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PLANAR HARMONIC MAPPINGS WITH A GIVEN
JACOBIAN

Abstract. The article is devoted to the study of the Jacobians of
sense-preserving harmonic mappings in the unit disk of the com-
plex plane. The main result is a criterion for an infinitely differen-
tiable positive function to be a Jacobian of some sense-preserving
harmonic mapping. The relationship between a Jacobian of a har-
monic mapping and the Schwarzian derivative of its dilatation is
revealed. The structure of the set of harmonic mappings with a
given Jacobian is described. The results are illustrated by exam-
ples. In conclusion, we consider an application of the main results
of the article to the construction of variational formulas in classes
of harmonic mappings with a given Jacobian.
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1. Introduction. Recall [2] that the harmonic mapping 𝑓(𝑧) defined
in a simply connected domain 𝐷 ⊂ C can be represented in the form
𝑓(𝑧) = ℎ(𝑧) + 𝑔(𝑧), where ℎ(𝑧), 𝑔(𝑧) are holomorphic in 𝐷 functions.
The functions ℎ(𝑧) and 𝑔(𝑧) are called holomorphic and antiholomorphic
parts of the harmonic mapping 𝑓(𝑧), respectively. The Jacobian of a
harmonic mapping 𝑓(𝑧) is given by the formula 𝐽(𝑧) = |ℎ′(𝑧)|2 − |𝑔′(𝑧)|2
and is infinitely differentiable in 𝐷. By virtue of Lewy’s theorem [2],
the harmonic mapping 𝑓(𝑧) is sense-preserving in 𝐷 iff 𝐽(𝑧) > 0 in 𝐷.
Throughout the paper, we deal with sense-preserving harmonic mappings
defined on simply connected domains. The dilatation 𝜔(𝑧) = 𝑔′(𝑧)/ℎ′(𝑧) of
a sense-preserving mapping 𝑓(𝑧) is a holomorphic function with |𝜔(𝑧)| < 1
in 𝐷.

It is well known that the Jacobian 𝐽(𝑧) = |𝑓 ′(𝑧)|2 of a holomorphic in
𝐷 function 𝑓(𝑧) is a non-negative function, such that ln 𝐽(𝑧) is harmonic
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in 𝐷 except of zeros of 𝐽(𝑧). Conversely, if we define in 𝐷 a non-negative
function 𝐽(𝑧) ∈ 𝐶∞(𝐷), such that ln 𝐽(𝑧) is harmonic away from the
set where 𝐽(𝑧) = 0, then, from the equality 𝐽(𝑧) = |𝑓 ′(𝑧)|2, we can,
obviously, restore a class of holomorphic functions with the Jacobian 𝐽(𝑧).
All functions of this class differ from each other in translation and rotation.

It is clear that several harmonic in 𝐷 mappings can have the same
Jacobian. In particular, if the function 𝐽(𝑧) is a Jacobian of the mapping
𝑓(𝑧) = ℎ(𝑧)+𝑔(𝑧), then the mapping 𝑓(𝑧) = 𝑒𝑖𝛼ℎ(𝑧)+𝑒𝑖𝛽𝑔(𝑧)+𝑐, 𝛼, 𝛽 ∈ R,
𝑐 ∈ C, also has the Jacobian 𝐽(𝑧). At the same time, for example, the
mappings 𝑓(𝑧) = 𝑧

√
𝐽 + 𝑐 + 𝑧

√
𝑐, where the real constant 𝐽 > 0 is fixed

and the parameter 𝑐 > 0, have different dilatations 𝜔(𝑧) =
√
𝑐/
√
𝐽 + 𝑐

and the same Jacobian 𝐽 . Hence, the class of harmonic mappings 𝑓(𝑧)
with the given Jacobian in the general case is not limited to translation
and mutual rotation of the holomorphic and antiholomorphic parts of the
harmonic mapping.

As a result, natural questions arise: which positive functions
𝐽(𝑧) ∈ 𝐶∞(𝐷) are the Jacobians of harmonic mappings and how am-
biguous is the class of sense-preserving harmonic in 𝐷 mappings with a
given Jacobian 𝐽(𝑧)?

Note that the study of univalent harmonic mappings with dilatations of
a given form, which is related in some sense, was considered, for example,
by W. Hengartner and G. Schober [7]. In addition, one can notice the
similarity between the problem of describing harmonic mappings with the
given Jacobian and the well-known Keller conjecture [10, 12], included in
1998 in the list of 18 mathematical problems of the next century.

At the same time, the results obtained in this article differ significantly
from the above works.

Recall also [3, 9], that the Schwarzian derivative of a locally univalent
holomorphic function 𝑓(𝑧) defined in 𝐷 is given by the formula

𝑆[𝑓, 𝑧] =

(︂
𝑓 ′′(𝑧)

𝑓 ′(𝑧)

)︂′

− 1

2

(︂
𝑓 ′′(𝑧)

𝑓 ′(𝑧)

)︂2

,

is meromorphic in D, and has the following well-known properties:
1. The Schwarzian derivative 𝑆[𝑓, 𝑧] ≡ 0 in 𝐷 iff 𝑓(𝑧) ≡ 𝐿(𝑧), where

𝐿(𝑧) is a linear fractional function of the form

𝐿(𝑧) =
𝑎 𝑧 + 𝑏

𝑐 𝑧 + 𝑑
, 𝑎𝑑− 𝑏𝑐 ̸= 0.
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2. Let a composition 𝑔 ∘ 𝑓(𝑧) of holomorphic functions 𝑓(𝑧) and 𝑔(𝑧)
be defined in some domain 𝐷. Then

𝑆[𝑔 ∘ 𝑓, 𝑧] = 𝑆 [𝑔, 𝑓(𝑧)] · (𝑓 ′(𝑧))
2
+ 𝑆 [𝑓, 𝑧] .

As a consequence of these properties, we have
3. The Schwarzian derivatives of two holomorphic functions 𝑓(𝑧) and

𝑔(𝑧) coincide iff 𝑔(𝑧) = 𝐿 ∘ 𝑓(𝑧), where 𝐿 is some linear fractional trans-
formation.

