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CHARACTERIZATION OF POLYNOMIALS VIA A
RAISING OPERATOR

Abstract. This paper investigates a first-order linear differential
operator J¢, where & = (&1,&) € C?\(0,0), and D := %. The
operator is defined as J¢ := x(xD + 1) + {1 + &D, with I rep-
resenting the identity on the space of polynomials with complex
coefficients. The focus is on exploring the J¢-classical orthogonal
polynomials and analyzing properties of the resulting sequences.
This work contributes to the understanding of these polynomials
and their characteristics.
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1. Introduction. An orthogonal polynomial sequence {P,},>o is
called classical, if {P/},>0 is also orthogonal. This characterization is
essentially the Hahn-Sonine characterization (see [9], [14]) of the classical
orthogonal polynomials.

In a more general setting, let O be a linear operator acting on the
space of polynomials, which sends polynomials of degree n to polynomials
of degree n + ng, where ng is a fixed integer (n > 0if ng > 0 and n > ng if
ny < 0). We call a sequence {p, },>o of orthogonal polynomials O-classical
if {Opy}nso is also orthogonal.

In this paper, we consider the raising operator, Je := x(xD +1) + &1+
+&D, where £ = (£, &) is a nonzero free parameter and I represents the
identity operator. We describe all the [J¢-classical orthogonal polynomial
sequences.

The basic idea has been deduced by starting from the raising operator
Ue, := z(zD + 1) + &D (see [1]). Now, to obtain a raising operator, we
can add &I to Ug,. Then we can consider the perturbed operator, given
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in the previous paragraph, Jg := U, + &1, where (&1, &) # (0,0) because
the orthogonality is not preserved for (&1,&;) = (0,0).

As a result associated to Ue,, we have that the scaled Chebyshev poly-
nomial sequence {a "U,(ax)}nso with a® = —&; ' is the only Ug,-classical
sequence, (for more details see [1]). In [2] the others prove that the scaled

Bessel polynomial sequence {Bﬁg)}@o is the only J,-classical orthogonal
polynomial sequence for {; = 0. For the raising operator J¢, the result is
completely different. More precisely, in & # 0,& # 0 the Jacobi polyno-
mial sequence {PT(La’ﬁ )}n>0 is the only J¢-classical orthogonal polynomial
sequence with a = #,B = #, pr = &, and &u # i(2k + 1),
ke Z\{,LO}.

The structure of the paper is the following: In Section 2, a basic back-
ground about forms, orthogonal polynomials is given. In Section 3, we
find the Jg-classical orthogonal polynomials. In Section 4, we give some
properties of the sequence obtained.

2. Preliminaries. Let P be the linear space of polynomials in one
variable with complex coefficients. The algebraic dual space of P will be
represented by . We denote by (u, p) the action of w € P’ on p € P and
by (u), := {u,x™), n > 0, the sequence of moments of u with respect to
the polynomial sequence {z"},>¢.

Let us define the following operations in . For linear functionals u,
any polynomial ¢, and any (a,b) € C\{0} x C, let Du = v/, gu, 7_pu and
h,u be the linear functionals defined by duality, [11]:

<Ul, f>:: _<u>f/>v <gu:f> = <U,gf>, JeP,
<hau7 f>::<u7 haf>:<u’ f(a:v)>, <T—bu7 f>::<u7 be>:<u7 f(x_b)>7 f eP.

A linear functional u is called normalized if it satisfies (u)o = 1.

Lemma 1. [13], [11] For any u € P’ and any integer m > 1, the following
statements are equivalent:

(i) (u, Pp—1) # 0, {u, P,y =0, n > m.
m—1
(ii)) I\ eC,0<k<m—1, \,,_1 # 0, such that u = Z AU -
k=0
As a consequence, the dual sequence {uq[ll]}@() of {P,[Ll]}@g, where
P,El](x) = (n+1)"'P, ,(z), n >0, is given by

Dul'l = —(n + Dupiq, n > 0.

n
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Similarly, the dual sequence {@in }ns0 0f { P, }n=0, where P, (x):=a " P, (az+
+b) with (a,b) € C\{0} x C, is given by

Uy = a"(hg—1 0 T_p)Uyp, n = 0.

The form wu is called regular if we can associate with it a sequence
{P,}>0, such that

(uy PPy = Tplpm, m, m20, r,#0, n=0.

