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Abstract. This paper examines linear forms of the third-degree,
i.e., when the associated Stieltjes function satisfies a cubic equation
with polynomial coefficients. A generator for third-degree forms is
constructed. In fact, we study the stability of the third-degree
character under this transformation that generalizes the rational
spectral transformation. Moreover, we prove the stability of third-
degree linear forms under standard algebraic operations. Several
illustrative examples are shown.
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1. Introduction. The origin of third-degree linear forms (TDFs) lies
exclusively with P. Maroni and I. Ben Salha [8]. These forms naturally ex-
tend from the well-known second-degree forms [17], [19], characterized by
the fact that their formal Stieltjes function 𝑆p𝑢qp𝑧q :“ ´

ř

𝑛>0 x𝑢, 𝑥
𝑛y {𝑧𝑛`1

satisfies a cubic equation with polynomial coefficients:

𝐴p𝑧q𝑆3
p𝑢qp𝑧q `𝐵p𝑧q𝑆2

p𝑢qp𝑧q ` 𝐶p𝑧q𝑆p𝑢qp𝑧q `𝐷p𝑧q “ 0.

A linear form 𝑢 is said to be a strict third-degree form (STDF) if it is a
TDF and it cannot be reduced to a second-degree form, i.e., its Stieltjes
function does not satisfy a quadratic equation with polynomial coefficients.
Some properties of TDRFs are discussed in [3], [8]. In particular, every
third-degree form belongs to the Laguerre-Hahn class [8], but the converse
is not true. The challenging study of semiclassical linear forms has led
to utilizing alternative tools, such as exploring second- and third-degree
forms to describe and characterize certain semiclassical forms [2], [3], [4],
[5], [6], [13], [14], [16].
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On the other hand, a rational spectral transformation [22] of the formal
Stieltjes function 𝑆p𝑧q is a new formal Stieltjes function defined by

r𝑆p𝑧q “

ˆ

𝑎𝑆 ` 𝑏

𝑐𝑆 ` 𝑑

˙

p𝑧q, 𝑎𝑑´ 𝑏𝑐 ‰ 0, (1)

where 𝑎, 𝑏, 𝑐, and 𝑑 are co-prime polynomials. In particular, when 𝑐 “ 0,
the spectral transformation (1) is said to be linear. Notably, the Christoffel
and Geronimus transformations (see [9], [21]) are fundamental examples
of linear spectral transforms and serve as generators within the family of
such transformations (see [22]).

In [7], the authors establish that the class of third-degree forms is
preserved by rational spectral transformations. This fact has important
consequences, particularly concerning the stability of the set of the third-
degree forms under various transformations, including the so called as-
sociated forms of 𝑘-th kind, Christoffel and Geronimus transformations,
co-recursive forms, inverse forms, among others. As a consequence, they
provide a constructive approach in order to generate third-degree forms,
emphasizing the algebraic analysis of the vector space of linear forms and
the corresponding Stieltjes functions.

The aim of this contribution is to identify a new system of generators
for the set of third-degree forms. Let 𝑢 and 𝑣 be linear forms, such that
their corresponding formal Stieltjes functions 𝑆p𝑢q and 𝑆p𝑣q are related
by

𝑆p𝑣qp𝑧q “
𝑎p𝑧q𝑆p𝑢qp𝜋p𝑧qq ` 𝑏p𝑧q

𝑐p𝑧q𝑆p𝑢qp𝜋p𝑧qq ` 𝑑p𝑧q
, 𝑎𝑑´ 𝑏𝑐 ‰ 0, (2)

where 𝑎, 𝑏, 𝑐, and 𝑑 are co-prime polynomials and 𝜋 is a monic polynomial
of degree greater than or equal to 1.

Assuming that either 𝑢 or 𝑣 is a third-degree linear form, then can the
same be said about the remaining one?

When 𝜋p𝑧q “ 𝑧, we recover a rational spectral transformation. The
stability problem of third-degree characters has been investigated in [7].
We should point out that the problems when 𝜋 is a monic polynomial of
degree greater than or equal to 2, have not been addressed in the literature
until the recent contributions [4], [5], [15], and [16], which are focused on
specific cases.

The paper is structured as follows. Section 2 provides an overview of
the basic background on algebraic aspects of the theory of linear forms and
Orthogonal Polynomials (OP), which will be relevant for the subsequent
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sections. In Section 3, we review the definitions and the main properties
of TDRFs. In Section 4, we start by giving, in the case where 𝜋p𝑧q “
𝑧𝑘` 𝑟, 𝑘 > 1, 𝑟 P C, the functional link between two regular forms 𝑢 and 𝑣
assuming that the Stieltjes function of one of them is obtained by applying
a transformation of type (2) to the Stieltjes function of the other. As a
consequence, we state our main result. We deal with a stability problem,
i.e., we show that for any choice of the polynomial 𝜋 of degree greater than
or equal to 1, the fact that the form 𝑢 is of the third degree implies that
the form 𝑣 is also of the third degree. Furthermore, we give a partial proof
of the converse result, when 𝜋p𝑧q “ 𝑧𝑘 ` 𝑟 with 𝑘 > 1 and 𝑟 P C. This
leads us to present in Section some interesting applications concerning the
stability of the class of third-degree forms under various transformations.

2. Notation and preliminaries. Let 𝒫 be the linear space of poly-
nomials with coefficients in C (the field of complex numbers) and let 𝒫 1
be its topological dual space, whose elements are called linear forms (or
linear functionals). By x¨, ¨y, we denote the duality brackets between 𝒫
and 𝒫 1. In particular, we denote by x𝑢, 𝑥𝑛y :“ p𝑢q𝑛, 𝑛 > 0, the moments
of 𝑢.

An important tool is the formal Stieltjes function associated with a
given regular linear form 𝑢 P 𝒫 1 defined by

𝑆p𝑢qp𝑧q :“ ´
ÿ

𝑛>0

p𝑢q𝑛
𝑧𝑛`1

. (3)

The function 𝑆p𝑢qp𝑧q is the zeta transform of the sequence of moments
p𝑢q𝑛 of 𝑢. Formally, 𝑆p𝑢qp𝑧q admits the representation

𝑆p𝑢qp𝑧q “
A

𝑢𝑥,
1

𝑥´ 𝑧

E

.

Let us introduce some useful operations in 𝒫 1. For any linear form 𝑢,
any polynomials 𝑓 , 𝑔 and any p𝛼, 𝛽, 𝛾q P pC ´ t0uq ˆ C2, let 𝑢1, 𝑔𝑢, ℎ𝛼𝑢,
𝜏𝛽𝑢, and p𝑥´ 𝛾q´1𝑢 be the linear forms defined by

x𝑢1,𝑓y :“ ´x𝑢,𝑓 1y, x𝑔𝑢,𝑓y :“ x𝑢,𝑔𝑓y,

xℎ𝛼𝑢,𝑓y :“ x𝑢,ℎ𝛼𝑓y “ x𝑢,𝑓p𝛼𝑥qy, x𝜏𝛽𝑢,𝑓y :“ x𝑢,𝜏´𝛽𝑓y “ x𝑢,𝑓p𝑥` 𝛽qy,

xp𝑥´ 𝛾q´1𝑢,𝑓y :“ x𝑢,𝜃𝛾𝑓y “ x𝑢,
𝑓p𝑥q´𝑓p𝛾q

𝑥´𝛾
y.

For 𝑓 P 𝒫 and 𝑢 P 𝒫 1, the product 𝑢𝑓 is the polynomial [20]

p𝑢𝑓qp𝑥q :“
A

𝑢𝜁 ,
𝑥𝑓p𝑥q ´ 𝜁𝑓p𝜁q

𝑥´ 𝜁

E

.
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This allows us to define the Cauchy product of two forms

x𝑣𝑢, 𝑓y :“ x𝑣, 𝑢𝑓y, 𝑢, 𝑣 P 𝒫 1, 𝑓 P 𝒫 .

If 𝑓 P 𝒫 , 𝑢, 𝑣 P 𝒫 1 and p𝛼, 𝛽q P pC´ t0uq ˆ C, then we have (see [20])

𝑆p𝑢𝑣qp𝑧q “ ´𝑧𝑆p𝑢qp𝑧q𝑆p𝑣qp𝑧q, (4)
𝑆p𝑓𝑢qp𝑧q “ 𝑓p𝑧q𝑆p𝑢qp𝑧q ` p𝑢𝜃0𝑓qp𝑧q, (5)
𝑆
`

pℎ𝛼´1 ˝ 𝜏´𝛽q𝑢
˘

p𝑧q “ 𝛼𝑆p𝑢qp𝛼𝑧 ` 𝛽q. (6)

Let us recall that a form 𝑢 is said to be regular (quasi-definite) if there ex-
ists a monic polynomial sequence t𝑝𝑛u𝑛>0 with deg 𝑝𝑛 “ 𝑛, such that [11].

x𝑢, 𝑝𝑛𝑝𝑚y “ 𝑟𝑛𝛿𝑛,𝑚, 𝑛,𝑚 > 0,

where t𝑟𝑛u𝑛>0 is a sequence of nonzero complex numbers and 𝛿𝑛,𝑚 is the
Kronecker symbol. A sequence t𝑝𝑛u𝑛>0 is called a monic orthogonal poly-
nomial sequence (MOPS, in short) with respect to the form 𝑢. It is char-
acterized by the following three-term recurrence relation:

𝑝0p𝑥q “ 1, 𝑝1p𝑥q “ 𝑥´ 𝛽0,

𝑝𝑛`2p𝑥q “ p𝑥´ 𝛽𝑛`1q𝑝𝑛`1p𝑥q ´ 𝛾𝑛`1𝑝𝑛p𝑥q, 𝑛 > 0.

