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Abstract. This paper examines linear forms of the third-degree,
i.e., when the associated Stieltjes function satisfies a cubic equation
with polynomial coefficients. A generator for third-degree forms is
constructed. In fact, we study the stability of the third-degree
character under this transformation that generalizes the rational
spectral transformation. Moreover, we prove the stability of third-
degree linear forms under standard algebraic operations. Several
illustrative examples are shown.
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1. Introduction. The origin of third-degree linear forms (TDFs) lies
exclusively with P. Maroni and I. Ben Salha [8]. These forms naturally ex-
tend from the well-known second-degree forms [17], [19], characterized by
the fact that their formal Stieltjes function S(u)(z2) := — >, o (u, z") /2"
satisfies a cubic equation with polynomial coefficients:

A(2)S?(u)(2) + B(2)S?*(u)(z) + C(2)S(u)(2) + D(z) = 0.

A linear form wu is said to be a strict third-degree form (STDF) if it is a
TDF and it cannot be reduced to a second-degree form, i.e., its Stieltjes
function does not satisfy a quadratic equation with polynomial coefficients.
Some properties of TDRFs are discussed in [3], [8]. In particular, every
third-degree form belongs to the Laguerre-Hahn class [8], but the converse
is not true. The challenging study of semiclassical linear forms has led
to utilizing alternative tools, such as exploring second- and third-degree
forms to describe and characterize certain semiclassical forms [2], [3], [4],

151, 16], [13], [14], [16].
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On the other hand, a rational spectral transformation [22| of the formal
Stieltjes function S(z) is a new formal Stieltjes function defined by

S(z) = (Zgi;) (2), ad—bc+0, (1)

where a, b, ¢, and d are co-prime polynomials. In particular, when ¢ = 0,
the spectral transformation (1) is said to be linear. Notably, the Christoffel
and Geronimus transformations (see [9], [21]) are fundamental examples
of linear spectral transforms and serve as generators within the family of
such transformations (see [22]).

In [7], the authors establish that the class of third-degree forms is
preserved by rational spectral transformations. This fact has important
consequences, particularly concerning the stability of the set of the third-
degree forms under various transformations, including the so called as-
sociated forms of k-th kind, Christoffel and Geronimus transformations,
co-recursive forms, inverse forms, among others. As a consequence, they
provide a constructive approach in order to generate third-degree forms,
emphasizing the algebraic analysis of the vector space of linear forms and
the corresponding Stieltjes functions.

The aim of this contribution is to identify a new system of generators
for the set of third-degree forms. Let w and v be linear forms, such that
their corresponding formal Stieltjes functions S(u) and S(v) are related
by

S(o)(e) - ARSI + b
c(2)S(u)(m(2)) + d(2)’

where a, b, ¢, and d are co-prime polynomials and 7 is a monic polynomial
of degree greater than or equal to 1.

Assuming that either u or v is a third-degree linear form, then can the
same be said about the remaining one?

When 7(z) = z, we recover a rational spectral transformation. The
stability problem of third-degree characters has been investigated in [7].
We should point out that the problems when 7 is a monic polynomial of
degree greater than or equal to 2, have not been addressed in the literature
until the recent contributions [4], [5], [15], and [16], which are focused on
specific cases.

The paper is structured as follows. Section 2 provides an overview of
the basic background on algebraic aspects of the theory of linear forms and
Orthogonal Polynomials (OP), which will be relevant for the subsequent

ad — be # 0, (2)
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sections. In Section 3, we review the definitions and the main properties
of TDRFs. In Section 4, we start by giving, in the case where 7(z) =
24+ r k> 1,r € C, the functional link between two regular forms u and v
assuming that the Stieltjes function of one of them is obtained by applying
a transformation of type (2) to the Stieltjes function of the other. As a
consequence, we state our main result. We deal with a stability problem,
i.e., we show that for any choice of the polynomial 7 of degree greater than
or equal to 1, the fact that the form wu is of the third degree implies that
the form v is also of the third degree. Furthermore, we give a partial proof
of the converse result, when 7(z) = 2% + r with & > 1 and r € C. This
leads us to present in Section some interesting applications concerning the
stability of the class of third-degree forms under various transformations.

2. Notation and preliminaries. Let P be the linear space of poly-
nomials with coeflicients in C (the field of complex numbers) and let P’
be its topological dual space, whose elements are called linear forms (or
linear functionals). By {:,-), we denote the duality brackets between P
and P’. In particular, we denote by (u,z") := (u),,n = 0, the moments
of u.