The Schwarzian derivative plays an important role in the complex anal-
ysis. For example, in 1949 Z. Nehari [11] used 𝑆[𝑓, 𝑧] to obtain a sufficient
condition for univalence of holomorphic functions. The concept of the
Schwarzian derivative has been repeatedly generalized, for example, to
the case of harmonic mappings [1, 4, 8].

By the well-known Riemann mapping theorem, any two simply con-
nected domains distinct from the complex plane C are conformally equiv-
alent. And since the composition 𝑓 ∘ 𝑔, where 𝑓 , 𝑔 are harmonic and
holomorphic in 𝐷 functions, respectively, is harmonic in 𝐷, then it suf-
fices to consider two cases: 𝐷 = C and 𝐷 = D := {𝑧 ∈ C : |𝑧| < 1}.

If a harmonic mapping 𝑓(𝑧) is sense-preserving on C, then, as is well
known [2], the mapping 𝑓(𝑧) has the form 𝑓(𝑧) = ℎ(𝑧) + 𝑐1 · ℎ(𝑧) + 𝑐2,
where 𝑐1,𝑐2 ∈ C, |𝑐1| < 1 and ℎ(𝑧) is holomorphic. Indeed, in this case a
dilatation of 𝑓(𝑧) is a bounded holomorphic function. Hence, by virtue of
Liouville’s theorem, 𝜔(𝑧) ≡ const on C. Thus, the case of sense-preserving
on C harmonic mappings is quite simple and, as shown below, fits into
the general picture.

The main case will be 𝐷 = D.

2. Main results. Let 𝑓(𝑧) = ℎ(𝑧) + 𝑔(𝑧) be a sense-preserving
harmonic in D mapping. Then its Jacobian 𝐽(𝑧) and dilatation 𝜔(𝑧) have
the form 𝐽(𝑧) = |ℎ′(𝑧)|2 − |𝑔′(𝑧)|2 and 𝜔(𝑧) = 𝑔′(𝑧)/ℎ′(𝑧), respectively.
Obviously, 𝐽(𝑧) and 𝜔(𝑧) are related by the ratio

𝐽(𝑧) = |ℎ′(𝑧)|2(1− |𝜔(𝑧)|2). (1)

The following theorem is a criteria for an infinitely differentiable pos-
itive function 𝐽(𝑧) to be a Jacobian of some sense-preserving harmonic
mapping 𝑓(𝑧). This theorem also establishes an additional connection
between its Jacobian and dilatation.
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Theorem 1. A positive function 𝐽(𝑧) ∈ 𝐶∞(D) is the Jacobian for
some sense-preserving harmonic in D mapping 𝑓(𝑧) = ℎ(𝑧)+𝑔(𝑧) iff there
exists a holomorphic function 𝜔(𝑧) with |𝜔(𝑧)| < 1 in D, such that

(− ln 𝐽(𝑧))𝑧𝑧 =
|𝜔′(𝑧)|2

(1− |𝜔(𝑧)|2)2
. (2)

As a consequence, the Jacobian 𝐽(𝑧) and the dilatation 𝜔(𝑧) of any sense-
preserving harmonic mapping are related by one of the following condi-
tions:

1) either function ln 𝐽(𝑧) is harmonic in D (i. e., (ln 𝐽(𝑧))𝑧𝑧 ≡ 0 in D)
and the function 𝜔(𝑧) ≡ const;

2) or the function 𝑅(𝑧) = ln(−𝐽2(𝑧) · (ln 𝐽(𝑧))𝑧𝑧) is defined and har-
monic in D ∖ 𝑍, where 𝑍 is a set of isolated zeros of the function
(− ln 𝐽(𝑧))𝑧𝑧. In this case, the function𝑄(𝑧) = 2 (ln(− ln 𝐽(𝑧))𝑧𝑧)𝑧𝑧 −
− (ln(− ln 𝐽(𝑧))𝑧𝑧)

2
𝑧 is holomorphic in D ∖𝑍, and the functions 𝜔(𝑧)

is a solution of the differential equation

2𝑆[𝜔, 𝑧] = 𝑄(𝑧), (3)

defined in D ∖ 𝑍.

In both cases, the function 𝐽(𝑧) satisfies the sharp inequality

(− ln 𝐽(𝑧))𝑧𝑧 ⩽
1

(1− |𝑧|2)2
. (4)

Proof. Necessity. Let 𝑓(𝑧) = ℎ(𝑧) + 𝑔(𝑧) be a sense-preserving harmonic
in D mapping. The equality (1) and the property of the modulus of a
holomorphic function give:

(− ln 𝐽(𝑧))𝑧𝑧 = −
(︀
ln |ℎ′(𝑧)|2 + ln (1− |𝜔(𝑧)|2)

)︀
𝑧𝑧

=
|𝜔′(𝑧)|2

(1− |𝜔(𝑧)|2)2
,

i. e., there exists a holomorphic function 𝜔(𝑧) (which is the dilatation of the
harmonic mapping 𝑓(𝑧)) with |𝜔(𝑧)| < 1 in D, such that the equality (2)
holds everywhere in D. Necessity is proved.

Sufficiency. Let a positive function 𝐽(𝑧) ∈ 𝐶∞(D) and suppose there
exists a holomorphic function 𝜔(𝑧) with |𝜔(𝑧)| < 1 in D, such that the
equality (2) holds everywhere in D. Let us prove that there exists a har-
monic mapping 𝑓(𝑧) defined in D with the Jacobian 𝐽(𝑧).