Here t𝛽𝑛u𝑛>0 and t𝛾𝑛`1u𝑛>0 are sequences of complex numbers, such that
𝛾𝑛`1 ‰ 0 for all 𝑛. Conversely, if a sequence of polynomials satisfies a
recurrence relation as above with 𝛾𝑛`1 ‰ 0 for all 𝑛, then there exists a
linear form 𝑢, such that the sequence of polynomials is orthogonal with
respect to 𝑢. This is the so called Favard’s theorem (see [11], [20], [18]).

3. Third-degree linear forms.

Definition 1. [3] A linear form 𝑢 is called a third-degree form (TDF) if
there exist polynomials 𝐴 (monic), 𝐵,𝐶, and 𝐷, such that

𝐴p𝑧q𝑆3
p𝑢qp𝑧q `𝐵p𝑧q𝑆2

p𝑢qp𝑧q ` 𝐶p𝑧q𝑆p𝑢qp𝑧q `𝐷p𝑧q “ 0, (7)

where 𝐷 depends on 𝐴, 𝐵, 𝐶, and 𝑢.

Remark. In most cases, the form 𝑢 is not regular. However, when it is,
it is said to be a third-degree regular form (TDRF).
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The form 𝑢 is a (TDRF) if and only if the following conditions hold:

𝐴p𝑥q𝑢3 ´ 𝑥𝐵p𝑥q𝑢2 ` 𝑥2𝐶p𝑥q𝑢 “ 0,

x𝑢3,𝜃20𝐴y ´ x𝑢
2,𝜃0𝐵y ` x𝑢,𝐶y “ 0,

x𝑢3,𝜃0𝐴y ´ x𝑢
2, 𝐵y ` x𝑢,𝑥𝐶p𝑥qy “ 0.

As a consequence,

𝐷p𝑧q “
`

𝑢3𝜃30𝐴
˘

p𝑧q ´
`

𝑢2𝜃20𝐵
˘

p𝑧q `
`

𝑢𝜃0𝐶
˘

p𝑧q.

Remark.

1) A regular linear form 𝑢 is called a second-degree form if the corre-
sponding Stieltjes function satisfies a quadratic equation with poly-
nomial coefficients 𝑀 , 𝑁 , 𝑅, such that [17]

𝑀p𝑧q𝑆2
p𝑢qp𝑧q `𝑁p𝑧q𝑆p𝑢qp𝑧q `𝑅p𝑧q “ 0. (8)

Here 𝑀 , 𝑁 , 𝑅 satisfy 𝑀 ‰ 0, 𝑁2 ´ 4𝑀𝑅 ‰ 0, 𝑅 ‰ 0, according to
the regularity of 𝑢.

2) The polynomial 𝑅 is given in terms of 𝑀 , 𝑁 , and 𝑢 as

𝑅p𝑧q “ ´p𝑢2𝜃20𝑀qp𝑧q ` p𝑢𝜃0𝑁qp𝑧q.

3) The polynomials 𝐴, 𝐵, and 𝐶 (resp. 𝑀 and 𝑁), given in (7) (resp.
(8)), are not unique, because 𝐴, 𝐵, and 𝐶 (resp. 𝑀 and 𝑁) can
be multiplied by an arbitrary polynomial. If the polynomials 𝐴, 𝐵,
𝐶, and 𝐷 in (7) (resp. 𝑀 , 𝑁 , and 𝑅 in (8)) are co-prime, then the
triple p𝐴,𝐵,𝐶q (resp. the pair p𝑀,𝑁q) is called a primitive triple
(resp. the primitive pair). Such a triple (resp. pair) is unique [7]
(resp. [17]).

4) When the form 𝑢 is a third-degree regular form (TDRF) and not
a second-degree form, we call it a strict third-degree regular form
(STDRF) [3].

It is well known that the Chebyshev form of the first kind
𝒯 :“ 𝒥

`

´ 1
2
,´1

2

˘

is a second-degree form. Indeed, its Stieltjes function is

𝑆p𝒯 qp𝑧q “ ´p𝑧2 ´ 1q´
1
2

and satisfies the quadratic equation

p𝑧2 ´ 1q𝑆2
p𝒯 qp𝑧q ´ 1 “ 0.
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Among the most well-known forms that are strict third-degree (STDRF),
we can find the Jacobi form 𝒱 :“ 𝒥 p´2

3
,´1

3
q [3]. Let us remind that 𝒱

satisfies the following equations:

p𝑧 ` 1q2p𝑧 ´ 1q𝑆3
p𝒱qp𝑧q ` 1 “ 0.

The third-degree character is preserved by an affine transformation.
Indeed,

Proposition 1. [3] Let 𝑢 be a (TDRF), such that (7) holds. Then, the
shifted form p𝑢 “ pℎ𝑎´1 ˝ 𝜏´𝑏q𝑢, 𝑎 P C´ t0u, 𝑏 P C, fulfils

p𝐴p𝑧q𝑆3
pp𝑢qp𝑧q ` p𝐵p𝑧q𝑆2

pp𝑢qp𝑧q ` p𝐶p𝑧q𝑆pp𝑢qp𝑧q ` p𝐷p𝑧q “ 0,

with

p𝐴p𝑧q “ 𝑎´deg𝐴𝐴p𝑎𝑧 ` 𝑏q,

p𝐵p𝑧q “ 𝑎1´deg𝐴𝐵p𝑎𝑧 ` 𝑏q,

p𝐶p𝑧q “ 𝑎2´deg𝐴𝐶p𝑎𝑧 ` 𝑏q,

p𝐷p𝑧q “ 𝑎3´deg𝐴𝐷p𝑎𝑧 ` 𝑏q.

Note that every second-degree form is semiclassical (see [2]). Classical
strict third-degree (respectively second-degree) forms have been studied
in [3] (respectively [2]) and are related to special choices of the parameters
𝛼, 𝛽 of the Jacobi linear form 𝒥 p𝛼, 𝛽q (see [18]). Indeed,

Theorem 1. [2] Among the classical forms, only the Jacobi forms
𝒥 p𝑡´ 1{2,𝑙 ´ 1{2q are second-degree forms, provided 𝑡` 𝑙 > 0, 𝑡, 𝑙 P Z.

Theorem 2. [3] Among the classical forms, only the Jacobi forms
𝒥 p𝑡` 𝑞{3,𝑙 ´ 𝑞{3q are (STDRFs), provided 𝑡` 𝑙 > ´1, 𝑡, 𝑙 P Z, 𝑞 P t1,2u.

4. Stability of third-degree linear functionals. In this section,
we first introduce some operators in the linear space of polynomials and
state some preliminary lemmas. For a fixed 𝜋 P 𝒫 , let 𝜎𝜋 : 𝒫 Ñ 𝒫 be
the linear operator defined by 𝜎𝜋r𝑓 s :“ 𝑓 ˝ 𝜋 for every 𝑓 P 𝒫 , and define
𝜎˚𝜋 : 𝒫 1 Ñ 𝒫 1 by duality. Indeed,

𝜎𝜋r𝑓 sp𝑥q :“ 𝑓p𝜋p𝑥qq, x𝜎˚𝜋p𝜔q, 𝑓y :“ x𝜔, 𝜎𝜋r𝑓 sy , 𝑓 P 𝒫 , 𝜔 P 𝒫 1.

Remark. Throughout this paper, the following notation will be used:
𝜋𝑘p𝑥q “ 𝑥𝑘 ` 𝑟, with 𝑟 P C and 𝑘 > 1 is a fixed integer number.
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For a fixed integer number 𝑘, 𝑘 > 1, we introduce the operator 𝜚𝑘 :
𝒫 1 Ñ 𝒫 1, such that for any linear form 𝜔 P 𝒫 1 we get

𝜚1p𝜔q “ 𝜔,

and, for all 𝑘 > 2:
`

𝜚𝑘p𝜔q
˘

𝑘𝑛`𝑗
“ 0, 𝑗 “ 0, . . . , 𝑘 ´ 2, 𝑛 > 0, (9)

`

𝜚𝑘p𝜔q
˘

𝑘𝑛`𝑘´1
“ p𝜔q𝑛, 𝑛 > 0. (10)

Remark.

