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REGULAR GROWTH OF DIRICHLET SERIES OF THE
CLASS 𝐷(Φ) ON CURVES OF BOUNDED 𝐾-SLOPE

Abstract. We study the asymptotic behavior of the sum of en-
tire Dirichlet series with positive exponents on curves of a bounded
slope going in a certain way to infinity. For entire transcendental
functions of finite order, Polia showed that if the density of the
sequence of exponents is equal to zero, then for any curve going
to infinity there is an unbounded sequence of points on which the
logarithm of the modulus of the sum of the series is equivalent to
the logarithm of the maximum of the modulus. Later, these results
were completely transferred by I. D. Latypov to entire Dirichlet
series of finite order and finite lower order by Ritt. Further gener-
alization was obtained in the works of N. N. Yusupova–Aitkuzhina
to the more general dual classes of Dirichlet series defined by the
convex majorant. In this paper, we obtain necessary and sufficient
conditions for the exponents under which the logarithm of the mod-
ulus of the sum of any Dirichlet series from one such class on a curve
of bounded slope is equivalent to the logarithm of the maximum
term on an asymptotic set whose upper density is not less than a
positive number depending only on the curve.
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1. Introduction. The problem investigated here goes back to the
well-known Polya problem [12].

Let

𝑓(𝑧) =
∞∑︁
𝑛=0

𝑎𝑛𝑧
𝑝𝑛 (1)
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be an entire transcendental function, 𝑃 = {𝑝𝑛} be a sequence of natural
numbers having a density ∆, i.e.,

lim
𝑛→∞

𝑛

𝑝𝑛
= ∆(𝑃 ) := ∆

exists.
Polya [12] showed that if ∆ = 0, then in each angle {𝑧 : | arg(𝑧−𝛼)| ⩽ 𝛿},
𝛿 > 0, the function 𝑓 has the same order as in the whole plane. The
corresponding result for Dirichlet series

𝐹 (𝑠) =
∞∑︁
𝑛=1

𝑎𝑛𝑒
𝜆𝑛𝑠, 0 < 𝜆𝑛 ↑ ∞, (2)

absolutely converging in the whole plane, is proved in [13]: if for a sequence
Λ = {𝜆𝑛} the conditions ∆ = 0 and 𝜆𝑛+1−𝜆𝑛 ⩾ ℎ > 0, 𝑛 ⩾ 1, are satisfied,
then 𝑅-order of the function 𝐹 on the positive ray R+ = [0,∞) is equal
to 𝑅-order 𝜌𝑅 of the function 𝐹 in the whole plane. A more general result
is proved in [2], where, in particular, it is shown that if ∆ = 0 and the
condensation index

𝛿 = lim
𝑛→∞

1

𝜆𝑛
ln
⃒⃒⃒ 1

𝑄′(𝜆𝑛)

⃒⃒⃒
, 𝑄(𝜆) =

∞∏︁
𝑛=1

(︁
1− 𝜆2

𝜆2𝑛

)︁
,

of the sequence Λ is equal to zero, then 𝜌𝑅 = 𝜌𝛾, where

𝜌𝛾 = lim
𝑠∈𝛾, 𝑠→∞

ln ln |𝐹 (𝑠)|
𝜎

, 𝜎 = Re 𝑠,

is the Ritt order on the curve 𝛾 going to infinity, so that if 𝑠 ∈ 𝛾 and
𝑠→ ∞, then Re 𝑠→ +∞.

The most general, but somewhat different result is established in the
article [7]. In order to formulate it, we will introduce the appropriate
notation and definitions.

Let Γ = {𝛾} be a family of all curves going to infinity so that if 𝑠 ∈ 𝛾
and 𝑠→ ∞, then Re 𝑠→ +∞.

We denote by 𝐷(Λ) the class of entire functions 𝐹 representable as
Dirichlet series (2) in the whole plane, and by 𝐷(Λ,𝑅) a subclass of 𝐷(Λ)
consisting of functions 𝐹 having finite order 𝜌𝑅(𝐹 ) by Ritt:

𝜌𝑅(𝐹 ) = lim
𝜎→+∞

ln ln𝑀𝐹 (𝜎)

𝜎
, 𝑀𝐹 (𝜎) = sup

|𝑡|<∞
|𝐹 (𝜎 + 𝑖𝑡)|.
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For 𝐹 ∈ 𝐷(Λ), 𝛾 ∈ Γ, we assume

𝑑(𝐹 ; 𝛾)
𝑑𝑒𝑓
= lim

𝑠∈𝛾, 𝑠→∞

ln |𝐹 (𝑠)|
ln𝑀𝐹 (Re𝑠)

, 𝑑(𝐹 ) = inf
𝛾∈Γ

𝑑(𝐹 ; 𝛾).

Denote by 𝐿 the class of all continuous and unboundedly increasing
positive functions on [0,∞).

The sequence {𝑏𝑛} (𝑏𝑛 ̸= 0 for 𝑛 ⩾ 𝑁) is called 𝑊 -normal (more
precisely, 𝑊 (ln)-normal) if there is a function 𝜃 ∈ 𝐿, such that [7]

lim
𝑥→∞

1

ln𝑥

𝑥∫︁
1

𝜃(𝑡)

𝑡2
𝑑𝑡 = 0, − ln |𝑏𝑛| ⩽ 𝜃(𝜆𝑛), 𝑛 ⩾ 𝑁.

