑥1, 𝑦0,

𝑡

𝑘𝑛

)︁
. (3)

Proceeding in the same way as above with the sequence 𝑀(𝑥𝑛, 𝑦𝑛+1, 𝑡),
for all 𝑛 ∈ N and 𝑡 > 0, we get:

𝑀(𝑥𝑛, 𝑦𝑛+1, 𝑡) ⩾𝑀
(︁
𝑥0, 𝑦1,

𝑡

𝑘𝑛

)︁
*𝑝 𝑀

(︁
𝑥1, 𝑦0,

𝑡

𝑘𝑛

)︁
. (4)

For all 𝑛 ∈ N and 𝑡 > 0, let 𝛾𝑛(𝑡) =𝑀
(︁
𝑥0, 𝑦1,

𝑡
𝑘𝑛

)︁
*𝑝 𝑀

(︁
𝑥1, 𝑦0,

𝑡
𝑘𝑛

)︁
.

Using (3), (4) and (𝐹𝑀6), we get

lim
𝑛→∞

𝛾𝑛(𝑡) = 1 for all 𝑡 > 0.

Note that for 𝑚 > 𝑛 and 0 < 𝑘 < 1,

1 > 1− 𝑘𝑚−𝑛 = (1− 𝑘)(1 + 𝑘 + 𝑘2 + . . .+ 𝑘𝑚−𝑛−1).

Therefore, for every 𝑡 > 0,

𝑡 > 𝑡(1− 𝑘)(1 + 𝑘 + 𝑘2 + · · ·+ 𝑘𝑚−𝑛−1).

Next, we show that {𝑥𝑛} is a Cauchy sequence in 𝐴. For 𝑚 > 𝑛, we
consider the following two cases.

Case 𝐼 : 𝑚− 𝑛 is even.

𝑀(𝑥𝑛, 𝑥𝑚, 𝑡) ⩾𝑀(𝑥𝑛, 𝑥𝑚, 𝑡(1− 𝑘)(1 + 𝑘 + 𝑘2 + . . .+ 𝑘𝑚−𝑛−1)) ⩾

⩾𝑀(𝑥𝑛, 𝑦𝑛+1, 𝑡(1− 𝑘)) *𝑀(𝑦𝑛+1, 𝑥𝑛+2, 𝑡(1− 𝑘)𝑘) * · · · *
*𝑀(𝑥𝑚−2, 𝑦𝑚−1, 𝑡(1− 𝑘)𝑘𝑚−𝑛−2) *𝑀(𝑦𝑚−1, 𝑥𝑚, 𝑡(1− 𝑘)𝑘𝑚−𝑛−1) ⩾
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⩾
(︁
𝑀
(︁
𝑥0, 𝑦1,

𝑡(1−𝑘)
𝑘𝑛

)︁
*𝑝𝑀

(︁
𝑥1, 𝑦0,

𝑡(1−𝑘)
𝑘𝑛

)︁)︁
*
(︁
𝑀
(︁
𝑥0, 𝑦1,

𝑡(1− 𝑘)𝑘

𝑘𝑛+1

)︁)︁
*𝑝

*𝑝 𝑀
(︁
𝑥1, 𝑦0,

𝑡(1−𝑘)𝑘
𝑘𝑛+1

)︁
* · · · *𝑀

(︁
𝑥0, 𝑦1,

𝑡(1−𝑘)𝑘𝑚−𝑛−1

𝑘𝑚−1

)︁
*𝑝

*𝑝 𝑀
(︁
𝑥1, 𝑦0,

𝑡(1− 𝑘)𝑘𝑚−𝑛−1

𝑘𝑚−1

)︁
= (using (3), (4))

= 𝛾𝑛(𝑡(1− 𝑘)) * 𝛾𝑛(𝑡(1− 𝑘)) * · · · * 𝛾𝑛(𝑡(1− 𝑘))

𝑚−𝑛 times

.

Case 𝐼𝐼 : 𝑚− 𝑛 is odd.