• If 𝑘 “ 2, then 𝜚2 is the anti-symmetrization operator 𝛼 (see [4]).
• If 𝑘 “ 3, then 𝜚3 is the operator 𝜚 (see [13], [20]).

Lemma 1. [10, Lemma 3.4] Let 𝜋 and 𝜑 be monic polynomials with
deg 𝜋 “ 𝑙 and let ℬ𝜋 :“ t𝑝0, 𝑝1, . . . , 𝑝𝑙´1u be a simple set of polyno-
mials. Then, to the triple p𝜑, 𝜋,ℬ𝜋q we may associate 𝑙 polynomials
𝜑0, 𝜑1, . . . , 𝜑𝑙´1, with deg 𝜑𝑗 6 tpdeg 𝜑q{𝑙u for all 𝑗 “ 0, 1, . . . , 𝑙 ´ 1, such
that

𝜑 “
𝑙´1
ÿ

𝑗“0

𝑝𝑗𝜎𝜋 r𝜑𝑗s .

Lemma 2. [16, Lemma 3.2] Let Σ1,Σ2, . . . ,Σ𝑁 be formal power series,
𝑓1, 𝑓2, . . . , 𝑓𝑁 P 𝒫 and

Ωp𝑧q “
𝑁
ÿ

𝑗“1

𝑓𝑗p𝑧
´1
qΣ𝑗p𝑧q.

If Ω
`

1{𝜋𝑘p𝑧q
˘

“ 0, where 𝑟 P C and 𝑘 is a fixed integer, such that 𝑘 > 2,
then Ωp𝑧q “ 0.

Lemma 3. Let 𝜔 be a linear form in 𝒫 1 and let 𝑘 be an integer, such
that 𝑘 > 1. The formal Stieltjes functions 𝑆p𝜔q and 𝑆

`

𝜚𝑘p𝜔q
˘

associated
with the forms 𝜔 and 𝜚𝑘p𝜔q, respectively, are related by

𝑆p𝜔q
`

𝑧𝑘q “ 𝑆
`

𝜚𝑘p𝜔q
˘

p𝑧q.

Proof. The proof is straightforward from the definition (9) – (10) of the
operator 𝜚𝑘 and is omitted. l
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Corollary. Let 𝜔 be a linear form in 𝒫 1 and let 𝑘 be an integer, such that
𝑘 > 1. Then

𝑆p𝜔qp𝜋𝑘p𝑧qq “ 𝑆
´

𝜚𝑘
`

𝜏´𝑟p𝜔q
˘

¯

p𝑧q. (11)

Proof. It is an immediate consequence of Lemma 3 with (6) taken into
account. l

As an initial result, we discuss the relation between two linear forms
whose formal Stieltjes functions are connected by (2).

Proposition 2. Let 𝑢 and 𝑣 be two forms in 𝒫 1. The formal Stieltjes
functions 𝑆p𝑢q and 𝑆p𝑣q associated with the forms 𝑢 an 𝑣, respectively,
are related by

𝑆p𝑣qp𝑧q “
𝑎p𝑧q𝑆p𝑢qp𝜋𝑘p𝑧qq ` 𝑏p𝑧q

𝑐p𝑧q𝑆p𝑢qp𝜋𝑘p𝑧qq ` 𝑑p𝑧q
, 𝑎𝑑´ 𝑏𝑐 ‰ 0, (12)

where 𝑎, 𝑏, 𝑐, and 𝑑 are co-prime polynomials, if and only if

𝑐p𝑥q𝜚𝑘
`

𝜏´𝑟p𝑢q
˘

𝑣 ´ 𝑥𝑑p𝑥q𝑣 ` 𝑥𝑎p𝑥q𝜚𝑘
`

𝜏´𝑟p𝑢q
˘

“ 0, (13)
´

𝜚𝑘
`

𝜏´𝑟p𝑢q
˘

𝑣𝜃0𝑐
¯

p𝑥q ´ p𝑣𝑑qp𝑥q `
´

𝜚𝑘
`

𝜏´𝑟p𝑢q
˘

𝑎
¯

p𝑥q ´ 𝑥𝑏p𝑥q “ 0. (14)

Proof. The proof is straightforward once one substitutes 𝜚𝑘
`

𝜏´𝑟p𝑢q
˘

by
𝑢, in addition to taking into account [7, Proposition 5.1]. l

Remark 1. In particular, when 𝑐 “ 0, i.e., the formal Stieltjes functions
𝑆p𝑢q and 𝑆p𝑣q associated with the forms 𝑢 and 𝑣 are related by

𝑆p𝑣qp𝑧q “
𝑎p𝑧q𝑆p𝑢qp𝜋𝑘p𝑧qq ` 𝑏p𝑧q

𝑑p𝑧q
, 𝑎𝑑 ‰ 0,

where 𝑎, 𝑏, and 𝑑 are co-prime polynomials, if and only if 𝑢 and 𝑣 are
related by

𝑑p𝑥q𝑣 “ 𝑎p𝑥q𝜚𝑘
`

𝜏´𝑟p𝑢q
˘

,

p𝑣𝜃0𝑑qp𝑥q ´
´

𝜚𝑘
`

𝜏´𝑟p𝑢q
˘

𝜃0𝑎
¯

p𝑥q ` 𝑏p𝑥q “ 0.

Proposition 3. Let 𝑢 and 𝑣 be two forms in 𝒫 1 whose associated formal
Stieltjes functions 𝑆p𝑢q and 𝑆p𝑣q are related by

𝑆p𝑣qp𝑧q “
𝑎p𝑧q𝑆p𝑢qp𝜋p𝑧qq ` 𝑏p𝑧q

𝑐p𝑧q𝑆p𝑢qp𝜋p𝑧qq ` 𝑑p𝑧q
, (15)

where 𝑎𝑑 ´ 𝑏𝑐 ‰ 0, 𝑎, 𝑏, 𝑐, 𝑑 P 𝒫 , and 𝜋 is a monic polynomial of degree
greater than or equal to 1.
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(i) If 𝑢 is a (TDF), then 𝑣 is also a (TDF). Moreover, if 𝑢 satisfies

𝐴𝑢p𝑧q𝑆
3
p𝑢qp𝑧q `𝐵𝑢p𝑧q𝑆

2
p𝑢qp𝑧q ` 𝐶𝑢p𝑧q𝑆p𝑢qp𝑧q `𝐷𝑢p𝑧q “ 0, (16)

then for the linear form 𝑣 we get

𝐴𝑣p𝑧q𝑆
3
p𝑣qp𝑧q `𝐵𝑣p𝑧q𝑆

2
p𝑣qp𝑧q ` 𝐶𝑣p𝑧q𝑆p𝑣qp𝑧q `𝐷𝑣p𝑧q “ 0, (17)

where

𝐴𝑣p𝑧q “ 𝜎𝜋r𝐴𝑢sp𝑧q𝑑
3
p𝑧q ´ 𝜎𝜋r𝐵𝑢sp𝑧q𝑐p𝑧q𝑑

2
p𝑧q`

` 𝜎𝜋r𝐶𝑢sp𝑧q𝑑p𝑧q𝑐
2
p𝑧q ´ 𝜎𝜋r𝐷𝑢sp𝑧q𝑐

3
p𝑧q,

𝐵𝑣p𝑧q “ ´3𝜎𝜋r𝐴𝑢sp𝑧q𝑏p𝑧q𝑑
2
p𝑧q ` 𝜎𝜋r𝐵𝑢sp𝑧qp𝑎p𝑧q𝑑

2
p𝑧q`

` 2𝑏p𝑧q𝑑p𝑧q𝑐p𝑧qq ´ 𝜎𝜋r𝐶𝑢sp𝑧qp𝑏p𝑧q𝑐
2
p𝑧q`

` 2𝑑p𝑧q𝑐p𝑧q𝑎p𝑧qq ` 3𝜎𝜋r𝐷𝑢sp𝑧q𝑎p𝑧q𝑐
2
p𝑧q,

𝐶𝑣p𝑧q “ 3𝜎𝜋r𝐴𝑢sp𝑧q𝑑p𝑧q𝑏
2
p𝑧q ´ 𝜎𝜋r𝐵𝑢sp𝑧qp𝑐p𝑧q𝑏

2
p𝑧q`

` 2𝑏p𝑧q𝑎p𝑧q𝑑p𝑧qq ` 𝜎𝜋r𝐶𝑢sp𝑧qp𝑑p𝑧q𝑎
2
p𝑧q`

` 2𝑏p𝑧q𝑎p𝑧q𝑐p𝑧qq ´ 3𝜎𝜋r𝐷𝑢sp𝑧q𝑐p𝑧q𝑎
2
p𝑧q,

𝐷𝑣p𝑧q “ ´𝜎𝜋r𝐴𝑢sp𝑧q𝑏
3
p𝑧q ` 𝜎𝜋r𝐵𝑢sp𝑧q𝑎p𝑧q𝑏

2
p𝑧q´

´ 𝜎𝜋r𝐶𝑢sp𝑧q𝑏p𝑧q𝑎
2
p𝑧q ` 𝜎𝜋r𝐷𝑢sp𝑧q𝑎

3
p𝑧q.