Planar Harmonic Mappings With a Given Jacobian 73

To do this, consider the system⎧⎪⎨⎪⎩
|ℎ′(𝑧)|2 − |𝑔′(𝑧)|2 = 𝐽(𝑧),

|𝑔′(𝑧)|
|ℎ′(𝑧)|

= |𝜔(𝑧)|.
(5)

The solution of the system (5) has the form

|ℎ′(𝑧)| =

√︃
𝐽(𝑧)

1− |𝜔(𝑧)|2
, |𝑔′(𝑧)| =

√︃
𝐽(𝑧) · |𝜔(𝑧)|2
1− |𝜔(𝑧)|2

= |ℎ′(𝑧)| · |𝜔(𝑧)|.

Since the function 𝜔(𝑧) satisfies the condition (2) in D,

(︀
ln |ℎ′(𝑧)|2

)︀
𝑧𝑧

=

(︂
ln

𝐽(𝑧)

1− |𝜔(𝑧)|2

)︂
𝑧𝑧

≡ 0.

So, |ℎ′(𝑧)| is the modulus of some holomorphic function, and, as a conse-
quence, the system (5) allows us to find the holomorphic in D functions
ℎ′(𝑧) and 𝑔′(𝑧) up to rotations. Integrating these functions in D, we get
ℎ(𝑧) and 𝑔(𝑧) up to additive constants and, at the same time, a sense-
preserving harmonic in D mapping 𝑓(𝑧) = ℎ(𝑧) + 𝑔(𝑧) with the given
Jacobian 𝐽(𝑧). Sufficiency is proved.

Proof of the conditions 1) and 2). Let 𝑓(𝑧) = ℎ(𝑧) + 𝑔(𝑧) be a sense-
preserving harmonic mapping defined in D with the Jacobian 𝐽(𝑧) and
dilatation 𝜔(𝑧).

It is clear that only one of the following situations can be realized:
either 𝜔(𝑧) ≡ const = 𝑐, |𝑐| < 1, or 𝜔(𝑧) ̸≡ 𝑐𝑜𝑛𝑠𝑡 in D and all zeroes of
𝜔′(𝑧) are isolated.

1) By virtue of (2), equality 𝜔(𝑧) ≡ const is possible if and only if
(ln 𝐽(𝑧))𝑧𝑧 ≡ 0.

2) Let 𝜔(𝑧) ̸≡ const and, hence, (− ln 𝐽(𝑧))𝑧𝑧 ̸≡ 0 in D. From (2)
it follows that the function (− ln 𝐽(𝑧))𝑧𝑧 is non-negative, i.e., the func-
tion − ln 𝐽(𝑧) is subharmonic. Hence, the function 𝑅(𝑧) = ln(−𝐽2(𝑧) ·
(ln 𝐽(𝑧))𝑧𝑧) is defined in D ∖ 𝑍, where 𝑍 is a set of isolated zeros of the
holomorphic function 𝜔′(𝑧).

To show that the function 𝑅(𝑧) is harmonic in D ∖ 𝑍, we rewrite (2)
as

(− ln 𝐽(𝑧))𝑧𝑧 =
|𝜔′(𝑧) · (ℎ′(𝑧))2|2

𝐽2(𝑧)
.
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Therefore, 𝑅(𝑧) = ln |𝜔′(𝑧) · (ℎ′(𝑧))2|2, so, 𝑅(𝑧) is harmonic in D ∖ 𝑍 as a
real part of a holomorphic function.

Define the function 𝑝(𝑧) = (ln(− ln 𝐽(𝑧))𝑧𝑧)𝑧. Then the function

𝑄(𝑧) = 2 (ln(− ln 𝐽(𝑧))𝑧𝑧)𝑧𝑧 − (ln(− ln 𝐽(𝑧))𝑧𝑧)
2
𝑧 = 2𝑝𝑧(𝑧)− 𝑝2(𝑧).

Taking into account the equality (2), we have:

𝑝(𝑧) = (ln(− ln 𝐽(𝑧))𝑧𝑧)𝑧 =

(︂
ln

|𝜔′(𝑧)|2

(1− |𝜔(𝑧)|2)2

)︂
𝑧

=
𝜔′′(𝑧)

𝜔′(𝑧)
+2·𝜔

′(𝑧) · 𝜔(𝑧)
1− |𝜔(𝑧)|2

,

𝑝𝑧(𝑧) =
𝜔′′′(𝑧) · 𝜔′(𝑧)− (𝜔′′(𝑧))2

(𝜔′(𝑧))2
+ 2 · 𝜔

′′(𝑧) · 𝜔(𝑧)
1− |𝜔(𝑧)|2

+ 2 ·
(︂
𝜔′(𝑧) · 𝜔(𝑧)
1− |𝜔(𝑧)|2

)︂2

.

After substitution we get

𝑄(𝑧) = 2𝑝𝑧(𝑧)− 𝑝2(𝑧) = 2

(︂
𝜔′′′(𝑧)

𝜔′(𝑧)
− 3

2

(︁𝜔′′(𝑧)

𝜔′(𝑧)

)︁2)︂
= 2𝑆[𝜔, 𝑧].

Hence, the function 𝑄(𝑧) is holomorphic at the points 𝑧 ∈ D, where
𝜔′(𝑧) ̸= 0, i. e., in D ∖ 𝑍, and the dilatation of the sense-preserving in D
harmonic mapping 𝑓(𝑧) satisfies the differential equation (3).

Finally, since the dilatation 𝜔(𝑧) is holomorphic in D and |𝜔(𝑧)| < 1,
then, by virtue of the Schwarz lemma [6] and (2), the inequality (4) char-
acterizing a growth rate of the function (− ln 𝐽(𝑧))𝑧𝑧 holds in D. The esti-
mate is exact. It is attained, for example, on the function 𝑓(𝑧) = 𝑧+𝑧2/2,
whose Jacobian has the form 𝐽𝑓 (𝑧) = 1− |𝑧|2. □
Remark. Although the definition of the function 𝑄 in Theorem 1 does
not require the existence of derivatives higher than the fourth order of the
function 𝐽 , in fact, since the function 𝐽 must be the Jacobian of some
harmonic mapping, it must belong to the class 𝐶∞(D) as it stated in the
condition of the theorem.

The following result describes the structure of the family of all sense-
preserving harmonic mappings defined in D with a given Jacobian 𝐽(𝑧).