𝑀(𝑥𝑛, 𝑥𝑚, 𝑡) ⩾

⩾𝑀
(︁
𝑥𝑛, 𝑥𝑚, 𝑡(1− 𝑘)

(︁
1+ 𝑘+ 𝑘2+ · · ·+ 𝑘𝑚−𝑛−2+

𝑘𝑚−𝑛−1

2
+
𝑘𝑚−𝑛−1

2

)︁)︁
⩾

⩾𝑀(𝑥𝑛, 𝑦𝑛+1, 𝑡(1− 𝑘)) *𝑀(𝑦𝑛+1, 𝑥𝑛+2, 𝑡(1− 𝑘)𝑘) * · · · *

*𝑀(𝑥𝑚−1, 𝑦𝑚, 𝑡(1− 𝑘)𝑘𝑚−𝑛−2) *𝑀
(︁
𝑥𝑚−1, 𝑦𝑚, 𝑡(1− 𝑘)

𝑘𝑚−𝑛−1

2

)︁
*

*𝑀
(︁
𝑦𝑚, 𝑥𝑚, 𝑡(1− 𝑘)

𝑘𝑚−𝑛−1

2

)︁
⩾

⩾

(︂
𝑀
(︁
𝑥0, 𝑦1,

𝑡(1− 𝑘)

𝑘𝑛

)︁
*𝑝 𝑀

(︁
𝑥1, 𝑦0,

𝑡(1− 𝑘)

𝑘𝑛

)︁)︂
*

*
(︂
𝑀
(︁
𝑥0, 𝑦1,

𝑡(1− 𝑘)𝑘

𝑘𝑛+1

)︁
*𝑝 𝑀

(︁
𝑥1, 𝑦0,

𝑡(1− 𝑘)𝑘

𝑘𝑛+1

)︁)︂
*

* · · · *
(︂
𝑀
(︁
𝑥0, 𝑦1,

𝑡(1− 𝑘)𝑘𝑚−𝑛−2

𝑘𝑚−2

)︁
*𝑝 𝑀

(︁
𝑥1, 𝑦0,

𝑡(1− 𝑘)𝑘𝑚−𝑛−2

𝑘𝑚−2

)︁)︂
*

*
(︂
𝑀
(︁
𝑥1, 𝑦0,

𝑡(1− 𝑘)𝑘𝑚−𝑛−1

2𝑘𝑚−1

)︁
*𝑝 𝑀

(︁
𝑥0, 𝑦1,

𝑡(1− 𝑘)𝑘𝑚−𝑛−1

2𝑘𝑚−1

)︁)︂
*

*𝑀
(︁
𝑥0, 𝑦0,

𝑡(1− 𝑘)𝑘𝑚−𝑛−1

2𝑘𝑚

)︁
=

(︀
using (2), (3) and (4)

)︀
= 𝛾𝑛(𝑡(1− 𝑘)) * 𝛾𝑛(𝑡(1− 𝑘)) * · · · * 𝛾𝑛

(︁𝑡(1− 𝑘)

2

)︁
𝑚−𝑛 times

*𝑀(𝑥0, 𝑦0,
𝑡(1− 𝑘)

2𝑘𝑛+1
).

Combining the above two cases and (𝐹𝑀6) and 𝛾𝑛(𝑡) → 1 as 𝑛 → ∞
for all 𝑡 > 0, we see that {𝑥𝑛} is a Cauchy sequence in 𝐴. A similar
approach can be taken to show that {𝑦𝑛} is also a Cauchy sequence in 𝐵.
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Since 𝐴,𝐵 are closed subsets, there exists 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵, such that

lim
𝑛→∞

𝑀(𝑥𝑛, 𝑥, 𝑡) = 1, ∀ 𝑡 > 0,

lim
𝑛→∞

𝑀(𝑦𝑛, 𝑦, 𝑡) = 1, ∀ 𝑡 > 0.
(5)

Now,

𝑀(𝑥, 𝑦, 𝑡) ⩾𝑀
(︁
𝑥, 𝑥𝑛,

𝑡− 𝑘𝑡

2

)︁
*𝑀(𝑥𝑛, 𝑦𝑛, 𝑘𝑡) *𝑀

(︁
𝑦𝑛, 𝑦,

𝑡− 𝑘𝑡

2

)︁
. (6)

Taking limit as 𝑛→ ∞ in the above inequality and using (2) and (5), we
get 𝑥 = 𝑦.

Therefore, 𝐴 ∩𝐵 ̸= 𝜑 and 𝑥 = 𝑦 ∈ 𝐴 ∩𝐵.
Also,

𝑀(𝑥𝑛, 𝐹 (𝑥, 𝑦), 𝑡)⩾𝑀(𝑥𝑛, 𝐹 (𝑥, 𝑦), 𝑘𝑡)=𝑀(𝐹 (𝑦𝑛−1, 𝑥𝑛−1), 𝐹 (𝑥, 𝑦), 𝑘𝑡)⩾

⩾ (𝑀(𝑦𝑛−1, 𝑥, 𝑡))
1
2*(𝑀(𝑥𝑛−1, 𝑦, 𝑡))

1
2 = (𝑀(𝑦𝑛−1, 𝑦, 𝑡))

1
2*(𝑀(𝑥𝑛−1, 𝑥, 𝑡))

1
2 .