(18)

(ii) When 𝜋 “ 𝜋𝑘, if 𝑣 is a (TDF), then 𝑢 is also a (TDF).

Proof.
(i) The proof is similar to that of [7, Proposition 5.2].
(ii) Assume that 𝑣 is a (TDF) satisfying (7)

𝐴𝑣p𝑧q𝑆
3
p𝑣qp𝑧q `𝐵𝑣p𝑧q𝑆

2
p𝑣qp𝑧q ` 𝐶𝑣p𝑧q𝑆p𝑣qp𝑧q `𝐷𝑣p𝑧q “ 0. (19)

Replacing (15) in (19), and multiplying both sides of the resulting equation
by

`

𝑐p𝑧q𝑆p𝑢qp𝜋𝑘p𝑧qq ` 𝑑p𝑧q
˘3 after some computations, we get

𝐴𝑣p𝑧qℋ1p𝑧q `𝐵𝑣p𝑧qℋ2p𝑧q ` 𝐶𝑣p𝑧qℋ3p𝑧q `𝐷𝑣p𝑧qℋ4p𝑧q “ 0,

with

ℋ1p𝑧q “𝑎
3
p𝑧q𝑆3

p𝑢qp𝜋𝑘p𝑧qq ` 3𝑏p𝑧q𝑎2p𝑧q𝑆2
p𝑢qp𝜋𝑘p𝑧qq`

` 3𝑎p𝑧q𝑏2p𝑧q𝑆p𝑢qp𝑣q ` 𝑏3p𝑧q,

ℋ2p𝑧q “𝑐p𝑧q𝑎
2
p𝑧q𝑆3

p𝑢qp𝜋𝑘p𝑧qq`p𝑑p𝑧q𝑎
2
p𝑧q`2𝑏p𝑧q𝑎p𝑧q𝑐p𝑧qq𝑆2

p𝑢qp𝜋𝑘p𝑧qq`
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` p𝑐p𝑧q𝑏2p𝑧q ` 2𝑏p𝑧q𝑎p𝑧q𝑑p𝑧qq𝑆p𝑢qp𝜋𝑘p𝑧qq ` 𝑑p𝑧q𝑏
2
p𝑧q,

ℋ3p𝑧q “𝑎p𝑧q𝑐
2
p𝑧q𝑆3

p𝑢qp𝜋𝑘p𝑧qq ` p𝑏p𝑧q𝑐
2
p𝑧q ` 2𝑑p𝑧q𝑐p𝑧q𝑎p𝑧qq𝑆2

p𝑢qp𝜋𝑘p𝑧qq`

` p𝑎p𝑧q𝑑2p𝑧q ` 2𝑏p𝑧q𝑑p𝑧q𝑐p𝑧qq𝑆p𝑢qp𝜋𝑘p𝑧qq ` 𝑏p𝑧q𝑑
2
p𝑧q,

ℋ4p𝑧q “𝑐
3
p𝑧q𝑆3

p𝑢qp𝜋𝑘p𝑧qq ` 3𝑑p𝑧q𝑐2p𝑧q𝑆2
p𝑢qp𝜋𝑘p𝑧qq`

` 3𝑐p𝑧q𝑑2p𝑧q𝑆p𝑢qp𝜋𝑘p𝑧qq ` 𝑑
3
p𝑧q.

Therefore, 𝑆p𝑢qp𝜋𝑘p𝑧qq satisfies

𝐴𝑢p𝑧q𝑆
3
p𝑢qp𝜋𝑘p𝑧qq̀ 𝐵𝑢p𝑧q𝑆

2
p𝑢qp𝜋𝑘p𝑧qq̀ 𝐶𝑢p𝑧q𝑆p𝑢qp𝜋𝑘p𝑧qq̀ 𝐷𝑢p𝑧q“0, (20)

where the polynomials 𝐴𝑢, 𝐵𝑢, 𝐶𝑢, and 𝐷𝑢 are

𝐴𝑢p𝑧q “𝐴𝑣p𝑧q𝑎
3
p𝑧q `𝐵𝑣p𝑧q𝑐p𝑧q𝑎

2
p𝑧q ` 𝐶𝑣p𝑧q𝑎p𝑧q𝑐p𝑧q

2
`𝐷𝑣p𝑧q𝑐

3
p𝑧q,

𝐵𝑢p𝑧q “3𝐴𝑣p𝑧q𝑏p𝑧q𝑎
2
p𝑧q `𝐵𝑣p𝑧qp𝑎

2
p𝑧q𝑑p𝑧q ` 2𝑏p𝑧q𝑎p𝑧q𝑐p𝑧qq`

` 𝐶𝑣p𝑧qp𝑏p𝑧q𝑐
2
p𝑧q ` 2𝑑p𝑧q𝑐p𝑧q𝑎p𝑧qq ` 3𝐷𝑣p𝑧q𝑑p𝑧q𝑐

2
p𝑧q,

𝐶𝑢p𝑧q “3𝐴𝑣p𝑧q𝑎p𝑧q𝑏
2
p𝑧q `𝐵𝑣p𝑧qp𝑐p𝑧q𝑏

2
p𝑧q ` 2𝑏p𝑧q𝑎p𝑧q𝑑p𝑧qq`

` 𝐶𝑣p𝑧qp𝑎p𝑧q𝑑p𝑧q
2
`2𝑏p𝑧q𝑑p𝑧q𝑐p𝑧qq`3𝐷𝑣p𝑧q𝑐p𝑧q𝑑p𝑧q

2,

𝐷𝑢p𝑧q “𝐴𝑣p𝑧q𝑏p𝑧q
3
`𝐵𝑣p𝑧q𝑑p𝑧q𝑏

2
p𝑧q ` 𝐶𝑣p𝑧q𝑏p𝑧q𝑑

2
p𝑧q `𝐷𝑣p𝑧q𝑑

3
p𝑧q.

(21)

Now, Lemma 1 ensures the existence of polynomials 𝐴𝑢,𝜈p𝑧q, 𝐵𝑢,𝜈p𝑧q,
𝐶𝑢,𝜈p𝑧q, and 𝐷𝑢,𝜈p𝑧q, 𝜈 “ 0,1, . . . , 𝑘´1, with each 𝐴𝑢,𝜈p𝑧q, 𝐵𝑢,𝜈p𝑧q, 𝐶𝑢,𝜈p𝑧q,
and 𝐷𝑢,𝜈p𝑧q not necessarily of degree 𝜈, such that

𝐴𝑢p𝑧q “
𝑘´1
ÿ

𝜈“0

𝑧𝜈𝜎𝜋𝑘r𝐴𝑢,𝜈sp𝑧q, 𝐵𝑢p𝑧q “
𝑘´1
ÿ

𝜈“0

𝑧𝜈𝜎𝜋𝑘r𝐵𝑢,𝜈sp𝑧q,

𝐶𝑢p𝑧q “
𝑘´1
ÿ

𝜈“0

𝑧𝜈𝜎𝜋𝑘r𝐶𝑢,𝜈sp𝑧q, 𝐷𝑢p𝑧q “
𝑘´1
ÿ

𝜈“0

𝑧𝜈𝜎𝜋𝑘r𝐷𝑢,𝜈sp𝑧q.

Thus, (20) can be rewritten as

𝑘´1
ÿ

𝜈“0

𝑧𝜈𝒮𝜈 p𝜋𝑘p𝑧qq “ 0, (22)

where

𝒮𝜈p𝑧q :“ 𝐴𝑢,𝜈p𝑧q𝑆
3
p𝑢qp𝑧q̀ 𝐵𝑢,𝜈p𝑧q𝑆

2
p𝑢qp𝑧q̀ 𝐶𝑢,𝜈p𝑧q𝑆p𝑢qp𝑧q`𝐷𝑢,𝜈p𝑧q, (23)

𝜈 “ 0, 1, . . . , 𝑘 ´ 1.
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Next, let us consider the 𝑘-th roots of unity 𝜛𝜈 , i.e., 𝜛𝜈 “ 𝑒
2𝑖𝜈𝜋
𝑘 for

𝜈 “ 0, 1, . . . , 𝑘´ 1. After the substitutions 𝑧 Ð 𝜛𝑚
1 𝑧, 𝑚 “ 0, 1, . . . , 𝑘´ 1,

in (22), and taking into account 𝜛𝑘
1 “ 1 and 𝜛𝜈

1 “ 𝜛𝜈 , 𝜈 “ 0, 1, . . . , 𝑘´ 1,
we get

𝑘´1
ÿ

𝜈“0

𝜛𝑚
𝑗 𝑧

𝜈𝒮𝜈 p𝜋𝑘p𝑧qq “ 0, 𝑚 “ 0, 1, . . . , 𝑘 ´ 1.