Theorem 2. Let 𝑓0(𝑧) = ℎ0(𝑧) + 𝑔0(𝑧) be a sense-preserving harmonic
in D mapping with dilatation 𝜔0(𝑧) = 𝑔′0(𝑧)/ℎ

′
0(𝑧) and Jacobian 𝐽0(𝑧),

(ln 𝐽0(𝑧))𝑧𝑧 ̸≡ 0 in D. Then a harmonic in D mapping 𝑓(𝑧) has the
Jacobian 𝐽0(𝑧) iff its dilatation 𝜔(𝑧) = 𝑇 ∘ 𝜔0(𝑧), where

𝑇 (𝑤) = 𝑒𝑖𝛼
𝑤 + 𝑤0

1 + 𝑤0𝑤
, 𝑤0 ∈ D, 𝛼 ∈ R.
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Proof. Let the sense-preserving harmonic mapping 𝑓(𝑧) = ℎ(𝑧) + 𝑔(𝑧)
have the dilatation 𝜔(𝑧) = 𝑔′(𝑧)/ℎ′(𝑧). As has been marked above, the
Schwarzian derivative is invariant under the linear fractional transforma-
tions 𝐿 of the first argument. Hence, 𝑆[𝜔, 𝑧] ≡ 𝑆[𝜔0, 𝑧] ≡ 2𝑄(𝑧) iff
𝜔(𝑧) = 𝐿 ∘ 𝜔0(𝑧). In view of the Theorem 1, dilatations of both map-
pings 𝑓(𝑧) and 𝑓0(𝑧) with the same Jacobians should satisfy the equation
(2). Therefore,

|𝜔′
0(𝑧)|2

(1− |𝜔0(𝑧)|2)2
=

| (𝐿 ∘ 𝜔0(𝑧))
′ |2

(1− |𝐿 ∘ 𝜔0(𝑧)|2)2
. (6)

So, we have to prove that (6) is true iff 𝐿 = 𝑇 .
Sufficiency. If 𝐿 is a linear fractional automorphism 𝑇 of the disk D,

then the composition 𝑇 ∘ 𝜔0(𝑧) satisfies the condition (2). Indeed, after
substitution of 𝑇 ∘ 𝜔0(𝑧) into the right-hand side of (6) we have:⃒⃒⃒(︁ 𝜔0(𝑧) + 𝑤0

1 + 𝑤0 𝜔0(𝑧)

)︁′ ⃒⃒⃒2
(︁
1−
⃒⃒⃒ 𝜔0(𝑧) + 𝑤0

1 + 𝑤0 𝜔0(𝑧)

⃒⃒⃒2)︁2 = |𝜔′
0(𝑧)|2 · (1− |𝑤0|2)2

(|1+𝑤0 𝜔0(𝑧)|2−|𝜔0(𝑧)+𝑤0|2)2
=

|𝜔′
0(𝑧)|2

(1− |𝜔0(𝑧)|2)2
,

where 𝑤0 ∈ D.
Necessity. Let us show that the equality (6) is possible only if 𝐿 = 𝑇 .
Let the linear fractional transformation 𝐿 be such that 𝐿 ∘ 𝜔0(D) ⊂ D

and 𝐿 ∘ 𝜔0(𝑧) satisfies the equality (6). In the general case

𝐿(𝑤) =
𝑎𝑤 + 𝑏

𝑐𝑤 + 𝑑
, 𝑎, 𝑏, 𝑐, 𝑑 ∈ C, 𝑎𝑑− 𝑏𝑐 ̸= 0.

For 𝑎 ̸= 0, the transformation 𝐿 can be written as

𝐿(𝑤) =
𝑤 + 𝑏

𝑐𝑤 + 𝑑
, 𝑏, 𝑐, 𝑑 ∈ C.

Using the outer composition 𝐿 with a linear fractional automorphism

𝑇0(𝑤) = 𝑒𝑖𝛼
𝑤 + 𝑤0

1 + 𝑤0𝑤
, 𝑤0 = − 𝑏

𝑑

of the disk D, we can get the following representation:

̃︀𝐿(𝑤) = 𝑇0 ∘ 𝐿(𝑤) =
𝑤̃︀𝑐𝑤 + ̃︀𝑑, ̃︀𝑐, ̃︀𝑑 ∈ C,
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where, without loss of generality, we can assume that ̃︀𝑑 > 0.
As mentioned above, ̃︀𝐿 ∘ 𝜔0(𝑧) satisfies the equality (6), i. e.,⃒⃒⃒⃒(︁̃︀𝐿 ∘ 𝜔0(𝑧)

)︁′ ⃒⃒⃒⃒
1−

⃒⃒⃒̃︀𝐿 ∘ 𝜔0(𝑧)
⃒⃒⃒2 =

̃︀𝑑 · |𝜔′
0(𝑧)|

|̃︀𝑐 𝜔0(𝑧) + ̃︀𝑑|2 − |𝜔0(𝑧)|2
=

=
̃︀𝑑 · |𝜔′

0(𝑧)|
|𝜔0(𝑧)|2(|̃︀𝑐|2 − 1) + ̃︀𝑑2 + 2 · ̃︀𝑑 · Re(̃︀𝑐 𝜔0(𝑧))

≡ |𝜔′
0(𝑧)|

1− |𝜔0(𝑧)|2
.

Since 𝜔0(𝑧) ̸≡ const in D, the last identity is equivalent to the following:

̃︀𝑑
|𝜔0(𝑧)|2(|̃︀𝑐|2 − 1) + ̃︀𝑑2 + 2 · ̃︀𝑑 · Re(̃︀𝑐 𝜔0(𝑧))

≡ 1

1− |𝜔0(𝑧)|2
. (7)

Consider some arc 𝛾 ⊂ D along which |𝜔0(𝑧)| ≡ const > 0. Such arc
obviously exists, since a non-constant holomorphic function is an open
mapping. The right-hand side of the equality (7) is constant on 𝛾. Then
the left-hand side of (7) also must be constant. It is possible only if

Re(̃︀𝑐 𝜔0(𝑧)) ≡ |̃︀𝑐| · |𝜔0(𝑧)| · cos(arg ̃︀𝑐+ arg 𝜔0(𝑧)) ≡ const.