An important tool is the formal Stieltjes function associated with a
given regular linear form u € P’ defined by

Su)(z) = - Y1 )

n=0

The function S(u)(z) is the zeta transform of the sequence of moments
(u)p of u. Formally, S(u)(z) admits the representation

1
S(u)(z) = <u E>

Let us introduce some useful operations in P’. For any linear form wu,
any polynomials f, g and any («, 3,7) € (C —{0}) x C?, let «/, gu, hyu,
Tsu, and (z —v)~'u be the linear forms defined by
W f) == f),  {gu.f)=ugf),
Chaw, f) = Cwhaf) = Cus flax)),  (Tgu,f) = (uT—pf) = (u.f(z + 5)),
(@ =) f) = Cudy f) = (u, L2,

For f € P and u € P’, the product wf is the polynomial [20]

)e) = g QD
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This allows us to define the Cauchy product of two forms

lou, fy = v, uf), w,veP, feP.
If feP,u,veP and («,5) € (C—{0}) x C, then we have (see [20])

S(uv)(z) = —25(u)(2)S(v)(2), (4)
S(fu)(z) = f(2)S(u)(2) + (ubof)(2), ()
S((ha-107_g)u)(2) = aS(u)(az + B). (6)

Let us recall that a form u is said to be regular (quasi-definite) if there ex-
ists a monic polynomial sequence {p,},., with degp, = n, such that [11].

<u’pnpm> = rnén,m) n) m 2 07

where {r,},>0 is a sequence of nonzero complex numbers and d,,,, is the
Kronecker symbol. A sequence {p,},>o is called a monic orthogonal poly-
nomial sequence (MOPS, in short) with respect to the form u. It is char-
acterized by the following three-term recurrence relation:

po(r) =1, pi(z) =2 — By,
pn+2($) = (ZL’ - Bn-&-l)pn-&-l(x) - 7n+1pn<x>7 n = 0.

Here {f,}n>0 and {7,41}n>0 are sequences of complex numbers, such that
Ynr1 # 0 for all n. Conversely, if a sequence of polynomials satisfies a
recurrence relation as above with 7,,1 # 0 for all n, then there exists a
linear form w, such that the sequence of polynomials is orthogonal with
respect to u. This is the so called Favard’s theorem (see [11], [20], [18]).

3. Third-degree linear forms.

Definition 1. [3| A linear form w is called a third-degree form (TDF) if
there exist polynomials A (monic), B,C, and D, such that

A(2)S(u)(2) + B(2)S*(u)(2) + C(2)S(u)(2) + D(2) =0, (7)

where D depends on A, B, C, and .

Remark. In most cases, the form u is not regular. However, when it is,
it is said to be a third-degree regular form (TDRF).
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The form u is a (TDRF) if and only if the following conditions hold:

A(x)u® — 2B(x)u® + 2*C(x)u = 0,
w03 A) — (u*,00B) + (u,C) = 0,
(ud 00 Ay — (u?, B + (u,xC(z)) = 0.

As a consequence,
D(z) = (v*65A)(z) — (w05 B)(2) + (uboC)(2).
Remark.

1) A regular linear form u is called a second-degree form if the corre-
sponding Stieltjes function satisfies a quadratic equation with poly-
nomial coefficients M, N, R, such that [17]

M(2)S*(u)(2) + N(2)S(u)(z) + R(z) = 0. (8)

Here M, N, R satisfy M # 0, N> —4MR # 0, R # 0, according to
the regularity of u.

2) The polynomial R is given in terms of M, N, and u as
R(z) = —(u*05M)(2) + (uboN)(2).

3) The polynomials A, B, and C' (resp. M and N ), given in (7) (resp.
(8)), are not unique, because A, B, and C' (resp. M and N) can
be multiplied by an arbitrary polynomial. If the polynomials A, B,
C, and D in (7) (resp. M, N, and R in (8)) are co-prime, then the
triple (A, B,C) (resp. the pair (M, N)) is called a primitive triple
(resp. the primitive pair). Such a triple (resp. pair) is unique [7]
(resp. [17]).

4) When the form u is a third-degree regular form (TDRF') and not

a second-degree form, we call it a strict third-degree regular form
(STDRF) [3].

It is well known that the Chebyshev form of the first kind

1

T:=J ( — %, —5) is a second-degree form. Indeed, its Stieltjes function is

N

S(T)(z) = =(=* = 1)°
and satisfies the quadratic equation

(22 = 1)S*(T)(z) =1 =0.
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Among the most well-known forms that are strict third-degree (STDRF),
we can find the Jacobi form V := J(—2,—3%) [3]. Let us remind that V
satisfies the following equations:

(z+ 1)z - 1S*V)(2) +1 =0.
The third-degree character is preserved by an affine transformation.
Indeed,

Proposition 1. [3]| Let u be a (TDRF), such that (7) holds. Then, the
shifted form u = (hy-1 o 7_p)u,a € C — {0}, b € C, fulfils

~

A(2)S*(@)(2) + B(2)S*(@)(2) + C(2)S@)(2) + D(z) = 0,

with
A(z) = a %84 A(az + b),
B(z) = a8 4 B(az + b),
C(2) = a> %840 (az + b),
D(z) = a* %4 D(az + b).