By summing the 𝑘 final equations, we obtain

𝑘´1
ÿ

𝜈“0

´

𝑘´1
ÿ

𝑚“0

𝜛𝑚
𝑗

¯

𝑧𝜈𝒮𝜈 p𝜋𝑘p𝑧qq “ 0. (24)

It is easy to see that
ř𝑘´1
𝑚“0𝜛

𝑚
𝑗 “ 0 for all 𝜈 “ 1, 2, . . . , 𝑘 ´ 1. Hence,

(24) can be simplified as 𝑘𝒮0p𝜋𝑘p𝑧qq “ 0. In the same way, for each
𝜈 “ 0, 1, . . . , 𝑘 ´ 1, one has

𝒮𝜈p𝜋𝑘p𝑧qq “ 0. (25)

Replacing 𝑧 by 𝑧´1 in (23), we have

𝒮𝜈p𝑧´1q “ 𝐴𝑢,𝜈p𝑧
´1
q𝑆3
p𝑢qp𝑧´1q `𝐵𝑢,𝜈p𝑧

´1
q𝑆2
p𝑢qp𝑧´1q`

` 𝐶𝑢,𝜈p𝑧
´1
q𝑆p𝑢qp𝑧´1q `𝐷𝑢,𝜈p𝑧

´1
q, 𝜈 “ 0, 1, . . . , 𝑘 ´ 1.

Using Lemma 2 with Ωp𝑧q “ 𝒮𝜈p𝑧´1q and taking into account (25), we
can deduce 𝒮𝜈p𝑧q “ 0, 𝜈 “ 0, 1, . . . , 𝑘 ´ 1. Since p𝐴𝑣, 𝐷𝑣q ‰ p0, 0q and
p𝑎, 𝑐q ‰ p0, 0q, from the first relation of (21) we have 𝐴𝑢 ‰ 0, so, there
exists 0 6 𝜈0 6 𝑘 ´ 1, such that 𝐴𝑢,𝜈0 ‰ 0. Therefore, the desired result
follows by noting that 𝒮𝜈0p𝑧q “ 0. l

As a consequence of Proposition 3 and under the assumption of Propo-
sition 3, the following statements hold:

Corollary.

(i) If 𝑢 is a second-degree form (resp. (STDF)), then 𝑣 is also a second-
degree form (resp. (STDF)).

(ii) When 𝜋 “ 𝜋𝑘, if 𝑣 is a second-degree form (resp. (STDF)), then 𝑢
is also a second-degree form (resp. (STDF)).

Remark. When 𝑘 “ 1 and 𝑟 “ 0, we recover again the same result for
the rational spectral transformation case [7].
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Corollary. Let us assume that the polynomials p𝐴 “ 𝜎𝜋𝑘r𝐴𝑢s,
p𝐵 “ 𝜎𝜋𝑘r𝐵𝑢s,

p𝐶 “ 𝜎𝜋𝑘r𝐶𝑢sp𝑧q and p𝐷 “ 𝜎𝜋𝑘r𝐷𝑢sp𝑧q satisfy
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

𝑑3p𝑧q p𝐴´ 𝑐p𝑧q𝑑2p𝑧q p𝐵 ` 𝑑p𝑧q𝑐2p𝑧q p𝐶 ´ 𝑐3p𝑧q p𝐷 “ r𝐴,

´3𝑏p𝑧q𝑑2p𝑧q p𝐴` p𝑎p𝑧q𝑑2p𝑧q ` 2𝑏p𝑧q𝑑p𝑧q𝑐p𝑧qq p𝐵

´p𝑏p𝑧q𝑐2p𝑧q ` 2𝑑p𝑧q𝑐p𝑧q𝑎p𝑧qq p𝐶 ` 3𝑎p𝑧q𝑐2p𝑧q p𝐷 “ r𝐵,

3𝑑p𝑧q𝑏2p𝑧q p𝐴´ p𝑐p𝑧q𝑏2p𝑧q ` 2𝑏p𝑧q𝑎p𝑧q𝑑p𝑧qq p𝐵`

p𝑑p𝑧q𝑎2p𝑧q ` 2𝑏p𝑧q𝑎p𝑧q𝑐p𝑧qq p𝐶 ´ 3𝑐p𝑧q𝑎2p𝑧q p𝐷 “ r𝐶,

´𝑏3p𝑧q p𝐴` 𝑎p𝑧q𝑏2p𝑧q p𝐵 ´ 𝑏p𝑧q𝑎2p𝑧q p𝐶 ` 𝑎3p𝑧q p𝐷 “ r𝐷.

(26)

If we denote by 𝒟 the determinant of the above linear system, then we
have

𝒟 “

´

𝑎p𝑧q𝑑p𝑧q ´ 𝑏p𝑧q𝑐p𝑧q
¯6

. (27)

Proof. The determinant 𝒟 of the system (26) reads as

𝒟 “

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

𝑑3p𝑧q ´𝑐p𝑧q𝑑2p𝑧q 𝑑p𝑧q𝑐2p𝑧q ´𝑐3p𝑧q

´3𝑏p𝑧q𝑑2p𝑧q 𝑎p𝑧q𝑑2p𝑧q ` 2𝑏p𝑧q𝑑p𝑧q𝑐p𝑧q ´p𝑏p𝑧q𝑐2p𝑧q ` 2𝑑p𝑧q𝑐p𝑧q𝑎p𝑧qq 3𝑎p𝑧q𝑐2p𝑧q

3𝑑p𝑧q𝑏2p𝑧q ´p𝑐p𝑧q𝑏2p𝑧q ` 2𝑏p𝑧q𝑎p𝑧q𝑑p𝑧qq 𝑑p𝑧q𝑎2p𝑧q ` 2𝑏p𝑧q𝑎p𝑧q𝑐p𝑧q ´3𝑐p𝑧q𝑎2p𝑧q

´𝑏3p𝑧q 𝑎p𝑧q𝑏2p𝑧q ´𝑏p𝑧q𝑎2p𝑧q 𝑎3p𝑧q

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ .

Expanding 𝒟 by the first row and their corresponding cofactors, we have

𝒟 “ 𝑑3p𝑧q𝒟1 ` 3𝑏p𝑧q𝑑2p𝑧q𝒟2 ` 3𝑑p𝑧q𝑏2p𝑧q𝒟3 ` 𝑏
3
p𝑧q𝒟4, (28)

where

𝒟1 “

⃒⃒⃒⃒
⃒⃒⃒ 𝑎p𝑧q𝑑2p𝑧q ` 2𝑏p𝑧q𝑑p𝑧q𝑐p𝑧q ´p𝑏p𝑧q𝑐2p𝑧q ` 2𝑑p𝑧q𝑐p𝑧q𝑎p𝑧qq 3𝑎p𝑧q𝑐2p𝑧q

´p𝑐p𝑧q𝑏2p𝑧q ` 2𝑏p𝑧q𝑎p𝑧q𝑑p𝑧qq 𝑑p𝑧q𝑎2p𝑧q ` 2𝑏p𝑧q𝑎p𝑧q𝑐p𝑧q ´3𝑐p𝑧q𝑎2p𝑧q

𝑎p𝑧q𝑏2p𝑧q ´𝑏p𝑧q𝑎2p𝑧q 𝑎3p𝑧q

⃒⃒⃒⃒
⃒⃒⃒ ,

𝒟2 “

⃒⃒⃒⃒
⃒⃒⃒ ´𝑐p𝑧q𝑑2p𝑧q 𝑑p𝑧q𝑐2p𝑧q ´𝑐3p𝑧q

´p𝑐p𝑧q𝑏2p𝑧q ` 2𝑏p𝑧q𝑎p𝑧q𝑑p𝑧qq 𝑑p𝑧q𝑎2p𝑧q ` 2𝑏p𝑧q𝑎p𝑧q𝑐p𝑧q ´3𝑐p𝑧q𝑎2p𝑧q

𝑎p𝑧q𝑏2p𝑧q ´𝑏p𝑧q𝑎2p𝑧q 𝑎3p𝑧q

⃒⃒⃒⃒
⃒⃒⃒ ,

𝒟3 “

⃒⃒⃒⃒
⃒⃒⃒ ´𝑐p𝑧q𝑑2p𝑧q 𝑑p𝑧q𝑐2p𝑧q ´𝑐3p𝑧q

𝑎p𝑧q𝑑2p𝑧q ` 2𝑏p𝑧q𝑑p𝑧q𝑐p𝑧q ´p𝑏p𝑧q𝑐2p𝑧q ` 2𝑑p𝑧q𝑐p𝑧q𝑎p𝑧qq 3𝑎p𝑧q𝑐2p𝑧q

𝑎p𝑧q𝑏2p𝑧q ´𝑏p𝑧q𝑎2p𝑧q 𝑎3p𝑧q

⃒⃒⃒⃒
⃒⃒⃒ ,

𝒟4 “

⃒⃒⃒⃒
⃒⃒⃒ ´𝑐p𝑧q𝑑2p𝑧q 𝑑p𝑧q𝑐2p𝑧q ´𝑐3p𝑧q

𝑎p𝑧q𝑑2p𝑧q ` 2𝑏p𝑧q𝑑p𝑧q𝑐p𝑧q ´p𝑏p𝑧q𝑐2p𝑧q ` 2𝑑p𝑧q𝑐p𝑧q𝑎p𝑧qq 3𝑎p𝑧q𝑐2p𝑧q

´p𝑐p𝑧q𝑏2p𝑧q ` 2𝑏p𝑧q𝑎p𝑧q𝑑p𝑧qq 𝑑p𝑧q𝑎2p𝑧q ` 2𝑏p𝑧q𝑎p𝑧q𝑐p𝑧q ´3𝑐p𝑧q𝑎2p𝑧q

⃒⃒⃒⃒
⃒⃒⃒ .
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First, we need to evaluate 𝒟𝑘, 1 6 𝑘 6 4. For 𝒟1, we have