The last identity implies that either arg 𝜔0(𝑧) ≡ const on 𝛾, or ̃︀𝑐 = 0. If
arg𝜔0(𝑧) ≡ const on 𝛾, then |𝜔0(𝑧)| and arg𝜔0(𝑧) are constant on 𝛾 and,
as a consequence, 𝜔0(𝑧) ≡ const in D. But this contradicts the condition.
Then ̃︀𝑐 = 0 and the transformation ̃︀𝐿(𝑤) has the form

̃︀𝐿(𝑤) = 𝑤̃︀𝑑 .
Substitute ̃︀𝐿 ∘ 𝜔(𝑧) into (6). We get:

̃︀𝑑̃︀𝑑2 − |𝜔(𝑧)|2
≡ 1

1− |𝜔(𝑧)|2
.

This identity is obviously valid only in the case when ̃︀𝑑 = 1.
Summarizing everything above, we conclude that ̃︀𝐿 = 𝑇0 ∘ 𝐿 = 𝐸,

where 𝐸 is the identity transformation. Whence we get that 𝐿 = 𝑇−1
0 ,

i. e., 𝐿 is a linear fractional automorphism of the disk D.
The case 𝑐 ̸= 0 is treated similarly.
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Thus, the dilatation 𝜔(𝑧) of any harmonic mapping 𝑓(𝑧) with the
Jacobian 𝐽0(𝑧) is defined up to a linear fractional automorphism 𝑇 of the
disk D, and the class of sense-preserving mappings 𝑓(𝑧) = ℎ(𝑧) + 𝑔(𝑧)
with the Jacobian 𝐽0(𝑧) is described by the equalities

|ℎ′(𝑧)| =

√︃
𝐽0(𝑧)

1− |𝑇 ∘ 𝜔0(𝑧)|2
, |𝑔′(𝑧)| =

√︃
𝐽0(𝑧) · |𝑇 ∘ 𝜔0(𝑧)|2
1− |𝑇 ∘ 𝜔0(𝑧)|2

.

The proof is completed. □

Theorem 2 implies that the set of harmonic mappings with a given
Jacobian is not compact in the topology of locally uniform convergence
in D.

Also, as a consequence of the main results we get the way of restoring
the class of sense-preserving harmonic mappings 𝑓(𝑧) of the unit disk D
with the given Jacobian 𝐽(𝑧).

If a positive function 𝐽(𝑧) ∈ 𝐶∞(D) is such that (ln 𝐽(𝑧))𝑧𝑧 ≡ 0 in D,
then the only holomorphic solutions of the equation (2) are the functions
𝜔(𝑧) ≡ const = 𝑐0. Since we are interested in sense-preserving harmonic
mappings defined in D, we consider |𝑐0| < 1. Substituting 𝜔(𝑧) = 𝑐0 into
the system (5) and solving this system, we find the harmonic mapping
𝑓(𝑧) with the Jacobian 𝐽(𝑧).

In the specific case 𝑐0 = 0, the second equation of the system (5)
implies that 𝑔(𝑧) ≡ const, i. e., the restored mapping 𝑓(𝑧) is holomorphic
in D.

If a positive function 𝐽(𝑧) ∈ 𝐶∞(D) satisfies the case 2) of Theorem 1,
then, as shown above, the differential equation (3) is defined in D ∖ 𝑍.
Among the solutions of this differential equation, it suffices to find at least
one function 𝜔(𝑧) (if it exists), such that |𝜔(𝑧)| < 1 and the equality (2)
is satisfied in D. Substituting 𝐽(𝑧) and 𝜔(𝑧) into the system (5), we can
find one of the sense-preserving harmonic mappings of the disk D with the
given Jacobian 𝐽(𝑧). All other members of this family can be found by
substituting into the system (5) of functions 𝐽(𝑧) and 𝑇 ∘ 𝜔(𝑧), where 𝑇
is a linear fractional automorphism of the disk D.

3. Examples. Let us illustrate the main results.

Example 4. Consider separately the trivial case, when the Jacobian of
a harmonic mapping satisfies the condition (ln 𝐽(𝑧))𝑧𝑧 ≡ 0 in an arbitrary
domain 𝐷. By virtue of the equality (2), we have 𝜔(𝑧) ≡ const = 𝑐,
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|𝑐| < 1, in D. Hence, 𝑓(𝑧) = ℎ(𝑧)+𝑐 · ℎ(𝑧)+𝑐1, where ℎ(𝑧) is a holomorphic
function.

The reverse is also true. If the harmonic mapping has the mentioned
above form, then

(ln 𝐽(𝑧))𝑧𝑧=(ln(|ℎ′(𝑧)|2−|𝑐·ℎ′(𝑧)|2))𝑧𝑧 = (ln |ℎ′(𝑧)|2)𝑧𝑧+(ln(1−|𝑐|2))𝑧𝑧≡ 0.

In particular, if 𝐷 = C, then, as noted above, a sense-preserving
harmonic mapping 𝑓(𝑧) = ℎ(𝑧) + 𝑐 · ℎ(𝑧) + 𝑐1, and, as a consequence,
(ln 𝐽(𝑧))𝑧𝑧 ≡ 0 on C.

Example 5. Consider the function 𝐽(𝑧) = 𝑧 + 𝑧 + 2.
This function satisfies the inequality (4). Indeed, the inequality

(− ln 𝐽(𝑧))𝑧𝑧 =
1

(𝑧 + 𝑧 + 2)2
⩽

1

(1− |𝑧|2)2

in the disk D is equivalent to the inequality |𝑧 − 1| ⩽ 2, validity of which
in D is obvious.