Taking limit as 𝑛 → ∞ in the above inequality and using (5), we get
𝑥𝑛 → 𝐹 (𝑥, 𝑥). Since the topology of the fuzzy metric space is Hausdorff,
we have 𝐹 (𝑥, 𝑥) = 𝑥. Thus (𝑥, 𝑥) is a strong coupled fixed point of 𝐹 .

To show the uniqueness of the strong coupled fixed point, let
𝑧 ̸= 𝑥∈𝑋 be another strong coupled fixed point of 𝐹 and let it be such
that 𝐹 (𝑧, 𝑧) = 𝑧. Then

𝑀(𝑥, 𝑧, 𝑡) =𝑀(𝐹 (𝑥, 𝑥), 𝐹 (𝑧, 𝑧), 𝑡) ⩾
(︁
𝑀
(︁
𝑥, 𝑧,

𝑡

𝑘

)︁)︁ 1
2*
(︁
𝑀
(︁
𝑥, 𝑧,

𝑡

𝑘

)︁)︁ 1
2
⩾

⩾𝑀
(︁
𝑥, 𝑧,

𝑡

𝑘

)︁
. (7)

By a repeated application of (7), we have for all 𝑛:

𝑀(𝑥, 𝑧, 𝑡) ⩾𝑀
(︁
𝑥, 𝑧,

𝑡

𝑘

)︁
⩾𝑀

(︁
𝑥, 𝑧,

𝑡

𝑘2

)︁
⩾ · · · ⩾𝑀

(︂
𝑥, 𝑧,

𝑡

𝑘𝑛

)︂
.

Taking limit as 𝑛 → ∞ in the above inequality, using (𝐹𝑀6), we get
𝑀(𝑥, 𝑧, 𝑡) = 1. Hence, 𝑥 = 𝑧. Thus, 𝐹 has a unique strong coupled fixed
point in 𝐴 ∩𝐵. □
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Example 1. Let 𝑋 = R and 𝐴 =
[︀
0, 1

2

]︀
, 𝐵 =

[︀
−1

2
, 0
]︀
. Consider

the fuzzy metric space (𝑋,𝑀, *), where * is the product t-norm and
𝑀(𝑥, 𝑦, 𝑡) = 𝑒−

|𝑥−𝑦|
𝑡 . Let 𝐹 : 𝑋 ×𝑋 → 𝑋 be a mapping given by

𝐹 (𝑥, 𝑦) =

{︃
𝑦−𝑥
6

if (𝑥, 𝑦) ∈ [−1
2
, 1
2
]× [−1

2
, 1
2
],

2𝑥 otherwise.

From the definition, it is immediate that 𝐹 is a coupling with respect to
𝐴 and 𝐵. We show that 𝐹 is a fuzzy contractive coupling with respect to
𝐴 and 𝐵.

Let 𝑘 = 1
3
. For 𝑥, 𝑣 ∈ 𝐴 and 𝑦, 𝑢 ∈ 𝐵, we have

(𝑀(𝑥, 𝑢, 𝑡))
1
2 = 𝑒−

|𝑥−𝑢|
2𝑡 and (𝑀(𝑦, 𝑣, 𝑡))

1
2 = 𝑒−

|𝑦−𝑣|
2𝑡

and

𝑀 (𝐹 (𝑥, 𝑦), 𝐹 (𝑢, 𝑣), 𝑘𝑡) = 𝑒−
|𝐹 (𝑥,𝑦)−𝐹 (𝑢,𝑣)|

𝑘𝑡 = 𝑒−
|(𝑦−𝑥)−(𝑣−𝑢)|

6𝑘𝑡 = 𝑒−
|(𝑢−𝑥)+(𝑦−𝑣)|

2𝑡 .