𝒟1 “ p𝑎p𝑧q𝑑
2
p𝑧q ` 2𝑏p𝑧q𝑑p𝑧q𝑐p𝑧qq𝒟1,1`

` p𝑐p𝑧q𝑏2p𝑧q ` 2𝑏p𝑧q𝑎p𝑧q𝑑p𝑧qq𝒟1,2 ` 𝑎p𝑧q𝑏
2
p𝑧q𝒟1,3, (29)

where

𝒟1,1 “

⃒⃒⃒⃒
⃒𝑑p𝑧q𝑎2p𝑧q ` 2𝑏p𝑧q𝑎p𝑧q𝑐p𝑧q ´3𝑐p𝑧q𝑎2p𝑧q

´𝑏p𝑧q𝑎2p𝑧q 𝑎3p𝑧q

⃒⃒⃒⃒
⃒ ,

𝒟1,2 “

⃒⃒⃒⃒
⃒´p𝑏p𝑧q𝑐2p𝑧q ` 2𝑑p𝑧q𝑐p𝑧q𝑎p𝑧qq 3𝑎p𝑧q𝑐2p𝑧q

´𝑏p𝑧q𝑎2p𝑧q 𝑎3p𝑧q

⃒⃒⃒⃒
⃒ ,

𝒟1,3 “

⃒⃒⃒⃒
⃒´p𝑏p𝑧q𝑐2p𝑧q ` 2𝑑p𝑧q𝑐p𝑧q𝑎p𝑧qq 3𝑎p𝑧q𝑐2p𝑧q

𝑑p𝑧q𝑎2p𝑧q ` 2𝑏p𝑧q𝑎p𝑧q𝑐p𝑧q ´3𝑐p𝑧q𝑎2p𝑧q

⃒⃒⃒⃒
⃒ .

After some elementary computations, (29) becomes

𝒟1 “ p𝑎p𝑧q𝑑
2
p𝑧q ` 2𝑏p𝑧q𝑑p𝑧q𝑐p𝑧qqp𝑑p𝑧q𝑎5p𝑧q ´ 𝑏p𝑧q𝑐p𝑧q𝑎4p𝑧qq`

` 2p𝑐p𝑧q𝑏2p𝑧q ` 2𝑏p𝑧q𝑎p𝑧q𝑑p𝑧qqp𝑏p𝑧q𝑐2p𝑧q𝑎3p𝑧q ´ 𝑑p𝑧q𝑐p𝑧q𝑎4p𝑧qq`

` 3𝑎p𝑧q𝑏2p𝑧qp𝑑p𝑧q𝑐2p𝑧q𝑎3p𝑧q ´ 𝑏p𝑧q𝑐3p𝑧q𝑎2p𝑧qq “

“ ´𝑎3p𝑧q
`

𝑎p𝑧q𝑑p𝑧q ´ 𝑏p𝑧q𝑐p𝑧q
˘3
. (30)

In the same way, we have

𝒟2 “ ´𝑐p𝑧q𝑑
2
p𝑧q𝒟2,1 ´ 𝑑p𝑧q𝑐

2
p𝑧q𝒟2,2 ´ 𝑐

3
p𝑧q𝒟2,3,

where

𝒟2,1 “

⃒⃒⃒⃒
⃒𝑑p𝑧q𝑎2p𝑧q ` 2𝑏p𝑧q𝑎p𝑧q𝑐p𝑧q ´3𝑐p𝑧q𝑎2p𝑧q

´𝑏p𝑧q𝑎2p𝑧q 𝑎3p𝑧q

⃒⃒⃒⃒
⃒ ,

𝒟2,2 “

⃒⃒⃒⃒
⃒´p𝑐p𝑧q𝑏2p𝑧q ` 2𝑏p𝑧q𝑎p𝑧q𝑑p𝑧qq ´3𝑐p𝑧q𝑎2p𝑧q

𝑎p𝑧q𝑏2p𝑧q 𝑎3p𝑧q

⃒⃒⃒⃒
⃒ ,

𝒟2,3 “

⃒⃒⃒⃒
⃒´p𝑐p𝑧q𝑏2p𝑧q ` 2𝑏p𝑧q𝑎p𝑧q𝑑p𝑧qq 𝑑p𝑧q𝑎2p𝑧q ` 2𝑏p𝑧q𝑎p𝑧q𝑐p𝑧q

𝑎p𝑧q𝑏2p𝑧q ´𝑏p𝑧q𝑎2p𝑧q

⃒⃒⃒⃒
⃒ .
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Clearly, we obtain

𝒟2 “ ´𝑐p𝑧q𝑑
2
p𝑧qp𝑑p𝑧q𝑎5p𝑧q´𝑐p𝑧q𝑏p𝑧q𝑎4p𝑧qq´2𝑑p𝑧q𝑐2p𝑧qp𝑐p𝑧q𝑏2p𝑧q𝑎3p𝑧q´

´ 𝑑p𝑧q𝑏p𝑧q𝑎p𝑧q4q ` 𝑐3p𝑧qp𝑐p𝑧q𝑎2p𝑧q𝑏3p𝑧q ´ 𝑑p𝑧q𝑏2p𝑧q𝑎3p𝑧qq “

“
`

𝑎p𝑧q𝑑p𝑧q ´ 𝑏p𝑧q𝑐p𝑧q
˘3
. (31)

On the other hand,

𝒟3 “ ´𝑐p𝑧q𝑑
2
p𝑧q𝒟 ´ 𝑑p𝑧q𝑐2p𝑧q𝒟3,2 ´ 𝑐

3
p𝑧q𝒟3,3,

where

𝒟3,1 “

⃒⃒⃒⃒
⃒´p𝑏p𝑧q𝑐2p𝑧q ` 2𝑑p𝑧q𝑐p𝑧q𝑎p𝑧qq 3𝑎p𝑧q𝑐2p𝑧q

´𝑏p𝑧q𝑎2p𝑧q 𝑎3p𝑧q

⃒⃒⃒⃒
⃒ ,

𝒟3,2 “

⃒⃒⃒⃒
⃒𝑎p𝑧q𝑑2p𝑧q ` 2𝑏p𝑧q𝑑p𝑧q𝑐p𝑧q 3𝑎p𝑧q𝑐2p𝑧q

𝑎p𝑧q𝑏2p𝑧q 𝑎3p𝑧q

⃒⃒⃒⃒
⃒ ,

𝒟3,3 “

⃒⃒⃒⃒
⃒𝑎p𝑧q𝑑2p𝑧q ` 2𝑏p𝑧q𝑑p𝑧q𝑐p𝑧q ´p𝑏p𝑧q𝑐2p𝑧q ` 2𝑑p𝑧q𝑐p𝑧q𝑎p𝑧qq

𝑎p𝑧q𝑏2p𝑧q ´𝑏p𝑧q𝑎2p𝑧q

⃒⃒⃒⃒
⃒ .