The Weierstrass product

𝑄(𝑧) =
∞∏︁
𝑛=1

(︁
1− 𝑧2

𝜆2𝑛

)︁
, 0 < 𝜆𝑛 ↑ ∞

is known to be an entire function of the exponential type if and only if the
sequence Λ has a finite upper density

∆ := ∆(Λ) = lim
𝑛→∞

𝑛

𝜆𝑛
<∞.

In [7] the following result is proved:

Theorem 1. Let the sequence Λ have finite upper density. Assume that
the sequence {𝑄′(𝜆𝑛)} is 𝑊–normal. In order for the equality 𝑑(𝐹 ) = 1
to be valid for every function 𝐹 ∈ 𝐷(Λ, 𝑅), the condition

lim
𝑥→∞

1

ln𝑥

∑︁
𝜆𝑛⩽𝑥

1

𝜆𝑛
= 0 (3)

is necessary and sufficient.

Let the entire function 𝑓 of finite order have the form (1). If the
sequence 𝑃 has density ∆ = 0, then 𝑑(𝑓) = 1 (𝑑(𝑓) is an analog of the
value 𝑑(𝐹 ), which is determined by all possible curves arbitrarily going to
infinity). This fact was first established by Polia in [12]. Note that the
equality 𝑑(𝑓) = 1 follows from the more general Theorem 1. Indeed, since
∆ = 0, then, obviously,

lim
𝑥→∞

1

ln𝑥

∑︁
𝑝𝑛⩽𝑥

1

𝑝𝑛
= 0.
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Since ∆ = 0, and 𝑝𝑛 ∈ N, then, as it is known, the condensation index
(see, for example, [11])

𝛿 = lim
𝑛→∞

1

𝑝𝑛
ln
⃒⃒⃒ 1

𝑄′(𝑝𝑛)

⃒⃒⃒
= 0.

This means that there exists a function 𝜃 ∈ 𝐿, 𝜃(𝑥) = 𝑜(𝑥) for 𝑥 → ∞,
such that

− ln |𝑄′(𝑝𝑛)| ⩽ 𝜃(𝑝𝑛), 𝑛 ⩾ 1.

So, the sequence {𝑄′(𝑝𝑛)} is 𝑊 -normal (𝑊 (ln)-normal).
Finally, if 𝑓 is an entire function of finite order, then, assuming 𝑧 = 𝑒𝑠,

we notice that

𝐹 (𝑠) = 𝑓(𝑒𝑠) =
∞∑︁
𝑛=1

𝑎𝑛𝑒
𝑝𝑛𝑠

is an entire function of finite 𝑅-order. Therefore, 𝑑(𝑓) = 𝑑(𝐹 ), and every-
thing follows from Theorem 1.

However, from the fact that 𝑑(𝐹 ) = 1, generally speaking, it does not
follow that the equality 𝜌𝑅(𝐹 ) = 𝜌𝛾 is fulfilled for the Ritt orders of the
function 𝐹 in the whole plane and on the curve 𝛾 ∈ Γ. It turns out that
if in Theorem 1 the condition (3) is replaced by a stronger requirement

lim
𝑥→∞

1

ln𝑥

∑︁
𝜆𝑛⩽𝑥

1

𝜆𝑛
= 0,

then 𝜌𝑅(𝐹 ) = 𝜌𝛾 for any function 𝐹 ∈ 𝐷(Λ, 𝑅) (see [8]).
As in [8], a more general situation is considered here; namely, the class

of Dirichlet series (2) defined by some convex growth majorant is studied.
For curves 𝛾 ∈ Γ having a bounded slope, a stronger asymptotic estimate
than the equality 𝑑(𝐹 ) = 1 obtained in [8] for functions from the same
class, is proved.

By definition, the curve 𝛾 ∈ Γ, given by the equation 𝑦 = 𝑔(𝑥),
𝑥 ∈ R+ = [0,+∞), has a bounded slope if

sup
𝑥1,𝑥2∈R
𝑥1 ̸=𝑥2

⃒⃒⃒𝑔(𝑥2)− 𝑔(𝑥1)

𝑥2 − 𝑥1

⃒⃒⃒
= 𝐾 <∞. (4)

Condition (4) means that absolute values of tangents of all chords of the
curve 𝛾 do not exceed 𝐾. In this case, 𝛾 is called a curve of the bounded
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𝐾-slope. In a number of papers, a close relationship was found between
the regularity of the growth of the sum of the Dirichlet series (2) on 𝛾 ∈ Γ
and the incompleteness of the exponent system

{︀
𝑒𝜆𝑛𝑧

}︀
on arcs 𝛾′ ⊂ 𝛾,

especially with the strong incompleteness of this exponential system in
the vertical strip (see [3], [6], [9]). It should be noted that the results
of [6], [9] on the incompleteness of the system

{︀
𝑒𝜆𝑛𝑧

}︀
on arcs can be

applied to the study of uniqueness theorems and asymptotic properties of
entire Dirichlet series (2) without any restrictions on the growth of 𝑀𝐹 (𝜎),
i.e., in the most general case.