The function 𝑅(𝑧) = ln(−𝐽2(𝑧)·(ln 𝐽(𝑧))𝑧𝑧) ≡ 0 is harmonic in D, and
the function 𝑝(𝑧) = (ln(− ln 𝐽(𝑧))𝑧𝑧)𝑧 has the form 𝑝(𝑧) = −2 (𝑧 + 𝑧 + 2)−1.
Holomorphic in D function 𝑄(𝑧) = 2𝑝𝑧(𝑧)− 𝑝2(𝑧) ≡ 0. The only solutions
of the equation 2𝑆[𝜔, 𝑧] = 𝑄(𝑧) are

𝜔(𝑧) =
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
, 𝑎, 𝑏, 𝑐, 𝑑 ∈ C, 𝑎𝑑− 𝑏𝑐 ̸= 0.

In view of the condition |𝜔(𝑧)| < 1 in D, only two cases are possible:
a) the closure of the disk 𝜔(D) belongs to the open unit disk. This

case is satisfied by functions 𝜔(𝑧) of the form

𝜔(𝑧) = 𝑟𝑒𝑖𝛼
𝑧 + 𝑧0
1 + 𝑧0𝑧

+ 𝑤0, 𝛼 ∈ R, 𝑧0 ∈ D, |𝑤0| < 1, 𝑟 ∈ (0; 1− |𝑤0|);

b) the boundary circle 𝜔(𝜕D) touches the unit circle internally or co-
incides with it. This case is satisfied by functions 𝜔(𝑧) of the form

𝜔(𝑧) = 𝑟𝑒𝑖𝛼
𝑧 + 𝑧0
1 + 𝑧0𝑧

+ (1− 𝑟)𝑒𝑖𝛽, 𝛼,𝛽 ∈ R, 𝑧0 ∈ D, 𝑟 ∈ (0; 1].

The condition (2) for given 𝐽(𝑧) = 𝑧 + 𝑧 + 2 takes the form

1

(𝑧 + 𝑧 + 2)2
=

|𝜔′(𝑧)|2

(1− |𝜔(𝑧)|2)2
. (8)
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Note that the expression in the left-hand side of the equality (8) ap-
proaches to infinity as 𝑧 → −1. Hence, the expression in the right-hand
side of (8) also must have this property.

Consider the functions 𝜔(𝑧) from the case a). For such 𝜔(𝑧), the right-
hand side of (8) is bounded in D, since |𝜔(𝑧)| < 1 − |𝑤0| + 𝑟 and the
function 𝜔′(𝑧) is bounded in D. I. e., in the case a) there are no suitable
functions 𝜔(𝑧).

Consider now the functions 𝜔(𝑧) from the case b). Let 𝜔(𝑧) satisfy the
condition (8).

If 𝑟 = 1, 𝛼, 𝛽 ∈ R, 𝑧0 ∈ D, then the right-hand side of (8) approaches
to infinity as 𝑧 approaches to any point on the unit circle. At the same
time, the left-hand side of the equality (8) grows infinitely only if 𝑧 → −1.
Hence, for 𝑟 = 1 there are no necessary functions 𝜔(𝑧).

Let 𝑟 ∈ (0,1) now and 𝑧0 ∈ D. Then, using the appropriate rotation
of the function 𝜔(𝑧), we can bring it to the form

𝜔1(𝑧) = 𝑟𝑒𝑖𝛼1
𝑧 + 𝑧0
1 + 𝑧0𝑧

+ 1− 𝑟,

where 𝛼1 = − arg ((−1 + 𝑧0) (1− 𝑧0)
−1), because left-hand and right-hand

sides of (8) must approach to infinity as 𝑧 → −1. Thus, under the action
of the function 𝜔1(𝑧), the unit disk is mapped onto the disk 𝐷𝑟 of radius
𝑟, tangent to the unit circle internally at the point 𝑧 = 1.

By virtue of Theorem 2 the equality (8) also holds for 𝜔1(𝑧). Let us
apply the transformation

𝑇 (𝑤) =
𝑤 + 𝑏

1 + 𝑏𝑤
, 𝑏 =

𝑟 −𝑅

𝑅− 2𝑅𝑟 + 𝑟
, 𝑅 ∈ (0; 1) ,

to the function 𝜔1(𝑧). Direct calculations show that 𝑏 ∈ (−1; 1), i. e.,
𝑇 (𝑤) is an automorphism of the unit disk D, such that 𝑇 (1) = 1 and
𝑇 (1 − 2𝑟) = 1 − 2𝑅. So, the function 𝑇 (𝑤) maps the disk 𝐷𝑟 onto the
disk 𝐷𝑅 of arbitrary radius 𝑅 ∈ (0; 1), also tangent to the unit circle at
the point 𝑤 = 1. In view of uniqueness of conformal mapping with the
given normalizations, we have:

𝑇 ∘ 𝜔1(𝑧) = 𝑅𝑒𝑖𝜃
𝑧 + 𝑐

1 + 𝑐𝑧
+ 1−𝑅

with 𝑐 ∈ D and arbitrary 𝑅 ∈ (0; 1).
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In view of Theorem 2, the equality (8) also holds for 𝑇 ∘ 𝜔1(𝑧):

1

(𝑧 + 𝑧 + 2)2
=

𝑅2(1− |𝑐|2)2(︀
|1 + 𝑐𝑧|2 − |𝑅𝑒𝑖𝜃(𝑧 + 𝑐) + (1−𝑅)(1 + 𝑐𝑧)|2

)︀2 .
For 𝑧 = 0 and for all 𝑅 ∈ (0; 1), we have:

1

4
=

𝑅2
(︀
1− |𝑐|2

)︀2(︀
1− |𝑅𝑒𝑖𝜃𝑐+ 1−𝑅|2

)︀2 .
Taking the limit as 𝑅 → 1− at the right-hand side of this equality, we get
the contradiction 1/4 = 1.

Thus, there are no sense-preserving harmonic in D mappings 𝑓(𝑧) =
= ℎ(𝑧) + 𝑔(𝑧) with the given Jacobian 𝐽(𝑧) = 𝑧 + 𝑧 + 2.