Thus we deduce

𝒟3 “ 2𝑐p𝑧q𝑑2p𝑧qp𝑑p𝑧q𝑐p𝑧q𝑎4p𝑧q ´ 𝑏p𝑧q𝑐2p𝑧q𝑎3p𝑧qq´

´ 𝑑p𝑧q𝑐2p𝑧qp𝑑2p𝑧q𝑎4p𝑧q ` 2𝑑p𝑧q𝑐p𝑧q𝑏p𝑧q𝑎3p𝑧q ´ 3𝑐2p𝑧q𝑏2p𝑧q𝑎2p𝑧qq`

` 𝑐3p𝑧qp𝑎p𝑧q𝑐2p𝑧q𝑏3p𝑧q ´ 𝑏p𝑧q𝑑2p𝑧q𝑎3p𝑧qq “

“ ´
`

𝑎p𝑧q𝑐2p𝑧q
˘`

𝑎p𝑧q𝑑p𝑧q ´ 𝑏p𝑧q𝑐p𝑧q
˘3
. (32)

Finally,
𝒟4 “ ´𝑐p𝑧q𝑑

2
p𝑧q𝒟4,1 ´ 𝑑p𝑧q𝑐

2
p𝑧q𝒟4,2 ´ 𝑐

3
p𝑧q𝒟4,3,

where

𝒟4,1 “

⃒⃒⃒⃒
⃒´p𝑏p𝑧q𝑐2p𝑧q ` 2𝑑p𝑧q𝑐p𝑧q𝑎p𝑧qq 3𝑎p𝑧q𝑐2p𝑧q

𝑑p𝑧q𝑎2p𝑧q ` 2𝑏p𝑧q𝑐p𝑧q𝑎p𝑧q ´3𝑐p𝑧q𝑎2p𝑧q

⃒⃒⃒⃒
⃒ ,

𝒟4,2 “

⃒⃒⃒⃒
⃒ 𝑎p𝑧q𝑑2p𝑧q ` 2𝑏p𝑧q𝑑p𝑧q𝑐p𝑧q 3𝑎p𝑧q𝑐2p𝑧q

´p𝑐p𝑧q𝑏2p𝑧q ` 2𝑏p𝑧q𝑎p𝑧q𝑑p𝑧qq ´3𝑐p𝑧q𝑎2p𝑧q

⃒⃒⃒⃒
⃒
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and

𝒟4,3 “

⃒⃒⃒⃒
⃒ 𝑎p𝑧q𝑑2p𝑧q ` 2𝑏p𝑧q𝑑p𝑧q𝑐p𝑧q ´p𝑏p𝑧q𝑐2p𝑧q ` 2𝑑p𝑧q𝑐p𝑧q𝑎p𝑧qq

´p𝑐p𝑧q𝑏2p𝑧q ` 2𝑏p𝑧q𝑎p𝑧q𝑑p𝑧qq 𝑑p𝑧q𝑎2p𝑧q ` 2𝑏p𝑧q𝑐p𝑧q𝑎p𝑧q

⃒⃒⃒⃒
⃒ .

A simple computation yields

𝒟4 “ 3𝑐p𝑧q𝑑2p𝑧qp𝑏p𝑧q𝑎2p𝑧q𝑐3p𝑧q ´ 𝑑p𝑧q𝑐2p𝑧q𝑎3p𝑧qq`

` 3𝑑p𝑧q𝑐2p𝑧qp𝑐p𝑧q𝑑2p𝑧q𝑎3p𝑧q ´ 𝑎p𝑧q𝑏2p𝑧q𝑐3p𝑧qq`

` 𝑐3p𝑧qp𝑏3p𝑧q𝑐3p𝑧q ´ 𝑑3p𝑧q𝑎3p𝑧qq “

“ 𝑐3p𝑧q
`

𝑎p𝑧q𝑑p𝑧q ´ 𝑏p𝑧q𝑐p𝑧q
˘3
. (33)

Therefore, from (28) and taking into account (30)–(33), we get (27). l

5. Applications. In this section, we deal with some interesting
applications of the above transformations.

Lemma 4. [10] Let u be a linear form in 𝒫 1. The formal Stieltjes series
𝑆puq and 𝑆

`

𝜎˚𝜋𝑘puq
˘

associated with the regular moment linear forms u
and 𝜎˚𝜋𝑘puq (resp.) are related by

𝑆
`

𝜎˚𝜋𝑘puq
˘`

𝜋𝑘p𝑧q
˘

“
𝑆puqp𝑧q

𝜂𝑘´1p𝑧q
, (34)

where 𝜂𝑘´1 is the polynomial defined as

𝜂𝑘´1p𝑧q “ ∆0p2, 𝑘 ´ 1; 𝑧q. (35)

Proposition 4. Let u and w be two forms in 𝒫 1, such that

𝑀p𝑥qw “ 𝑁p𝑥q𝜎˚𝜋𝑘puq, (36)

where 𝑀p𝑥q and 𝑁p𝑥q are polynomials.

(a) If w is a (TDF), then u is also a (TDF). Moreover, if w satisfies

𝐴wp𝑧q𝑆
3
pwqp𝑧q `𝐵wp𝑧q𝑆

2
pwqp𝑧q ` 𝐶wp𝑧q𝑆pwqp𝑧q `𝐷wp𝑧q “ 0,

then for the linear form u we get

𝐴up𝑧q𝑆
3
puqp𝑧q`𝐵up𝑧q𝑆

2
puqp𝑧q`𝐶up𝑧q𝑆puqp𝑧q`𝐷up𝑧q “ 0, (37)
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where

𝐴up𝑧q “𝜎𝜋𝑘r𝐴wsp𝑧qD
3
p𝑧q,

𝐵up𝑧q “ ´ 3𝜎𝜋𝑘r𝐴wsp𝑧qBp𝑧qD
2
p𝑧q ` 𝜎𝜋𝑘r𝐵wsp𝑧qAp𝑧qD

2
p𝑧q,

𝐶up𝑧q “3𝜎𝜋𝑘r𝐴wsp𝑧qDp𝑧qB
2
p𝑧q ´ p𝑧qDp𝑧q´

´ 2𝜎𝜋𝑘r𝐵wsp𝑧qBp𝑧qA` 𝜎𝜋𝑘r𝐶wsp𝑧qDp𝑧qA
2
p𝑧q,

𝐷up𝑧q “𝜎𝜋𝑘r𝐴wsp𝑧qB
3
p𝑧q ` 𝜎𝜋𝑘r𝐵wsp𝑧qAp𝑧qB

2
p𝑧q´

´ 𝜎𝜋𝑘r𝐶wsp𝑧qBp𝑧qA
2
p𝑧q ` 𝜎𝜋𝑘r𝐷wsp𝑧qA

3
p𝑧q,

(38)

with

Ap𝑧q “ 𝜂𝑘´1p𝑧q𝜎𝜋𝑘r𝑀 sp𝑧q,

Bp𝑧q “ ´𝜂𝑘´1p𝑧q𝜎𝜋𝑘r𝜎
˚
𝜋𝑘
puq𝜃0𝑁 sp𝑧q ` 𝜂𝑘´1p𝑧q𝜎𝜋𝑘rw𝜃0𝑀 sp𝑧q,

Dp𝑧q “ 𝜎𝜋𝑘r𝑁 sp𝑧q,

(39)

where the polynomial 𝜂𝑘´1 is defined in (35).
(b) When 𝜋 P 𝒫 , if u is a (TDF), then w is also a (TDF).

Proof. From (5) and replacing 𝑧 by 𝜋𝑘p𝑧q, (36) can be rewritten as

𝜎𝜋𝑘r𝑀 sp𝑧q𝑆pwq
`

𝜋𝑘p𝑧q
˘

` 𝜎𝜋𝑘rw𝜃0𝑀 sp𝑧q “

“ 𝜎𝜋𝑘r𝑁 sp𝑧q𝑆
`

𝜎˚𝜋𝑘puq
˘`

𝜋𝑘p𝑧q
˘

` 𝜎𝜋𝑘r𝜎
˚
𝜋𝑘
puq𝜃0𝑁 sp𝑧q. (40)

Combining (34) and (40), one easily shows that

𝑆puqp𝑧q “
𝜂𝑘´1p𝑧q𝜎𝜋𝑘r𝑀 sp𝑧q𝑆pwq

`

𝜋𝑘p𝑧q
˘

𝜎𝜋𝑘r𝑁 sp𝑧q
´

´
𝜂𝑘´1p𝑧q𝜎𝜋𝑘r𝜎

˚
𝜋𝑘
puq𝜃0𝑁 sp𝑧q ` 𝜂𝑘´1p𝑧q𝜎𝜋𝑘rw𝜃0𝑀 sp𝑧q

𝜎𝜋𝑘r𝑁 sp𝑧q
.

In other words,

𝑆puqp𝑧q “
Ap𝑧q𝑆pwq

`

𝜋𝑘p𝑧q
˘

`Bp𝑧q

Dp𝑧q
,

where the polynomials A,B, and D are given in (39).
Applying Proposition 3 for 𝑎p𝑧q “ Ap𝑧q, 𝑏p𝑧q “ Bp𝑧q, 𝑐p𝑧q “ 0, and

𝑑p𝑧q “ Dp𝑧q, we obtain (37) and (38). l
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Remark. From Remark 1, we observe that the formal Stieltjes functions
𝑆puq and 𝑆pwq associated with the forms u an w, respectively, are re-
lated by

Dp𝑥qu “ Ap𝑥q𝜚𝑘
`

𝜏´𝑟pwq
˘

,

pu𝜃0Dqp𝑥q ´
´

𝜚𝑘
`

𝜏´𝑟pwq
˘

𝜃0A
¯

p𝑥q `Bp𝑥q “ 0,

where the polynomials A,B, and D are given in (39).