The purpose of this paper is to show that, under the same conditions
on Λ as in [8], if

lim
𝜎→+∞

ln𝑀𝐹 (𝜎)

Φ(𝜎)
<∞

(Φ is some convex function on R+), then for any curve 𝛾 ∈ Γ of bounded
𝐾-slope at 𝑠 ∈ 𝛾, 𝜎 = Re 𝑠 → +∞ by some asymptotic set 𝐴 ⊂ R+,
whose upper density is 𝐷𝐴 ⩾ 1/

√
𝐾2 + 1, the asymptotic equality of the

Polya
ln |𝐹 (𝑠)| ∼ ln𝑀𝐹 (𝜎), 𝑠 ∈ 𝛾, 𝜎 = Re𝑠→ +∞,

is valid.
It is clear that this relationship is significantly better than the equality

𝑑(𝐹 ) = 1.

2. Auxiliary statements. Main results. Let Λ= {𝜆𝑛} (0 < 𝜆𝑛 ↑
∞) be a sequence having finite upper density 𝐷. Then 𝑄(𝑧) is an entire
function of exponential type of not higher than 𝜋𝐷*, where 𝐷* is the
averaged upper density of the sequence Λ:

𝐷* = lim
𝑡→∞

𝑁(𝑡)

𝑡
, 𝑁(𝑡) =

𝑡∫︁
0

𝑛(𝑥)

𝑥
𝑑𝑥, 𝑛(𝑡) =

∑︁
𝜆𝑗⩽𝑡

1.

Always 𝐷* ⩽ 𝐷 ⩽ 𝑒𝐷* (see, for example, [11], [10]).
Let 𝐿 be the class of all continuous and unboundedly increasing on R+

positive functions, Φ be a convex function of 𝐿,

𝐷𝑚(Φ) = {𝐹 ∈ 𝐷(Λ) : ln𝑀𝐹 (𝜎) ⩽ Φ(𝑚𝜎)} , 𝑚 ∈ N,

where 𝑀𝐹 (𝜎) = sup
|𝑡|<∞

|𝐹 (𝜎 + 𝑖𝑡)|. Let
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𝐷(Φ) =
∞⋃︁

𝑚=1

𝐷𝑚(Φ).

Suppose that the function Φ introduced above is such that

lim
𝑥→∞

𝜙(𝑥2)

𝜙(𝑥)
<∞, (5)

where 𝜙 is the inverse function of Φ. For our purposes, we need the
following class of monotonic functions:

𝑊 (𝜙) =
{︁
𝑤 ∈ 𝐿 :

√
𝑥 ⩽ 𝑤(𝑥), lim

𝑥→∞

1

𝜙(𝑥)

𝑥∫︁
1

𝑤(𝑡)

𝑡2
𝑑𝑡 = 0

}︁
.

Note that the restriction
√
𝑥 ⩽ 𝑤(𝑥) in this definition does not limit the

generality. It is introduced for convenience only. Let Γ = {𝛾} be the
family of curves 𝛾 introduced above, and let, for 𝐹 ∈ 𝐷(Λ),

𝑑(𝐹 ; 𝛾)
𝑑𝑒𝑓
= lim

𝑠∈𝛾, 𝑠→∞

ln |𝐹 (𝑠)|
ln𝑀𝐹 (Re𝑠)

, 𝑑(𝐹 ) = inf
𝛾∈Γ

𝑑(𝐹 ; 𝛾). (6)

By 𝜇(𝜎) denote the maximal term of the series (2):

𝜇(𝜎) = max
𝑛⩾1

{|𝑎𝑛|𝑒𝜆𝑛𝜎}, 𝜎 = Re 𝑠.

In [8], the criterion of equality 𝑑(𝐹 ) = 1 is proved for any function 𝐹
from the class 𝐷(Φ), where

𝐷(Φ) =
∞⋃︁

𝑚=1

𝐷𝑚(Φ),

𝐷𝑚(Φ) = {𝐹 ∈ 𝐷(Λ) : ∃{𝜎𝑛} : 0 < {𝜎𝑛} ↑ ∞, ln𝑀𝐹 (𝜎𝑛) ⩽ Φ(𝑚𝜎𝑛)}, 𝑚 ⩾ 1.

We will say that the sequence
{︀
𝑄

′
(𝜆𝑛)

}︀
is 𝑊 (𝜙)–normal if there exists

𝜃 ∈ 𝐿, such that

lim
𝑥→∞

1

𝜙(𝑥)

𝑥∫︁
1

𝜃(𝑡)

𝑡2
𝑑𝑡 = 0, − ln

⃒⃒
𝑄′(𝜆𝑛)

⃒⃒
⩽ 𝜃(𝜆𝑛), 𝑛 ⩾ 1. (7)

In [8] the following result is proved:
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Theorem 2. Let the sequence Λ have finite upper density. Assume that
the sequence {𝑄′(𝜆𝑛)} is 𝑊 (𝜙)-normal.

For the equality 𝑑(𝐹 ) = 1 to be valid for any function 𝐹 ∈ 𝐷(Φ), it is
necessary and sufficient for the condition

lim
𝑥→∞

1

𝜙(𝑥)

∑︁
𝜆𝑛⩽𝑥

1

𝜆𝑛
= 0 (8)

to be valid.