Also,

|(𝑢− 𝑥) + (𝑦 − 𝑣)| ⩽ |𝑢− 𝑥|+ |𝑦 − 𝑣|

or,
|(𝑢− 𝑥) + (𝑦 − 𝑣)|

2𝑡
⩽

|𝑢− 𝑥|+ |𝑦 − 𝑣|
2𝑡

or, 𝑒−
|(𝑢−𝑥)+(𝑦−𝑣)|

2𝑡 ⩾ 𝑒−
|𝑢−𝑥|+|𝑦−𝑣|

2𝑡

or, 𝑀 (𝐹 (𝑥, 𝑦), 𝐹 (𝑢, 𝑣), 𝑘𝑡) ⩾ (𝑀(𝑥, 𝑢, 𝑡))
1
2 * (𝑀(𝑦, 𝑣, 𝑡))

1
2 .

Combining the above two cases, we conclude that 𝐹 is a fuzzy con-
tractive coupling with contractivity factor 𝑘 = 1

3
. Thus all conditions of

Theorem 2 are satisfied. Due to this Theorem, there exists a strong cou-
pled fixed point of 𝐹 , which is (0,0); that is, 𝐹 (0,0) = 0 and also 0 ∈ 𝐴∩𝐵,
which is therefore non-null.

Corollary 1. Let (𝑋,𝑀, *) be a complete fuzzy metric space satisfying
(𝐹𝑀6) of Definition 2 with * being stronger than the product t-norm.
Let 𝐹 : 𝑋 ×𝑋 → 𝑋 be a mapping satisfying the following inequality for
all 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑋:

𝑀 (𝐹 (𝑥, 𝑦), 𝐹 (𝑢, 𝑣), 𝑘𝑡) ⩾ (𝑀(𝑥, 𝑢, 𝑡))
1
2 * (𝑀(𝑦, 𝑣, 𝑡))

1
2 . (8)

Then 𝐹 has a strong coupled fixed point.
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Proof. Take 𝐴 = 𝐵 = 𝑋 in Theorem 2. The result follows from Theo-
rem 2. □

Remark 1. In Example 1, 𝐹 is a fuzzy contractive coupling, but the
inequality (1) is not satisfied for all 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑋. For example, take
𝑥 = 1

2
, 𝑦 = −1

2
, 𝑢 = 3

2
, 𝑣 = −3

2
. Then

𝑀(𝐹 (𝑥, 𝑦), 𝐹 (𝑢, 𝑣), 𝑘𝑡) =𝑀(−1

6
, 3, 𝑘𝑡) = 𝑒−

19
6𝑘𝑡 .

(𝑀(𝑥, 𝑢, 𝑡))
1
2 * (𝑀(𝑦, 𝑣, 𝑡))

1
2 = 𝑒−

1
𝑡 .

If inequality (1) holds, 𝑒−
19
6𝑘𝑡 ⩾ 𝑒−

1
𝑡 , which implies 𝑘 ⩾ 19

6
> 1. This

indicates that Theorem 2 properly contains its Corollary 1.
Also, note that the above result is valid for several types of t-norms,

like the minimum t-norm, the ℋ-type t-norm, etc, which are stronger than
the product t-norm.

Note 1. There exists an alternative viewpoint of coupled (and, more
generally, n-tuple) fixed points, which is applicable in certain cases. A
coupled fixed-point problem can be viewed as an equivalent problem in
product spaces, provided certain conditions are satisfied. A good discus-
sion on this subject is provided by Soleimani Rad et al. [27] and, also,
in other subsequent works like [7], [10], [22], [25]. Even in earlier works,
like [3], [5], this approach already has been adopted. One limitation of
this approach is that a metric-type function compatible with that existing
in the original space must be introduced in the product space. This is
straightforward for the metric space. If (𝑋, 𝑑) is a metric space, then the
function 𝐷 given as

𝐷 ((𝑥, 𝑦), (𝑢, 𝑣)) = 𝑑(𝑥, 𝑢) + 𝑑(𝑦, 𝑣). (9)

defines a metric on 𝑋 ×𝑋. But the above is not a universal method and,
therefore, is not a unique prescription for all kinds of spaces. In the present
case, if we consider the fuzzy metric space (𝑋,𝑀, *𝑝) with 𝑀 defined as

𝑀(𝑥, 𝑦, 𝑡) =
𝑡

𝑡+ 𝑑(𝑥, 𝑦)
, where 𝑑 is a prior given metric on 𝑋, then there

can be the following two ways of generating fuzzy metric on the product
space 𝑋 ×𝑋. the first is 𝑀1((𝑥, 𝑦),(𝑢, 𝑣), 𝑡) =𝑀(𝑥, 𝑢, 𝑡) *𝑀(𝑦, 𝑣, 𝑡). The

other is 𝑀2((𝑥, 𝑦),(𝑢, 𝑣), 𝑡) =
𝑡

𝑡+ 𝑑(𝑥, 𝑢) + 𝑑(𝑦, 𝑣)
, which is the standard

fuzzy metric corresponding to the metric defined on𝑋×𝑋 in (9). As fuzzy
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metrics, they are different, as can be seen by assuming 𝑥 = 1, 𝑦 = 2, 𝑢 = 3,
𝑣 = 4. The second limitation is the difficulty of expressing the coupled
inequality in the product space. Both problems may be non-trivial. In
this paper, we do not consider this alternative approach to coupled fixed
points.