The sequence {P,},>o is then called a monic orthogonal polynomial se-
quence (MOPS) with respect to u. Note that u = (u)yug, with (u)y # 0.
When u is regular, let F' be a polynomial, such that Fu = 0. Then
F =0 [11].

Proposition 1. [11]. Let {P,},>0 be a MOPS with deg P, = n,
n > 0, and let {u,}n>0 be its dual sequence. The following statements
are equivalent:

(1) {Pn}n>0 Is orthogonal with respect to uy;
(1) wun = (o, B7)™" Paug, n > 0;

(iii) {Pn}n>o satisfies the three-term recurrence relation

{P()(x) =1, Pi(z) =2 — B, (1)

Poio(x) = (= Bny1) Pos1(x) — Va1 Pulx), n > 0,
where

/871 = <U0,$P§><U0, P’3>_la n 2 Oa
Tnt+1 = <u07 P73+1><u07 P73>_1 #0, n=0.

If {P,},>0 is a MOPS with respect to the regular form ug, then {Pn}@o
is a MOPS with respect to the regular form @y = (he-1 o 7_p)up, and
satisfies [13]

{f’o(x) =1, P(z) =2 — f,
Pn+2<x) = (77 - Bn+1>pn+1(x) - :)/n—klpn(*r)a n =0,

where (3, = a (B, —b) and Vi1 = a2 Y11.



74 J. Souissi

An orthogonal polynomial sequence {P,},>¢ is called D-classical, if
{PI},~0 is also orthogonal (Hermite, Laguerre, Bessel or Jacobi), [7], [9].
A second characterization of these polynomials, which will play the leading
role in the sequel, is that they are the only polynomial solutions of the
Second-Order Differential Equation (Bochner [5])

(SODE):  ¢(z) Py () = ¥(x) Pryy () = AnPoia(), n 20, (2)

where ¢, are polynomials, ¢ monic, deg¢p = t < 2, degy = 1, and
A = (n+1)(3¢"(0)n — ¢/ (0)) #0, n > 0.

If {P,},>0 is a classical sequence satisfying (2), then {f’n}@o is also clas-
sical and satisfies (see [11])

(SODE):  ¢(x)P!, (x) = (x)P., (x) = MuPayi(2), n >0,  (3)

where ¢(z) = a'¢(ax + b) and ¥ (z) = a' " (az + b).

Now let us provide a summary of some basic characteristics of classical
orthogonal polynomials. We focus on two families: the Bessel orthogonal
polynomials (C1) and the Jacobi orthogonal polynomials (C2).

Bessel Orthogonal Polynomials (C1): For n > 0 and o # —2

the Bessel orthogonal polynomials are denoted by P,(z) = BY”(z), with
ug = B, The coefficients are given by:

1 -«
50:_5’ P = m+a—-1)(n+a)

n(n + 2a — 2)

n — 3 21
T T 2nt2a-3)nta-12@2n+2a-1)

n =0,

The polynomials ¢ and 1 are 2 and —2(ax + 1), respectively, and )\, are
(n+1)(n + 2a) for n > 0.

Jacobi Orthogonal Polynomials (C2): For n > 0 and (o, # —n,
a+ f # —n—1,n > 1), the Jacobi orthogonal polynomials are denoted
by P(z) = J*? (2), with ug = J©@#. The coefficients are given by:

a—ﬁ B CYQ—BQ
a+f+2 bn = 2n+a+p)2n+a+pB+2)
dn(n +a + B)(n + a)(n + B)
2n+a+p—-1)2n+a+PB)?2n+a+p+1)

Bo =

Yn = n > 1.
(
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The polynomials ¢ and 1) are 22 —1 and —(a+ 8+2)z +a— 3, respectively,
and A\, are (n+1)(n + o+ +2) forn > 0.
3. The J:-classical orthogonal polynomials. Recall the operator

J:P — P
[ o— x7§(f):($2+52)f/+(1’+51)f-

Definition 1. We call a sequence {P,},>0 of orthogonal polynomials
Je-classical if there exist a sequence {Q,,},>o of orthogonal polynomials,
such that J¢P,, = Qni1, n = 0.

For any MPS {P,},>0, we define the MPS {Q.},>0, given by

Qni1(x) = jgfjfm), n > 0, or, equivalently,

(n + 1)Qns1(z) = (2* + &) P () + (2 + &) Pul2), n 20, (4)

with the initial value Qy(z) = 1.