Example 6. Let 𝐽(𝑧) = 1− |𝑧|2𝑛, 𝑛 ∈ N.
The function 𝑅(𝑧) = ln (−𝐽2(𝑧) · (ln 𝐽)𝑧𝑧) = 2 ln 𝑛 + (𝑛 − 1) ln |𝑧|2 is

harmonic in D ∖ {0}. The corresponding function 𝑄(𝑧) has the form

𝑄(𝑧) =
1− 𝑛2

𝑧2
.

It is checked directly that 𝜔0(𝑧) = 𝑧𝑛 is one of the solutions of the
differential equation 2𝑆[𝜔, 𝑧] = (1−𝑛2) ·𝑧−2. More than that, the function
𝑧𝑛 satisfies the conditions |𝜔0(𝑧)| < 1 and (2) in D:

(− ln 𝐽(𝑧))𝑧𝑧 =
|𝑛𝑧𝑛−1|2

(1− |𝑧|2𝑛)2
=

|𝜔′
0(𝑧)|2

(1− |𝜔0(𝑧)|2)2
.

So, 𝜔0(𝑧) = 𝑧𝑛 is one of the admissible dilatations of harmonic in D
mappings with the given Jacobian 𝐽(𝑧) = 1−|𝑧|2𝑛. Therefore, Theorem 2
claims that any admissible dilatation has the form

𝜔(𝑧) = 𝑇 ∘ 𝜔0(𝑧) = 𝑒𝑖𝛼
𝑧𝑛 + 𝑧0
1 + 𝑧0 𝑧𝑛

, 𝑧0 ∈ D, 𝛼 ∈ R.

Thus,

|ℎ′(𝑧)|2 = 𝐽(𝑧)

1−
⃒⃒⃒ 𝑧𝑛 + 𝑧0
1 + 𝑧0 𝑧𝑛

⃒⃒⃒2 =
1− |𝑧|2𝑛

1−
⃒⃒⃒ 𝑧𝑛 + 𝑧0
1 + 𝑧0 𝑧𝑛

⃒⃒⃒2 =
|1 + 𝑧0 𝑧

𝑛|2

1− |𝑧0|2
,
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|𝑔′(𝑧)|2 = |ℎ′(𝑧)|2 · |𝜔(𝑧)|2 = |𝑧𝑛 + 𝑧0|2

1− |𝑧0|2
.

Whence, we get

𝑓(𝑧) =
𝑒𝑖𝛼√︁

1− |𝑧0|2

(︁
𝑧 +

𝑧0
𝑛+ 1

𝑧𝑛+1
)︁
+

𝑒−𝑖𝛽√︁
1− |𝑧0|2

(︁ 1

𝑛+ 1
𝑧𝑛+1 + 𝑧0𝑧

)︁
+ 𝐶,

where 𝑧0 ∈ D, 𝛼, 𝛽 ∈ R, 𝐶 ∈ C.

4. Applications. The results proved in Section 2 can be used, for
example, to construct variational formulas in the classes of harmonic map-
pings with a given Jacobian in solving extremal problems of the theory
of harmonic mappings. The similarity of these problems with the classi-
cal problems of the theory of conformal mappings and, at the same time,
their originality, as well as significant differences with the holomorphic
case, lead to the fact that extremal problems in the theory of harmonic
mappings remain relevant and attractive in the modern geometric function
theory. This is evidenced by a significant number of publications devoted
to this topic [2, 5, 8].

Let ℱ(𝐽) be a set of sense-preserving in the unit disk D harmonic
mappings 𝑓(𝑧) = ℎ(𝑧) + 𝑔(𝑧) with the common Jacobian 𝐽(𝑧). Consider
the continuous functional

𝐿(𝑓, 𝑟)=

∫︁
|𝑧|=𝑟

(|ℎ′(𝑧)| − |𝑔′(𝑧)|)|𝑑𝑧|=
∫︁

|𝑧|=𝑟

√︀
𝐽(𝑧)

√︃
1− |𝜔(𝑧)|
1 + |𝜔(𝑧)|

|𝑑𝑧|, 𝑟 ∈ (0, 1).

(9)
This functional is obviously a rather rough lower bound for the length∫︀
|𝑧|=𝑟

|𝑑𝑓(𝑧)| of the circle image under the mapping 𝑓(𝑧).
We can further assume that the function ln 𝐽(𝑧) is not harmonic, since

otherwise the functional 𝐿(𝑓, 𝑟) would be constant on the class ℱ(𝐽). Also,
we will consider harmonic mappings whose dilatations differ by rotation as
coinciding, because the values of the functional 𝐿(𝑓, 𝑟) for such functions
are equal. The question of attaining the minimal or maximal values of
the functional 𝐿(𝑓, 𝑟) for 𝑓(𝑧) ∈ ℱ(𝐽) in the general case can be quite
complicated, since, as shown above, the class ℱ(𝐽) is not compact. Ne-
vertheless, Theorem 2 allows us to obtain a necessary condition for an
extremum 𝐿(𝑓, 𝑟) on the class ℱ(𝐽).
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Theorem 3. Let the mapping 𝑓0(𝑧) = ℎ0(𝑧)+𝑔0(𝑧) be an extremal (strict
minimum or maximum) point of the functional 𝐿(𝑓, 𝑟) on the class ℱ(𝐽)
and have the dilatation 𝜔0(𝑧) (up to rotation). Then∫︁

|𝑧|=𝑟

√︀
𝐽(𝑧)

√︃
1− |𝜔0(𝑧)|
1 + |𝜔0(𝑧)|

𝑒𝑖 arg 𝜔0(𝑧)|𝑑𝑧| = 0. (10)