For functions 𝐹 ∈ 𝐷(Φ) on condition

lim
𝑥→∞

1

𝜙(𝑥)

∑︁
𝜆𝑛⩽𝑥

1

𝜆𝑛
= 0

the dual theorem is also true [8].
Note that in the definition of the class 𝐷(Φ) you can, for example,

consider the function

Φ(𝜎) = exp exp . . . exp⏟  ⏞  
𝑘

(𝜎), 𝑘 ⩾ 1.

Hence, from Theorem 2 the corresponding result from [7] follows, proved
for the case of 𝑘 = 1.

Let us formulate the main result. To do this, we introduce another
class of functions.

Let Φ be the function defined above, 𝜙 be the inverse function of Φ,

𝑊 (𝜙) =
{︁
𝑤 ∈ 𝐿 :

√
𝑥 ⩽ 𝑤(𝑥), lim

𝑥→∞

𝑤(𝑥)

𝑥𝜙(𝑥)
= 0, lim

𝑥→∞

1

𝜙(𝑥)

𝑥∫︁
1

𝑤(𝑡)

𝑡2
𝑑𝑡 = 0

}︁
.

The following result is valid:

Theorem 3. Let the upper density of the sequence Λ be finite, and the
sequence {𝑄′(𝜆𝑛)} be 𝑊 (𝜙)-normal. If condition (8) holds, then for any
function 𝐹 ∈ 𝐷(Φ) and for any curve 𝛾 ∈ Γ of a bounded 𝐾-slope the
asymptotic equality

ln |𝐹 (𝑠)| = (1+o(1)) ln𝑀𝐹 (𝜎), 𝑠 ∈ 𝛾, Re 𝑠 = 𝜎 ∈ 𝐴, 𝜎 → +∞, (9)

is valid. Here 𝐴 ⊂ R+ is such that

𝐷𝐴 = lim
𝜎→+∞

mes(𝐴 ∩ [0, 𝜎])

𝜎
⩾

1√
1 +𝐾2

.
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Here are the lemmas used to prove Theorem 3.

Lemma 1. Let Φ ∈ 𝐿, and for the function 𝜙, the inverse of Φ, condi-
tion (5) be satisfied. Let, further, 𝑢(𝜎) be non-decreasing, positive, and
continuous on [0,∞), at that lim

𝜎→∞
𝑢(𝜎) = ∞, and for some 𝑚 ∈ N the

estimate 1

𝑢(𝜎) ⩽ lnΦ(𝑚𝜎)

is valid.
Suppose that the function 𝑤 belongs to the class 𝑊 (𝜙), and for the

sequence {𝑥𝑛}, 0 < 𝑥𝑛 ↑ ∞,

lim
𝑛→∞

1

𝑥𝑛

𝑥𝑛∫︁
1

𝑤(𝑡)

𝑡2
𝑑𝑡 = 0.

If 𝑣 = 𝑣(𝜎) is the solution of the equation

𝑤(𝑣) = 𝑒𝑢(𝜎),

and the numbers 𝜏𝑛 are the roots of the equation 𝑣(𝜏) = 𝑥𝑛, 𝑛 ⩾ 1, then
for 𝜎 → ∞ outside of some set 𝐸 ⊂ [0,∞),

mes(𝐸 ∩ [0, 𝜏𝑛]) = 𝑜(𝜙(𝑣(𝜏𝑛))), 𝜏𝑛 → ∞,

an estimate

𝑢

(︂
𝜎 +

𝑤(𝑣(𝜎))

𝑣(𝜎)

)︂
< 𝑢(𝜎) + 𝑜(1)

is valid.

Lemma 1 is proved in [1].

Lemma 2. Let the function 𝑔(𝑧) be analytic and bounded in a circle
𝐷(0, 𝑅) = {𝑧 : |𝑧| < 𝑅}, |𝑔(0)| ⩾ 1. If 0 < 𝑟 < 1 − 𝑁−1, 𝑁 > 1, then
there is no more than a countable set of circles

𝑉𝑛 = {𝑧 : |𝑧 − 𝑧𝑛| ⩽ 𝜌𝑛} ,
∑︁
𝑛

𝜌𝑛 ⩽ 𝑅𝑟𝑁(1− 𝑟), (10)

1In [1], lemma 1 was proved when the estimate 𝑢(𝜎) ⩽ 𝐶Φ(𝜎) is valid, although
only the inequality 𝑢(𝜎) ⩽ Φ(𝑚𝜎) is used in its proof. Therefore, the formulation of
Lemma 1 is given here in a more general form.
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such that for all 𝑧 from the circle {𝑧 : |𝑧| ⩽ 𝑟𝑅}, but outside of
⋃︀
𝑛

𝑉𝑛, the

estimate

ln |𝑔(𝑧)| ⩾ 𝑅− |𝑧|
𝑅 + |𝑧|

ln |𝑔(0)| − 5𝑁𝐿, (11)

is valid, where

𝐿 =
1

2𝜋

2𝜋∫︁
0

ln+
⃒⃒
𝑔(𝑅𝑒𝑖𝜃)

⃒⃒
𝑑𝜃 − ln |𝑔(0)|.

Lemma 2 is proved in [4].

3. Proof of Theorem 3.
Sequence {𝑄′(𝜆𝑛)} is 𝑊 (𝜙)–normal, and Λ = {𝜆𝑛} has finite upper

density. Therefore,

lim
𝑥→∞

𝑁(𝑥)

𝑥
<∞, − ln |𝑄′(𝜆𝑛)| ⩽ 𝜃(𝜆𝑛), 𝑛 ⩾ 1, 𝜃 ∈ 𝑊 (𝜙).