4. Generations of fractals.

Theorem 3. Let (𝑋,𝑀, *) be a fuzzy metric space satisfying (𝐹𝑀6)
of Definition 2, 𝐴,𝐵 be two non-empty subsets of 𝑋, 𝐹 :𝑋×𝑋 → 𝑋
be a continuous fuzzy contractive coupling with respect to 𝐴 and 𝐵
with contractivity factor 𝑘. Then ̂︀𝐹 : 𝒦(𝑋) × 𝒦(𝑋) → 𝒦(𝑋) defined
as ̂︀𝐹 (𝐴,𝐵) = {𝐹 (𝑎, 𝑏) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} is a fuzzy contractive coupling with
respect to 𝒦(𝐴) and 𝒦(𝐵) in the fuzzy metric space (𝒦(𝑋),ℋ𝑀 ,*) with
the same contractivity factor.

Proof. From the construction of ̂︀𝐹 (𝐴,𝐵) it follows that for all 𝐶 ∈ 𝒦(𝐴)

and𝐷 ∈ 𝒦(𝐵), ̂︀𝐹 (𝐶,𝐷) ∈ 𝒦(𝐵) and ̂︀𝐹 (𝐷,𝐶) ∈ 𝒦(𝐴). Let 𝐶1, 𝐶2 ∈ 𝒦(𝐴)
and 𝐷1, 𝐷2 ∈ 𝒦(𝐵). Then

𝜔
(︀ ̂︀𝐹 (𝐶1, 𝐷1), ̂︀𝐹 (𝐶2, 𝐷2), 𝑘𝑡

)︀
=

= 𝜔 ({𝐹 (𝑐1, 𝑑1) : 𝑐1 ∈ 𝐶1, 𝑑1 ∈ 𝐷1}, {𝐹 (𝑐2, 𝑑2) : 𝑐2 ∈ 𝐶2, 𝑑2 ∈ 𝐷2}, 𝑘𝑡) =
= inf

𝑐1∈𝐶1
𝑑1∈𝐷1

sup
𝑐2∈𝐶2
𝑑2∈𝐷2

𝑀(𝐹 (𝑐1, 𝑑1), 𝐹 (𝑐2, 𝑑2), 𝑘𝑡) ⩾

⩾ inf
𝑐1∈𝐶1
𝑑1∈𝐷1

sup
𝑐2∈𝐶2
𝑑2∈𝐷2

(𝑀(𝑐1, 𝑐2, 𝑡))
1
2 * (𝑀(𝑑1, 𝑑2, 𝑡))

1
2 = (𝑏𝑦 (1))

=
(︁
inf

𝑐1∈𝐶1

sup
𝑐2∈𝐶2

𝑀(𝑐1, 𝑐2, 𝑡)
)︁ 1

2 *
(︁

inf
𝑑1∈𝐷1

sup
𝑑2∈𝐷2

𝑀(𝑑1, 𝑑2, 𝑡)
)︁ 1

2
=

= (𝜔(𝐶1, 𝐶2, 𝑡))
1
2*(𝜔(𝐷1, 𝐷2, 𝑡))

1
2 ⩾ (ℋ𝑀(𝐶1, 𝐶2, 𝑡))

1
2*(ℋ𝑀(𝐷1, 𝐷2, 𝑡))

1
2 .

Similarly,

�̄�
(︁ ̂︀𝐹 (𝐶1, 𝐷1), ̂︀𝐹 (𝐶2, 𝐷2), 𝑘𝑡

)︁
⩾ (ℋ𝑀(𝐶1, 𝐶2, 𝑡))

1
2 * (ℋ𝑀(𝐷1, 𝐷2, 𝑡))

1
2 .