Corollary. Let u be a third-degree form. Then the Christoffel trans-
formation v “ 𝑁p𝑥q𝜎˚𝜋𝑘puq of the form 𝜎˚𝜋𝑘puq, where 𝑁 P 𝒫 , is also a
third-degree form and satisfies

𝐴vp𝑧q𝑆
3
pvqp𝑧q `𝐵vp𝑧q𝑆

2
pvqp𝑧q ` 𝐶vp𝑧q𝑆pvqp𝑧q `𝐷vp𝑧q “ 0,

with

𝜆𝐴vp𝑧q “𝜎𝜋𝑘r𝐴usp𝑧q
´

𝜎𝜋𝑘r𝑁 sp𝑧q
¯3

,

𝜆𝐵vp𝑧q “3𝜎𝜋𝑘r𝐴usp𝑧q𝜂𝑘´1p𝑧q𝜎𝜋𝑘r𝜎
˚
𝜋𝑘
puq𝜃0𝑁 sp𝑧q

´

𝜎𝜋𝑘r𝑁 sp𝑧q
¯2

`

` 𝜎𝜋𝑘r𝐵usp𝑧q𝜂𝑘´1p𝑧q
`

𝜎𝜋𝑘r𝑁 sp𝑧q
˘2
,

𝜆𝐶vp𝑧q “3𝜎𝜋𝑘r𝐴usp𝑧q𝜎𝜋𝑘r𝑁 sp𝑧q
´

𝜂𝑘´1p𝑧q𝜎𝜋𝑘r𝜎
˚
𝜋𝑘
puq𝜃0𝑁 sp𝑧q

¯2

`

` 2𝜎𝜋𝑘r𝐵usp𝑧q𝜂
2
𝑘´1p𝑧q𝜎𝜋𝑘r𝜎

˚
𝜋𝑘
puq𝜃0𝑁 sp𝑧q𝜎𝜋𝑘r𝑁 sp𝑧q`

` 𝜎𝜋𝑘r𝐶usp𝑧q𝜎𝜋𝑘r𝑁 sp𝑧q𝜂
2
𝑘´1p𝑧q,

𝜆𝐷vp𝑧q “𝜎𝜋𝑘r𝐴usp𝑧q
´

𝜂𝑘´1p𝑧q𝜎𝜋𝑘r𝜎
˚
𝜋𝑘
puq𝜃0𝑁 sp𝑧q

¯3

`

` 𝜎𝜋𝑘r𝐵usp𝑧q𝜂
3
𝑘´1p𝑧q

´

𝜎𝜋𝑘r𝜎
˚
𝜋𝑘
puq𝜃0𝑁 sp𝑧q

¯2

`

` 𝜎𝜋𝑘r𝐶usp𝑧q𝜂
3
𝑘´1p𝑧q𝜎𝜋𝑘r𝜎

˚
𝜋𝑘
puq𝜃0𝑁 sp𝑧q ` 𝜎𝜋𝑘r𝐷usp𝑧q𝜂

3
𝑘´1p𝑧q,

where 𝜆 is a normalization constant chosen in order to be 𝐴v monic.

Corollary. Let u be a third-degree form. Then the Geronimus transfor-
mation v of the form 𝜎˚𝜋𝑘puq, i.e., 𝑀p𝑥qv “ 𝜎˚𝜋𝑘puq, where 𝑀 P 𝒫 , is also
a third-degree form and satisfies

𝐴vp𝑧q𝑆
3
pvqp𝑧q `𝐵vp𝑧q𝑆

2
pvqp𝑧q ` 𝐶vp𝑧q𝑆pvqp𝑧q `𝐷vp𝑧q “ 0,
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with

𝜆𝐴vp𝑧q “𝜎𝜋𝑘r𝐴usp𝑧q,

𝜆𝐵vp𝑧q “ ´ 3𝜎𝜋𝑘r𝐴usp𝑧q𝜂𝑘´1p𝑧q𝜎𝜋𝑘rv𝜃0𝑀 sp𝑧q`

` 𝜎𝜋𝑘r𝐵usp𝑧q𝜂𝑘´1p𝑧q𝜎𝜋𝑘r𝑀 sp𝑧q,

𝜆𝐶vp𝑧q “3𝜎𝜋𝑘r𝐴usp𝑧q
`

𝜂𝑘´1p𝑧q𝜎𝜋𝑘rv𝜃0𝑀 sp𝑧q
˘2
´

´ 2𝜎𝜋𝑘r𝐵usp𝑧q𝜂𝑘´1p𝑧q𝜎𝜋𝑘rv𝜃0𝑀 sp𝑧q𝜂𝑘´1p𝑧q𝜎𝜋𝑘r𝑀 sp𝑧q`

` 𝜎𝜋𝑘r𝐶usp𝑧q
`

𝜂𝑘´1p𝑧q𝜎𝜋𝑘r𝑀 sp𝑧q
˘2
,

𝜆𝐷vp𝑧q “ ´ 𝜎𝜋𝑘r𝐴usp𝑧q
`

𝜂𝑘´1p𝑧q𝜎𝜋𝑘rv𝜃0𝑀 sp𝑧q
˘3
`

` 𝜎𝜋𝑘r𝐵usp𝑧q𝜂𝑘´1p𝑧q𝜎𝜋𝑘r𝑀 sp𝑧q
`

𝜂𝑘´1p𝑧q𝜎𝜋𝑘rv𝜃0𝑀 sp𝑧q
˘2
´

´ 𝜎𝜋𝑘r𝐶usp𝑧q𝜂𝑘´1p𝑧q𝜎𝜋𝑘rv𝜃0𝑀 sp𝑧q
`

𝜂𝑘´1p𝑧q𝜎𝜋𝑘r𝑀 sp𝑧q
˘2
`

` 𝜎𝜋𝑘r𝐷usp𝑧q
`

𝜂𝑘´1p𝑧q𝜎𝜋𝑘r𝑀 sp𝑧q
˘3
,

where 𝜆 is a normalization constant chosen in order to be 𝐴v monic.

Finally, we prove that if u is a third-degree form, then v “ 𝜎˚𝜋𝑘puq`𝛼𝛿𝛽
and w “ 𝜎˚𝜋𝑘puq ` 𝛼𝛿

1
𝛽, where 𝛼, 𝛽 P C, are also third-degree forms.

Proposition 5. Let u be a third-degree form. Then v “ 𝜎˚𝜋𝑘puq ` 𝛼𝛿𝛽,
where 𝛼, 𝛽 P C, is also a third-degree form.

Proof. From the definition of the form v, we have

pvq𝑛 “
`

𝜎˚𝜋𝑘puq
˘

𝑛
` 𝛼𝛽𝑛, 𝑛 > 0.

Thus,
𝑆pvqp𝑧q “ 𝑆

`

𝜎˚𝜋𝑘puq
˘

p𝑧q ´
𝛼

𝑧 ´ 𝛽
.

By considering the change of variable 𝑧 Ð 𝜋𝑘p𝑧q in the previous equation,
and combining the resulting equation with (34), we obtain

𝑆puqp𝑧q “

`

𝜋𝑘p𝑧q ´ 𝛽
˘

𝜂𝑘´1p𝑧q𝑆pvq
`

𝜋𝑘p𝑧q
˘

` 𝛼𝜂𝑘´1p𝑧q

𝜋𝑘p𝑧q ´ 𝛽
.

If 𝛼 ‰ 0, then, applying Proposition 3 for 𝑎p𝑧q “
`

𝜋𝑘p𝑧q ´ 𝛽
˘

𝜂𝑘´1p𝑧q,
𝑏p𝑧q “ 𝛼𝜂𝑘´1p𝑧q, 𝑐p𝑧q “ 0, and 𝑑p𝑧q “ 𝜋𝑘p𝑧q ´ 𝛽, the requested result
follows. l

Proposition 6. Let u be a third-degree form. Then w “ 𝜎˚𝜋𝑘puq ` 𝛼𝛿1𝛽,
where 𝛼, 𝛽 P C, is also a third-degree form.
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Proof. From the definition of the form w, we have

pwq𝑛 “
`

𝜎˚𝜋𝑘puq
˘

𝑛
´ 𝛼𝑛𝛽𝑛´1, 𝑛 > 0.

Then
𝑆pwqp𝑧q “ 𝑆

`

𝜎˚𝜋𝑘puq
˘

p𝑧q `
𝛼

p𝑧 ´ 𝛽q2
.

By considering the change of variable 𝑧 Ð 𝜋𝑘p𝑧q in the previous equation,
and combining the resulting equation with (34), we can show that the
formal Stieltjes functions 𝑆puq and 𝑆pwq are related by

𝑆puqp𝑧q “

`

𝜋𝑘p𝑧q ´ 𝛽
˘2
𝜂𝑘´1p𝑧q𝑆

`

w
˘`

𝜋𝑘p𝑧q
˘

´ 𝛼𝜂𝑘´1p𝑧q
`

𝜋𝑘p𝑧q ´ 𝛽
˘2 .

If 𝛼 ‰ 0, the desired result follows by applying Proposition 3 for
𝑎p𝑧q“p𝜋𝑘p𝑧q´𝛽q

2𝜂𝑘´1p𝑧q, 𝑏p𝑧q“´𝛼𝜂𝑘´1p𝑧q, 𝑐p𝑧q“0, 𝑑p𝑧q“p𝜋𝑘p𝑧q´𝛽q
2. l
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