Since (see [8])

sup
𝑥>0

⃒⃒⃒ ∑︁
𝜆𝑛⩽𝑥

1

𝜆𝑛
−

𝑥∫︁
0

𝑁(𝑡)

𝑡2

⃒⃒⃒
= 𝑎 <∞,

then, taking into account (7), (8) from here we get

lim
𝑥→∞

1

𝜙(𝑥)

𝑥∫︁
0

𝑁(𝑡)

𝑡2
𝑑𝑡 = 0.

Let us assume that 𝑤(𝑡) = max(
√
𝑡, 𝑁(𝑒𝑡) + 𝜃(𝑡)), where 𝜃 is a function

from condition (7). It is clear that 𝑤 ∈ 𝑊 (𝜙). Then, obviously, there is a
function 𝑤* ∈ 𝑊 (𝜙), such that 𝑤*(𝑥) = 𝛽(𝑥)𝑤(𝑥), 𝛽 ∈ 𝐿.

Let 𝑣 = 𝑣(𝜎) be the solution of the equation

𝑤*(𝑣) = 3 ln𝜇(𝜎). (12)

Let us assume that

ℎ =
𝑤(𝑣(𝜎))

𝑣(𝜎)
, ℎ(1) =

𝑤1(𝑣)

𝑣
, ℎ* =

𝑤*(𝑣(𝜎))

𝑣(𝜎)
,
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where 𝑤1(𝑣) =
√︀
𝛽(𝑥)𝑤(𝑥). Let

𝑅𝑣 =
∑︁
𝜆𝑗>𝑣

|𝑎𝑗| 𝑒𝜆𝑗𝜎, 𝑣 = 𝑣(𝜎).

Since the sequence Λ has finite upper density, then 𝐶 =
∞∑︀
𝑛=1

𝜆−2
𝑛 <∞.

Therefore, the estimate (see, for example, [3])

𝑅𝑣 ⩽ 𝐶𝜇(𝜎 + ℎ*) exp [−(1 + 𝑜(1))𝑤*(𝑣)] (13)

is correct.
Consider the function 𝑢(𝜎) = ln 3 + ln ln𝜇(𝜎). Since 𝜇(𝜎) ⩽ 𝑀𝐹 (𝜎)

and 𝐹 ∈ 𝐷(Φ), then there is 𝑚 ⩾ 1, such that

𝑢(𝜎) ⩽ lnΦ(𝑚𝜎).

Therefore, taking into account (12), we have:

ln𝑤*(𝑣(𝜎)) = 𝑢(𝜎) ⩽ lnΦ(𝑚𝜎), 𝑚 ⩾ 1.

Also,
1

𝜎
⩽

𝑚

𝜙(𝑤*(𝑣(𝜎)))
, 𝑚 ⩾ 1. (14)

Taking into account condition (5) and the fact that
√
𝑥 ⩽ 𝑤*(𝑥), we have:

𝜙(𝑥) ⩽ 𝐶1𝜙(𝑤
*(𝑥)), 𝑥 ⩾ 𝑥0, 0 < 𝐶1 <∞. (15)

As a result, from (14) and (15) we get the estimates

1

𝜎
⩽

𝐶2

𝜙(𝑣(𝜎))
, 0 < 𝐶2 <∞. (16)

Further, since 𝑤* ∈ 𝑊 (𝜙), then

lim
𝑥→∞

𝑤*(𝑥)

𝑥𝜙(𝑥)
= 0, (17)

and for some sequence {𝑥𝑛}, 0 < 𝑥𝑛 ↑ ∞:

lim
𝑛→∞

1

𝜙(𝑥𝑛)

𝑥𝑛∫︁
1

𝑤*(𝑡)

𝑡2
𝑑𝑡 = 0. (18)
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Applying Lemma 1 for the functions 𝑢 and 𝑤* and considering (16), as
well as the definition of the numbers 𝜏𝑗, 𝑗 ⩾ 1, for 𝜎 → ∞, outside of
some set 𝐸1 ⊂ [0,∞):

mes(𝐸1 ∩ [0, 𝜏𝑗]) ⩽ 𝑜(𝜙(𝑣(𝜏𝑗))) = 𝑜(𝜏𝑗), 𝜏𝑗 → ∞, (19)

we get
𝜇(𝜎 + 3ℎ*(𝜎)) = 𝜇(𝜎)1+𝑜(1). (20)

Hence, from (13), (20) we learn that when 𝜎 → ∞,

𝑅𝑣 ⩽ 𝐶𝜇(𝜎)1+𝑜(1) exp [−𝑤*(𝑣)(1 + 𝑜(1))] = 𝜇(𝜎)−2(1+𝑜(1)) (21)

outside of 𝐸1. It follows that 𝜆𝜈(𝜎) ⩽ 𝑣(𝜎) for 𝜎 ⩾ 𝜎1, 𝜎 /∈ 𝐸1, where 𝜆𝜈(𝜎)
is the central exponent (𝜈(𝜎) is the central index) of the series (2).