Therefore,

ℋ𝑀

(︁ ̂︀𝐹 (𝐶1, 𝐷1), ̂︀𝐹 (𝐶2, 𝐷2), 𝑘𝑡
)︁
=

= min
{︁
𝜔
(︁ ̂︀𝐹 (𝐶1, 𝐷1), ̂︀𝐹 (𝐶2, 𝐷2), 𝑘𝑡

)︁
, �̄�
(︁ ̂︀𝐹 (𝐶1, 𝐷1), ̂︀𝐹 (𝐶2, 𝐷2), 𝑘𝑡

)︁}︁
⩾
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⩾ (ℋ𝑀(𝐶1, 𝐶2, 𝑡))
1
2 * (ℋ𝑀(𝐷1, 𝐷2, 𝑡))

1
2 .

Hence, ̂︀𝐹 : 𝒦(𝑋)×𝒦(𝑋) → 𝒦(𝑋) is a fuzzy contractive coupling with re-
spect to 𝒦(𝐴) and 𝒦(𝐵) in the Hausdorff fuzzy metric space (𝒦(𝑋),ℋ𝑀 , *)
with contractivity factor 𝑘. □

Lemma 2. Let (𝑋,𝑀, *) be a fuzzy metric space satisfying (𝐹𝑀6) of
Definition 2. Let 𝐹1, 𝐹2, . . . , 𝐹𝑛 be a finite number of continuous fuzzy
contractive couplings on 𝑋 ×𝑋 with respect to 𝐴 and 𝐵, each with con-
tractivity factor 𝑘1, 𝑘2, . . . , 𝑘𝑛, respectively. Then the Hutchinson operator̂︀𝐺 : 𝒦(𝑋)× 𝒦(𝑋) → 𝒦(𝑋) (Definition 9) is a fuzzy contractive coupling
in the fuzzy metric space (𝒦(𝑋),ℋ𝑀 , *) with respect to 𝒦(𝐴) and 𝒦(𝐵)
with contractivity factor 𝑘 = max{𝑘𝑛 ;𝑛 ∈ N𝑛}.

Proof. From the definition of ̂︀𝐺, its follows that for all 𝐶 ∈ 𝒦(𝐴) and
𝐷 ∈ 𝒦(𝐵), ̂︀𝐺(𝐶,𝐷) ∈ 𝒦(𝐵) and ̂︀𝐺(𝐷,𝐶) ∈ 𝒦(𝐴). Let 𝐶1, 𝐶2 ∈ 𝒦(𝐴)
and 𝐷1, 𝐷2 ∈ 𝒦(𝐵);

ℋ𝑀

(︀ ̂︀𝐺(𝐶1, 𝐷1), ̂︀𝐺(𝐶2, 𝐷2), 𝑘𝑡
)︀
=ℋ𝑀

(︂ 𝑛⋃︁
𝑖=1

̂︀𝐹𝑖(𝐶1, 𝐷1),
𝑛⋃︁

𝑖=1

̂︀𝐹𝑖(𝐶2, 𝐷2), 𝑘𝑡

)︂
⩾

⩾ min
1⩽𝑖⩽𝑛

ℋ𝑀

(︁ ̂︀𝐹𝑖(𝐶1, 𝐷1), ̂︀𝐹𝑖(𝐶2, 𝐷2), 𝑘𝑡
)︁
. (by Lemma 1)

Again, since each ̂︀𝐹𝑖 is a fuzzy contractive coupling, we have, for
𝑖 = 1, 2, . . . , 𝑛,

ℋ𝑀

(︀ ̂︀𝐹𝑖(𝐶1, 𝐷1), ̂︀𝐹𝑖(𝐶2, 𝐷2), 𝑘𝑡
)︀
⩾ ℋ𝑀

(︀ ̂︀𝐹𝑖(𝐶1, 𝐷1), ̂︀𝐹𝑖(𝐶2, 𝐷2), 𝑘𝑖𝑡
)︀
⩾

⩾ (ℋ𝑀(𝐶1, 𝐶2, 𝑡))
1
2 * (ℋ𝑀(𝐷1, 𝐷2, 𝑡))

1
2 . (by (1))

Therefore,

min
1⩽𝑖⩽𝑛

ℋ𝑀

(︀ ̂︀𝐹𝑖(𝐶1, 𝐷1), ̂︀𝐹𝑖(𝐶2, 𝐷2), 𝑘𝑡
)︀
⩾(ℋ𝑀(𝐶1, 𝐶2, 𝑡))

1
2*(ℋ𝑀(𝐷1, 𝐷2, 𝑡))

1
2 .