Our next goal is to describe all the Je-classical polynomial sequences.
Note that we need £ # 0 to ensure that {Q, },>0 is an orthogonal sequence.
Indeed, if we suppose that £ = (£,&) = 0, the relation (4) becomes,
for x = 0, Q,11(0) = 0, n > 0, which contradicts the orthogonality of
{Qn}n>0'

The operator J; raises the degree of any polynomial. Such operator is
called raising operator [6,10,15]. By transposition of the operator J¢, we
get

Je = =T + 261 ()

Denote by {un}n=0 and {v,},>0 the dual basis in P’ corresponding to
{P,}n>0 and {Q,}n>0, respectively. Then, according to Lemma 1 and (5),
the relation

(2% + &)+ (2 — &)y = —(n+ Du,, n >0, (6)

holds. Assume that {P,},>0 and {Q,},>0 are MOPS satisfying

{Po(:v) =1, Pi(z) =z — [, (7)

Pn+2(x> = (x - ﬂnJrl)PnJrl(x) - 7n+1Pn(x)a Yn+1 # Oa n 2 O:

{Qo@c) =1, Quw) =~ po, "

Qni2() = ( — pn+1)Qn+1(2) — 0041Qn (), 0ns1 # 0,1 = 0.
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Next, the first result will be deduced as a consequence of the relations
(4), (7), and (8).

Proposition 2. The sequences {P,},>0 and {Q,}n>0 satisfy the follow-
ing finite-type relation:

(12 + 52)Pn(‘r) = Q?H—Q(w) + 9nQn+1(x) + ann('r)? n 2 07

where
0, = (n+1)(By—pns1), n=0,
Wp = NYn — (n + 1)Qn+17 n 2 07

with the convention ~y = 0.

Proof. By differentiating (7), we obtain
By o(x) = (& = o) Py (2) = Y Po(2) + Poga(z), n > 0.

Multiplying the last equation by z? + & and the relation (7) by = + &,
take the sum of the two resulting equations, and substitute (4). Then we
get

(n+3)Qniz(x) = (n+2)(x — Bry1)Quia(®) — (N + )Y 1Quar () +
+ (2% + &) Posa(z), n=0.

Using the three-term recurrence relation (8), we get
(2% + &) Pos1(2) = Quas(@) + (0 + 2) (Busr — porz) Qniz(x)+
+ ((n+ Dyngr = (0 +2)0042) Quar (), 1 >0.

In fact, this result is valid for n + 1 replaced by n. More precisely, we
have, for all n > 0,

(2 + &) P(r) =
= Qn+2(I) + (n + 1)(611 - Pn+1)Qn+1($) + (nVn - (n + 1)@n+1)@n(£)>

with the convention 79 = 0. Hence the desired result. []

Note that, for n = 0, the Proposition 2 gives

Q2(x) + (Bo — p1)Q1(2) = 2’ + &+ o1,
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and using the fact that Qi(x) = = + &, we obtain

Q2(z) = 2° + (& — p1)z — ;& — o1 9)

By comparing (9) and (8) for n = 0, we obtain p; = BO;& and o1 =
Now we establish, in the next lemma, an algebraic relation between

the forms ug and vy.

_ 8+6
==

Lemma 2. The forms ug and vy satisfy the following relation:
(2% + &)vo = —o1uo.
Proof. According to Proposition 2, we obtain
{2 + &), Py =0, n > 1. (10)

On the other hand, by (9), we have (22 + &) = Qo + (8o — p1)Q1 — 01, and
then

<(332 + &a)vo, P0> = <U07Q2 + (Bo — Pl)@1> —01(v0)o = —o1, (11)

since {@Qn}n>0 is orthogonal with respect to the form vy, where vg is sup-
posed normalized. According to Lemma 1 and using (10) and (11), we
obtain the desired result. []

It is clear that the formula (4) is a first-order differential equation
satisfied by {P,},>0. Based on the last lemma, we obtain a first-order
differential equation satisfied by {Q,,}n>o0-

Proposition 3. The following fundamental relation holds:
Qi) = (n+1)P,(z), n > 0. (12)

Proof. According to Proposition 1 (ii), the relation (6) can be written as
follows:

(2% + &)[ Qa1 ()00 + @t (2)vp] + (2 — &) Qusrvo = M Pu(@)ug, n >0,
(13)

where A, := —(n + 1){vo, Q2. Xug, P2)™', n > 0.