In the same way as (21), it is shown that when 𝜎 → ∞, then outside
of the same set 𝐸1 (see [6]):∑︁

𝜆𝑗>𝑣(𝜎)

|𝑎𝑗|𝑒𝜆𝑗(𝜎+ℎ(1)) ⩽ 𝜇−2(1+𝑜(1))(𝜎). (22)

The Borel-Nevanlinna ratio (20) allows us to do this, since ℎ(1)(𝜎) =
= 𝑜(ℎ*(𝜎)) for 𝜎 → ∞ (properties (17), (18) are necessary when proving
Lemma 1).

Let
𝐹𝑎(𝑠) =

∑︁
𝜆𝑛⩽𝑎

𝑎𝑛𝑒
𝜆𝑛𝑠, 𝑠 = 𝜎 + 𝑖𝑡.

Then, for 𝜆𝑛 ⩽ 𝑎, we have (see [11]):

𝑎𝑛 = 𝑒−𝛼𝜆𝑛
1

2𝜋𝑖

∫︁
𝐶

𝜙𝑛(𝑡)𝐹𝑎(𝑡+ 𝛼)𝑑𝑡, (23)

where 𝛼 is an arbitrary parameter,

𝜙𝑛(𝑡) =
1

𝑄′
𝑎(𝜆𝑛)

∞∫︁
0

𝑄𝑎(𝜆)

𝜆− 𝜆𝑛
𝑒−𝜆𝑡𝑑𝜆, 𝑄𝑎(𝜆) =

∏︁
𝜆𝑛⩽𝑎

(︁
1− 𝜆2

𝜆2𝑛

)︁
, (24)

and 𝐶 is any closed contour, covering 𝐷: the conjugate diagram of 𝑄𝑎(𝜆).
But 𝑄𝑎(𝜆) is the polynomial, therefore, 𝐷 = {0}.



14 N. N. Aitkuzhina, A. M. Gaisin, R. A. Gaisin

We assume 𝑎 = 𝑣(𝜎), 𝛼 = 𝜎+ 𝑖𝑡, where 𝑡 is such that 𝛼 ∈ 𝛾. As for 𝐶,
lets us take the contour {𝑡 : |𝑡| = ℎ(1)}, where ℎ(1) = ℎ(1)(𝜎) = ℎ*(𝜎)√

𝛽(𝑣(𝜎))
.

Further, by assumption,

− ln |𝑄′(𝜆𝑛)| ⩽ 𝜃(𝜆𝑛) ⩽ 𝑤(𝜆𝑛), 𝑛 ⩾ 1.

Therefore, taking into account equality (12), we obtain that for all
𝜆𝑛 ⩽ 𝑣(𝜎) for 𝜎 → ∞ we have

1

|𝑄′
𝑣(𝜆𝑛)|

⩽
1

|𝑄′(𝜆𝑛)|
⩽ 𝑒𝜃(𝜆𝑛) ⩽ 𝑒𝑤(𝑣) = 𝑒𝑜(𝑤

*(𝑣)) = 𝜇(𝜎)𝑜(1).

Then, from (23), (24) we see that for all 𝜆𝑛 ⩽ 𝑣(𝜎) for 𝜎 → ∞ outside
of 𝐸1

|𝑎𝑛|𝑒𝜆𝑛𝜎 ⩽

⩽ 𝜇(𝜎)𝑜(1)ℎ(1)
[︁

max
|𝜉−𝛼|⩽ℎ(1)

|𝐹 (𝜉)|+
∑︁
𝜆𝑗>𝑣

|𝑎𝑗| 𝑒𝜆𝑗(𝜎+ℎ(1))
]︁ ∞∫︁

0

⃒⃒⃒ 𝑄𝑣(𝜆)

𝜆− 𝜆𝑛

⃒⃒⃒
|𝑒−𝜆𝑡||𝑑𝜆|,

(25)

where 𝛼 = 𝜎 + 𝑖𝑡 ∈ 𝛾.
It is not difficult to show that (see [5])

max
|𝜆|=𝑟

⃒⃒⃒ 𝑄𝑣(𝜆)

𝜆− 𝜆𝑛

⃒⃒⃒
⩽𝑀(1)𝑀𝑣(𝑟), (26)

where 𝑀(1) = max
|𝑧|=1

|𝑄(𝑧)|, 𝑀𝑣(𝑟) = max
|𝑧|=𝑟

|𝑄𝑣(𝑧)|.

Since 𝜆𝜈(𝜎) ⩽ 𝑣(𝜎) outside of 𝐸1 for 𝜎 ⩾ 𝜎′, taking into account (22),
(26), from (25) for 𝜎 → ∞ outside of 𝐸1 we get:

𝜇(𝜎)1+𝑜(1) ⩽ ℎ(1)[ max
|𝜉−𝛼|⩽ℎ(1)

|𝐹 (𝜉)|+ 𝜇(𝜎)−2(1+𝑜(1))]

∞∫︁
0

𝑀𝑣(𝑟)𝑒
−𝑟ℎ(1)

𝑑𝑟. (27)

Further, taking into account the definitions of the quantities 𝑣 = 𝑣(𝜎),
ℎ(1) = ℎ(1)(𝜎), and also inequalities 𝑛(𝑥) ⩽ 𝑁(𝑒𝑥), ln(1+ 𝑥2) < 𝑥, 𝑥 > 0,
we have:



Regular growth of Dirichlet series 15

ln𝑀(𝑟) = 𝑛(𝑣) ln

(︂
1 +

𝑟2

𝑣2

)︂
+ 2𝑟2

𝑣∫︁
0

𝑛(𝑡)

𝑡(𝑡2 + 𝑟2)
𝑑𝑡 ⩽

⩽
𝑛(𝑣)

𝑣
𝑟 + 2𝑁(𝑣) = 𝑜(1)ℎ(1)𝑟 + 𝑜(1) ln𝜇(𝜎).