Hence,

ℋ𝑀

(︀ ̂︀𝐺 (𝐶1, 𝐷1) , ̂︀𝐺(𝐶2, 𝐷2), 𝑘𝑡
)︀
⩾ (ℋ𝑀(𝐶1, 𝐶2, 𝑡))

1
2 * (ℋ𝑀(𝐷1, 𝐷2, 𝑡))

1
2 .

This completes the proof of the theorem. □

Theorem 4. Let (𝑋,𝑀, *) be a complete fuzzy metric space satisfy-
ing (𝐹𝑀6) of Definition 2. Consider a Fuzzy Iterated Coupling System
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⟨(𝑋,𝑀, *);𝐴,𝐵, 𝐹𝑖, 𝑖 ∈ N𝑛⟩ consisting of a finite number of continuous
fuzzy contractive couplings on 𝑋 × 𝑋 with respect to two closed sub-
sets 𝐴,𝐵 of 𝑋, and let ̂︀𝐺 : 𝒦(𝑋) × 𝒦(𝑋) → 𝒦(𝑋) be the corresponding
Hutchinson operator (Definition 9); then there exists a unique strong cou-
pled fractal for ̂︀𝐺, that is, there exists a 𝑃 ∈ 𝒦(𝐴) ∩ 𝒦(𝐵), such that̂︀𝐺(𝑃, 𝑃 ) = 𝑃 .

Further, both the iterations {𝐴𝑛} and {𝐵𝑛} constructed as 𝐵𝑛+1 =

= ̂︀𝐺(𝐴𝑛, 𝐵𝑛), 𝐴𝑛+1 = ̂︀𝐺(𝐵𝑛, 𝐴𝑛), 𝑛 ⩾ 0, with 𝐴0 ∈ 𝒦(𝐴) and 𝐵0 ∈ 𝒦(𝐵)
being arbitrarily chosen, converge to the strong coupled fractal.

Proof. By Lemma 2, ̂︀𝐺 is a fuzzy contractive coupling with contractiv-
ity factor 𝑘 = max{𝑘𝑛 : 𝑛 ∈ N𝑛}. Again, since (𝑋,𝑀, *) is complete,
so (𝒦(𝑋),ℋ𝑀 ,*) is complete. On the other hand, since 𝐴,𝐵 are closed
subsets of 𝑋, 𝒦(𝐴) and 𝒦(𝐵) also are closed subsets of the fuzzy met-
ric space (𝒦(𝑋),ℋ𝑀 , *). The theorem then follows by an application of
Theorem 2. □

Example 2. Let 𝑋 = R and 𝐴 = [−2, 2], 𝐵 = [−1, 2]. Consider
the fuzzy metric space (𝑋,𝑀, *), where * is the minimum t-norm and
𝑀(𝑥, 𝑦, 𝑡) = 𝑒−

|𝑥−𝑦|
𝑡 .

Let 𝐹1, 𝐹2 : 𝑋 × 𝑋 → 𝑋 be given by 𝐹1(𝑥, 𝑦) =
𝑦−𝑥
9

, 𝐹2(𝑥, 𝑦) = 1 +
+ 𝑦−𝑥

9
. For 𝑥 ∈ 𝐴 = [−2, 2] and 𝑦 ∈ 𝐵 = [−1, 2], 𝐹1(𝑥, 𝑦), 𝐹2(𝑥, 𝑦) ∈

𝐵 and 𝐹1(𝑦, 𝑥), 𝐹2(𝑦, 𝑥) ∈ 𝐴. Then 𝐹1, 𝐹2 are couplings with respect
to 𝐴,𝐵. Then the ICS ⟨(𝑋,𝑀, *);𝐴,𝐵, 𝐹𝑖, 𝑖 ∈ N2⟩ generates a strong
coupled fractal.

Let 𝐴0 = 𝐵0 =
[︀
−1

2
, 3
2

]︀
. Then the first four steps of the iteration

leading to the strong coupled fractal are given in the following:

𝐴1 = 𝐵1 =
[︀
−1

2
, 3
2

]︀
.

𝐴2 = 𝐹 (𝐴1, 𝐴1) =
[︀
−2

9
, 2
9

]︀
∪
[︀
7
9
, 11

9

]︀
.

𝐴3=𝐹 (𝐴2, 𝐴2)=
[︀
−13

81
,− 5

81

]︀
∪
[︀
− 4

81
, 4
81

]︀
∪
[︀

5
81
, 13
81

]︀
∪
[︀
68
81
, 76
81

]︀
∪
[︀
77
81
, 85
81

]︀
∪
[︀
86
81
, 94
81

]︀
.