Making n = 0 in (13), we get (22 + &)vh = (&1 — ). (Ao = —01)-

Substituting this relation in (13), we obtain

(AnPp — 01Q, 41 )ug = 0.
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Using the Lemma 2 and the fact that \j = —p; and taking into account
regularity of ug, we finally obtain A\o@), ,;(x) = A, P, (z), n > 0. Compar-
ing the degrees in the last equation, we get A, = (n + 1)Ag, n > 0, and,
then, @, ,1(z) = (n+ 1)P,(z), n > 0.

According to Proposition 3, and using the Bochner characterization,
we get the Je-classical orthogonal sequence. Now, we will describe all of
the Je-classical polynomial sequences.

Theorem 1. The Je¢-classical polynomial sequences are, up to a suit-
able affine transformation in the variable, one of the following D-classical
polynomial sequences:

(a) if& =0, Py(z) = a U, (ax), n >0, with a®> = —&*.
(b) 1f§2—0 Py(z) = B{?(x), with & = 2.
(¢) if & # 0 and & — —1, Py(a) = PL 2 2

(1), with & # 2k + 1,

ke Z\{—1,0}.
(4) If (61,€2) € Choy> Pal@) = Pa™"(), with o = =51, 5 = L5,
2
or pi© = &,

with & # i(2k + 1), k € Z\{—1,0}.

Proof. Assume that {P,},>0 is a monic Je-classical orthogonal sequence.
Then there exists a monic orthogonal sequence {Q,},>o satisfying (4),
which gives after differentiating and inserting (12), the following SODE:

(2% +&) Pl (@) + Br+ &) P (2) = (n+1)(n+3) Py (), n > 0. (14)

(a) if & =0, Py(x) = a™"Uy,(ax), n >0, with a®> = &%, (see [1])
(b) if & =0,
2Py (2) = (=32 = &) Py (2) = (n+ 1) (n + 3) Pyya(x), n > 0.

According to Table Cy, {P,},>0 is the Bessel sequence of parameter
o if —=2(ax + 1) = =3z — &; in this case o = 2 and & = 2.

(c) if & # 0 and & = —
(2~ )P () + (B2 + &) Pl () = (0 + )0+ 3) P (2), 13> 0,

According to Table Cy, {P,},>0 is the Jacobi sequence of parameter
(o, B) if —(a+ B +2)x+a— = —3x —&; in this case a = %
and 8 = 25 with & # 2k + 1, ke Z\{-1,0}.
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(d) if (61762) € CQ\{(Oa O)}a
(2 +&)P! . (2)+ Bz + &) P (2) = (n+1)(n+3)Pyi(x), n > 0.
According to Table Cy, {P,},>0 is the Jacobi sequence by a suit-
able affine transformation, P,(z) = (-"P*? (¢z), with (2 = —& 1,

a = —1_251“, B = —1“251“, or u? = &, with &u # i(2k + 1),
ke Z\{-1,0}.

[

4. Some properties of the sequence obtained. In the polynomial
function space P, we can introduce the linear operator, denoted here by L:

L:=D.
Using (12), we obtain
L(Qni1) = (n+1)P,, n=0. (15)

The operator I decreases the degree of a polynomial but preserves the
orthogonality of the sequence {P,},>o.
We have the following result:

Theorem 2. There exists a differential linear operator of order two
L, for which the polynomial P,(z), n > 0, is an eigenfunction. More

precisely, we have:
L(P,) =0,P,, n>=0. (16)

with 0,, = (n + 1)? as the corresponding eigenvalues, and where
= a1(z)D* + ax(x) D + as()I,

where
ar(x) = 2° + &, az(x) = 3z + &1, as(x) = 1.

Proof. Applying the J; operator, and according to (4), we get
Do Je(P,) = (n+1)*P,, n>0.
This gives, after a simple calculation, the desired result. []

Note that, by applying the £ operator to the X™, n > 0, we obtain

LX™) =0, X" +n&E X" +n(n—1DEX"2 n > 0.
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So, the matrix of the endomorphism £ in the canonical basis {X"},¢ of
P is given by

by & 2& 0 0
0 0 26 :
M, — Oy - nn—1)% 0
. né, .
Or,
0

Using the relation (16), we can write the matrix M, in the bases {P,},>0
as follows:

b 0 -+ - 0

0 6 :
L_|: -

0, O

0O -« - 0
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