Hence, from (27) we obtain that for 𝜎 → ∞ outside 𝐸1

𝜇(𝜎)1+𝑜(1) ⩽ max
|𝜉−𝛼|⩽ℎ(1)

|𝐹 (𝜉)| = |𝐹 (𝜉*)|, (28)

where |𝜉*−𝛼| = ℎ(1), 𝛼 = 𝜎+𝑖𝑡 ∈ 𝛾. Taking into account the estimate (26),
for 𝜎 → ∞ outside of 𝐸1 we also have

𝜇(𝜎) ⩽𝑀𝐹 (𝜎) ⩽𝑀𝐹 (𝜎 + 2ℎ*) ⩽
∞∑︁
𝑛=1

|𝑎𝑛|𝑒𝜆𝑛(𝜎+2ℎ*) ⩽

⩽ 𝜇(𝜎 + 3ℎ*)
[︁
𝑛(𝑣) +

∑︁
𝜆𝑗>𝑣(𝜎)

𝑒−ℎ*𝜆𝑗

]︁
< 𝜇(𝜎)1+𝑜(1). (29)

Let 𝐵 = R+∖𝐸1, ℎ = 𝑤(𝑣(𝜎))/𝑣(𝜎). Then there is a sequence {𝜎𝑗},
𝜎𝑗 ∈ 𝐵, 𝜎𝑗 ↑ 0, 𝜎𝑗 + ℎ𝑗 ⩽ 𝜎𝑗+1, 𝑗 ⩾ 1, such that (see [4])

𝐵 ⊂
∞⋃︁
𝑗=1

[𝜎𝑗 − ℎ𝑗,𝜎𝑗 + ℎ𝑗] ,

where ℎ𝑗 = 𝑤(𝑣𝑗)/𝑣𝑗, 𝑣𝑗 = 𝑣(𝜎𝑗), 𝑗 ⩾ 1.
Let us assume that 𝑔(𝑧) = 𝐹 (𝑧 + 𝜉*). From (28) it can be seen

that |𝑔(0)| ⩾ 1 when 𝜎 ⩾ 𝜎′′ > 𝜎′ outside of 𝐸1. We apply Lemma 1
to the function 𝑔(𝑧), assuming in (28) that ℎ(1) = ℎ

(1)
𝑗 =

𝑤(𝑣𝑗)

𝑣𝑗

√︀
𝛽(𝑣𝑗),

𝛼𝑗 = 𝜎𝑗 + 𝑖𝑡𝑗, and assuming in the estimates (10), (11) that 𝑁 = 4,
𝑟 = 1/

√︀
𝛽(𝑣𝑗), 𝑅 = ℎ*𝑗 , where ℎ*𝑗 = 𝑤*(𝑣𝑗)/𝑣𝑗, 𝑗 ⩾ 𝑗1. Then in the circle

{𝑧 : |𝑧| ⩽ ℎ
(1)
𝑗 }, but outside of the exceptional circles 𝑉𝑛𝑗 with the total

sum of radii ∑︁
𝑛

𝜌𝑛 ⩽
ℎ𝑗
𝛽𝑗
, 𝛽𝑗 = 𝛽(𝑣(𝜎𝑗)), 𝑗 ⩾ 𝑗1, (30)

evaluation (11) is valid. Since the circle 𝐾𝑗 = {𝑧 : |𝑧| ⩽ ℎ𝑗} is contained
in the circle {𝑧 : |𝑧| ⩽ ℎ

(1)
𝑗 }, then for all 𝑧 ∈ 𝐾𝑗, but outside the circles



16 N. N. Aitkuzhina, A. M. Gaisin, R. A. Gaisin

𝑉𝑛𝑗 with the total sum of radii satisfying the estimate (30), for 𝑗 → ∞ we
get

ln |𝑔(𝑧)| ⩾
[︂
1 + 𝑜(1)− 20𝐿

ln |𝑔(0)|

]︂
ln |𝑔(0)|. (31)

Taking into account (28), (29), as well as the fact that |𝑔(0)| ⩾ 1, we are
convinced that for 𝑗 → ∞, an asymptotic equality

𝐿

ln |𝑔(0)|
= 𝑜(1),

holds, where

𝐿 =
1

2𝜋

2𝜋∫︁
0

ln+ |𝑔(𝑅𝑒𝑖𝜃)|𝑑𝜃 − ln |𝑔(0)|,

𝑔(0) = 𝐹 (𝜉*), |Re 𝜉* − 𝜎𝑗| ⩽ ℎ(1), 𝛼𝑗 = 𝜎𝑗 + 𝑖𝑡𝑗 ∈ 𝛾.