Proof. Let a sense-preserving mapping 𝑓0(𝑧) = ℎ0(𝑧) + 𝑔0(𝑧) be, for
definiteness, a maximum point of 𝐿(𝑓, 𝑟) on the class ℱ(𝐽) and have the
dilatation 𝜔0(𝑧). By virtue of Theorem 2, any other function 𝑓(𝑧) ∈ ℱ(𝐽)
has a dilatation 𝜔(𝑧), such that

|𝜔(𝑧)| =
⃒⃒⃒⃒
𝜔0(𝑧) + 𝑎

1 + 𝑎𝜔0(𝑧)

⃒⃒⃒⃒
, 0 < |𝑎| < 1,

and 𝐿(𝑓, 𝑟) < 𝐿(𝑓0, 𝑟). The nonconstant holomorphic function 𝜔0(𝑧) can
have only isolated zeros in D. We can assume that 𝜔0(𝑧) ̸= 0 on |𝑧| = 𝑟.
Otherwise we will exclude sufficiently small arcs of |𝑧| = 𝑟 in (9), such that
|𝜔0(𝑧)| ⩾ 𝑐 > 0 on the remaining part 𝛾 of the circle and the inequality∫︁

𝛾

(|ℎ′0(𝑧)| − |𝑔′0(𝑧)|) |𝑑𝑧| > 𝐿 (𝑓, 𝑟)

still be true.
So, 𝜔0(𝑧) ̸= 0 on |𝑧| = 𝑟. Then, for small values of |𝑎| = 𝜀 > 0, the

following asymptotic formulas are true:

|𝜔(𝑧)|2 = |𝜔0(𝑧) + 𝑎|2 · |1− 𝑎𝜔0(𝑧) + 𝑜 (𝑎, 𝑧)|2 =

=
⃒⃒
𝜔0(𝑧) + 𝑎− 𝑎𝜔2

0(𝑧) + 𝑜(𝑎, 𝑧)
⃒⃒2

=

= |𝜔0(𝑧)|2 + 2𝜀 |𝜔0(𝑧)|
(︀
1− |𝜔0(𝑧)|2

)︀
cos (arg 𝜔0(𝑧)− arg 𝑎) + 𝑜(𝜀, 𝑧),

|𝜔(𝑧)| = |𝜔0(𝑧)|+ 𝜀(1− |𝜔0(𝑧)|2) cos(arg 𝜔0(𝑧)− arg 𝑎) + 𝑜(𝜀, 𝑧),√︃
1− |𝜔(𝑧)|
1 + |𝜔(𝑧)|

=

√︃
1− |𝜔0(𝑧)|
1 + |𝜔0(𝑧)|

(1− 𝜀 cos(arg 𝜔0(𝑧)− arg 𝑎) + 𝑜(𝜀, 𝑧)) ,

where 𝑜(𝜀, 𝑧) are uniformly small on the circle |𝑧| = 𝑟. Substituting the
last asymptotics into (9), we obtain the expression for the variation of the
functional 𝐿(𝑓0, 𝑟):
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𝛿𝐿(𝑓0, 𝑟)=𝐿(𝑓, 𝑟)−𝐿(𝑓0, 𝑟)=
∫︁

|𝑧|=𝑟

√︀
𝐽(𝑧)

(︃√︃
1− |𝜔(𝑧)|
1 + |𝜔(𝑧)|

−

√︃
1− |𝜔0(𝑧)|
1 + |𝜔0(𝑧)|

)︃
|𝑑𝑧|=

= −𝜀
∫︁

|𝑧|=𝑟

√︀
𝐽(𝑧)

√︃
1− |𝜔0(𝑧)|
1 + |𝜔0(𝑧)|

cos(arg 𝜔0(𝑧)− arg 𝑎)|𝑑𝑧|+ 𝑜(𝜀) =

= −𝜀 · Re 𝑒−𝑖 arg 𝑎

∫︁
|𝑧|=𝑟

√︀
𝐽(𝑧)

√︃
1− |𝜔0(𝑧)|
1 + |𝜔0(𝑧)|

𝑒𝑖 arg 𝜔0(𝑧)|𝑑𝑧|+ 𝑜(𝜀)

with some small constants 𝑜(𝜀). Since the mapping 𝑓0(𝑧) is a maximum
point of the functional 𝐿(𝑓, 𝑟), the inequality 𝛿𝐿(𝑓0, 𝑟) ⩽ 0 is valid for
any values of arg 𝑎 and all small 𝜀 = |𝑎|. Therefore, the main part of the
variation 𝛿𝐿(𝑓0, 𝑟) must be equal to zero:

−𝜀 · Re 𝑒−𝑖 arg 𝑎

∫︁
|𝑧|=𝑟

√︀
𝐽(𝑧)

√︃
1− |𝜔0(𝑧)|
1 + |𝜔0(𝑧)|

𝑒𝑖 arg 𝜔0(𝑧)|𝑑𝑧| = 0.

The condition (10) follows immediately in view of arbitrariness of arg 𝑎. □

For example, if 𝐽0(𝑧) = 1 − |𝑧|2, then, as shown in Example 3, map-
pings of the class ℱ(𝐽0) consists of functions with dilatations 𝜔(𝑧) =
= 𝑒𝑖𝛼 (𝑧 − 𝑐) (1− 𝑐 𝑧)−1 , |𝑐| < 1. Numerical estimates show that among
them only 𝜔0(𝑧) = 𝑒𝑖𝛼𝑧 satisfy the condition (10):

∫︁
|𝑧|=𝑟

√︀
𝐽(𝑧)

√︃
1− |𝜔0(𝑧)|
1 + |𝜔0(𝑧)|

𝑒𝑖 arg 𝜔0(𝑧)|𝑑𝑧| = (1− 𝑟)𝑟𝑒𝑖𝛼
2𝜋∫︁
0

𝑒𝑖𝑡𝑑𝑡 = 0.

The functional 𝐿(𝑓, 𝑟) reaches its maximal value on the mappings 𝑓0(𝑧) =
= 𝑧 + 1

2
𝑒𝑖𝛼𝑧2 with dilatations 𝜔0(𝑧) = 𝑒𝑖𝛼𝑧 in the class ℱ(𝐽0).
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