𝐴4 = 𝐹 (𝐴3, 𝐴3) =

=
[︀
−107

729
,− 55

729

]︀
∪
[︀
− 26

729
, 26
729

]︀
∪
[︀

55
729
, 107
729

]︀
∪
[︀
622
729
, 674
729

]︀
∪
[︀
703
729
, 755
729

]︀
∪
[︀
784
729
, 836
729

]︀
.

The first four iterations are illustrated in Figure 1.
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Figure 1: Iterations of the ICS in Example 2.

Example 3. Let 𝑋 = R and 𝐴 = [−2, 2], 𝐵 = [−1, 2]. Consider
the fuzzy metric space (𝑋,𝑀, *), where * is the minimum t-norm and
𝑀(𝑥, 𝑦, 𝑡) = 𝑒−

|𝑥−𝑦|
𝑡 .

Let 𝐹1, 𝐹2 : 𝑋 ×𝑋 → 𝑋, given by 𝐹1(𝑥, 𝑦) =
𝑦−𝑥
16

, 𝐹2(𝑥, 𝑦) = 1 + 𝑦−𝑥
16

.
Then the ICS ⟨(𝑋,𝑀, *);𝐴,𝐵, 𝐹𝑖, 𝑖 ∈ N2⟩ has an attractor.

Let 𝐴1 = 𝐵1 =
[︀
−1

2
, 3
2

]︀
. Then the first few iterations of the same are

as follows:
𝐴1 = 𝐵1 =

[︀
−1

2
, 3
2

]︀
.

𝐴2 = 𝐹 (𝐴1, 𝐴1) =
[︀
−1

8
, 1
8

]︀
∪
[︀
7
8
, 9
8

]︀
.

𝐴3=𝐹 (𝐴2, 𝐴2)=
[︀
− 1

16
,− 3

64

]︀
∪
[︀
− 1

64
, 1
64

]︀
∪
[︀

3
64
, 1
16

]︀
∪
[︀
15
16
, 61
64

]︀
∪
[︀
63
64
, 65
64

]︀
∪
[︀
67
64
,17
16

]︀
.

𝐴4=𝐹 (𝐴3, 𝐴3)=
[︀
− 9

128
,− 35

512

]︀
∪
[︀
− 69

1024
,− 59

1024

]︀
∪
[︀
− 29

512
,− 7

128

]︀
∪

∪
[︀
− 1

128
,− 3

512

]︀
∪
[︀
− 5

1024
, 5
1024

]︀
∪
[︀

3
512
, 1
128

]︀
∪
[︀

7
128
, 29
512

]︀
∪
[︀

59
1024

, 69
1024

]︀
∪

∪
[︀

35
512
, 9
128

]︀
∪
[︀
119
128
, 477
512

]︀
∪
[︀

955
1024

, 965
1024

]︀
∪
[︀
483
512
, 121
128

]︀
∪
[︀
127
128
, 509
512

]︀
∪
[︀
1019
1024

, 1029
1024

]︀
∪

∪
[︀
515
512
, 129
128

]︀
∪
[︀
135
128
, 541
512

]︀
∪
[︀
1083
1024

, 1093
1024

]︀
∪
[︀
547
512
, 137
128

]︀
.

Remark 2. A comparison between Example 2 and Example 3 reveals an
important feature in the iteration process. As an instance at the fifth
stage of iteration, we have a set consisting of six intervals in the first case,
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whereas in the second case we have a set consisting of eighteen intervals.
This shows that even if we are making the same initial choice, different
Iterated Coupled Systems can produce very different types of iterations.
This is a remarkable feature of the method of fractal generation obtained
through Theorem 4.

5. Conclusion. Fuzzy fixed point theory has its special character-
istics. Due to the in-built flexibility of the fuzzy concepts, more types
of contractions can be introduced in a fuzzy metric space compared to
the corresponding study in an ordinary metric space. Fractal generation
in Hutchinson-Barnsley’s Theory utilizes contractions of various kinds.
So, it is clear that this theory can be successfully utilized for the above-
mentioned purpose in fuzzy metric spaces by the use of different types
of contractions. In the present context, couplings are introduced, investi-
gated for their fixed point properties, and applied for fractal generation in
fuzzy metric spaces. It is possible that research in the similar ways with
other types of contractive conditions might yield interesting results. This
is supposed to be our future work.
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