Hence, from (31) for all 𝑧 from the circle {𝑧 : |𝑧| ⩽ ℎ𝑗}, but outside the
circles 𝑉𝑛𝑗 for 𝑗 → ∞ we have:

ln |𝑔(𝑧)| ⩾ (1 + o(1)) ln |𝑔(0)|. (32)

But then, taking into account that 𝑔(𝑧) = 𝐹 (𝑧 + 𝜉*), and using esti-
mates (28) – (32), we get that for all 𝑧 from the circle {𝑧 : |𝑧 − 𝛼𝑗| ⩽ ℎ𝑗},
𝛼𝑗 = 𝜎𝑗 + 𝑖𝑡𝑗, but outside of exceptional circles 𝑉𝑛𝑗 with the total sum of
radii no more than ℎ𝑗

𝛽𝑗
,

ln |𝐹 (𝑧)| > (1 + o(1)) ln𝜇(𝜎𝑗), 𝑗 → ∞. (33)

Let 𝐸2 be the projection of all exceptional circles of the set⋃︀
𝑗

{𝑧 : |𝑧 − 𝛼𝑗| ⩽ ℎ𝑗} on 𝐵, where 𝛼𝑗 = 𝜎𝑗 + 𝑖𝑡𝑗, 𝐵 ⊂
∞⋃︀
𝑗=1

[𝜎𝑗 − ℎ𝑗,𝜎𝑗 + ℎ𝑗],

𝜎𝑗 ∈ 𝐵, 𝜎𝑗 + ℎ𝑗 ⩽ 𝜎𝑗+1, 𝑗 ⩾ 1. Let us show that 𝐷𝐸2 = 0. Indeed, let
𝜎𝑗 ⩽ 𝜎 < 𝜎𝑗+1. According to (17), ℎ𝑗 ⩽ ℎ

(1)
𝑗 < ℎ*𝑗 = 𝑜(𝜎𝑗), 𝑗 → ∞. And

since 𝛽𝑗 ↑ ∞ for 𝑗 → ∞, then, obviously,

lim
𝜎→∞

mes(𝐸2 ∩ [0, 𝜎])

𝜎
= 0.

So, 𝐷𝐸2 = 0, and, therefore, 𝑑𝐸 = 0, where 𝐸 = 𝐸1 ∪ 𝐸2.
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The estimate (33) takes place in each circle 𝐾𝑗 = {𝑧 : |𝑧 − 𝛼𝑗| ⩽ ℎ𝑗},
𝛼𝑗 = 𝜎𝑗 + 𝑖𝑡𝑗 ∈ 𝛾, but outside the exceptional circles 𝑉𝑛, the total sum of
whose radii satisfies the estimate (30).

Let us estimate the measure of the projection 𝑝𝑗 of the arc 𝛾𝑗 = 𝛾∪𝐾𝑗

on the segment [𝜎𝑗 − ℎ𝑗, 𝜎𝑗 + ℎ𝑗]. Denoting the right-hand end of the
arc 𝛾𝑗 by 𝜂 + 𝑖𝜇 (it lies on the circle 𝜕𝐾𝑗), we have:

ℎ2𝑗 = (𝜂 − 𝜎𝑗)
2 + [𝑔(𝜂)− 𝑔(𝜎𝑗)]

2 ⩽ (𝐾2 + 1)(𝜂 − 𝜎𝑗)
2

(we assume that the arc 𝛾 of a bounded 𝐾-slope is given by the equa-
tion 𝑦 = 𝑔(𝑥), 𝑥 ∈ R+). As you can see, the projection length of 𝛾𝑗
on [𝜎𝑗, 𝜎𝑗 + ℎ𝑗] is not less than ℎ𝑗/

√
𝐾2 + 1. The same is true for the

projection of 𝛾𝑗 on [𝜎𝑗 − ℎ𝑗, 𝜎𝑗]. So,

mes 𝑝𝑗 ⩾
2√

𝐾2 + 1
ℎ𝑗.

It follows that the upper density 𝐷𝑃 of the set 𝑃 =
∞⋃︀
𝑗=1

𝑝𝑗 is not less

than 1/
√
𝐾2 + 1.

Let 𝐴 = 𝑃 ∖ 𝐸. On this set, the asymptotic estimates (29), (33)
are valid (𝐴 is called an asymptotic set). It follows that when 𝑠 ∈ 𝛾,
Re 𝑠 = 𝜎 → ∞ by the set 𝐴

ln |𝐹 (𝑠)| = (1 + 𝑜(1)) ln𝜇(𝜎) = (1 + 𝑜(1)) ln𝑀𝐹 (𝜎).

It remains to estimate 𝐷𝐴. We have:

𝐷𝐴 = lim
𝜎→∞

mes(𝐴 ∩ [0, 𝜎])

𝜎
⩾

⩾ lim
𝜏𝑗→∞

mes(𝑃 ∩ [0, 𝜏𝑗])

𝜏𝑗
− lim

𝜏𝑗→∞

mes(𝐸 ∩ [0, 𝜏𝑗])

𝜏𝑗
⩾

1√
𝐾2 + 1

.

Here {𝜏𝑗} is the sequence defined above.
Theorem 3 is proved.
The conditions of Theorem 3 are also necessary so that for any function

𝐹 ∈ 𝐷(Φ) on some set 𝐴 ⊂ R+ having positive upper density 𝐷𝐴, the
asymptotic equality (9) was fulfilled (see [8]).
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