Note that every second-degree form is semiclassical (see [2]). Classical
strict third-degree (respectively second-degree) forms have been studied
in [3] (respectively |2]) and are related to special choices of the parameters
a, [ of the Jacobi linear form J(a, 3) (see [18]). Indeed,

Theorem 1. [2] Among the classical forms, only the Jacobi forms
J(t—1/2,0 —1/2) are second-degree forms, provided t +1 > 0, t,l € Z.

Theorem 2. (3] Among the classical forms, only the Jacobi forms
J(t+q/3,l —q/3) are (STDRFs), provided t +1 > —1, t,l € Z, q € {1,2}.

4. Stability of third-degree linear functionals. In this section,
we first introduce some operators in the linear space of polynomials and
state some preliminary lemmas. For a fixed m € P, let 0, : P — P be
the linear operator defined by o, [f] := f o x for every f € P, and define
o :P"— P’ by duality. Indeed,

o f1(z) := f(m(x)), (or(w), f):=(w oxlf]), feP,weP

Remark. Throughout this paper, the following notation will be used:
mi(z) = 2% +r, with r € C and k > 1 is a fixed integer number.
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For a fixed integer number k, k > 1, we introduce the operator g, :
P’ — P’ such that for any linear form w € P’ we get

Ql(w) = w,
and, for all k£ > 2:
(0r(w)) ;=0 5=0,0... k=2, n=0, (9)
(01()) iy = @hns 120, (10)

Remark.
e Ifk =2, then g, is the anti-symmetrization operator a (see [4]).
e Ifk =3, then g, is the operator g (see [13], [20]).

Lemma 1. [10, Lemma 3.4] Let 7 and ¢ be monic polynomials with
degm = [ and let B, := {po,p1,...,m—1} be a simple set of polyno-
mials. Then, to the triple (¢, m,B,) we may associate | polynomials
G0, P15 - - -, P1—1, with deg ¢; < |(deg¢)/l| for all j = 0,1,...,1 — 1, such
that

-1
¢ = piox[6;].
j=0

Lemma 2. [16, Lemma 3.2| Let ¥1,%,, ..., Xy be formal power series,

fhf?w"afNeP and
N
Q(z) = Y £(z7%5(2).
j=1
IfQ(l/Wk(Z)) = 0, where r € C and k is a fixed integer, such that k > 2,

then Q(z) = 0.

Lemma 3. Let w be a linear form in P’ and let k be an integer, such
that k > 1. The formal Stieltjes functions S(w) and S(g,(w)) associated
with the forms w and g, (w), respectively, are related by

S(w)(2") = S(enw))(2).

Proof. The proof is straightforward from the definition (9)—(10) of the
operator g, and is omitted. []
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Corollary. Let w be a linear form in P’ and let k be an integer, such that
k > 1. Then

S(@)(m(2)) = S (@ (r()) ) (2) (11)

Proof. It is an immediate consequence of Lemma 3 with (6) taken into
account. []

As an initial result, we discuss the relation between two linear forms
whose formal Stieltjes functions are connected by (2).

Proposition 2. Let u and v be two forms in P’. The formal Stieltjes
functions S(u) and S(v) associated with the forms u an v, respectively,

are related by
 a(2)S()(m=)) + b2)
SO = 5w me2) + d2)’

where a, b, ¢, and d are co-prime polynomials, if and only if
()0 (7—r(w)v — zd(2)v + za(z) g, (T (1)) =0, (13)
(gk (T_r(u))12900> () — (vd)(z) + <gk (T_T(u))a> (x) —xb(z) =0. (14)

Proof. The proof is straightforward once one substitutes g, (T,r(u)) by
u, in addition to taking into account |7, Proposition 5.1]. []

ad — be # 0, (12)

Remark 1. In particular, when ¢ = 0, i.e., the formal Stieltjes functions
S(u) and S(v) associated with the forms u and v are related by

S(v)(2) = a(Z)S(u)(dﬂ(;;()z)) + b(z)’

where a, b, and d are co-prime polynomials, if and only if u and v are
related by

ad # 0,

d(x)v = a(x)gy (T_T(U))7
(v0od) () — <Qk, (T_r(u))90a> () +b(x) = 0.

Proposition 3. Letu and v be two forms in P’ whose associated formal
Stieltjes functions S(u) and S(v) are related by

)(2) = a(z)S(u)(m(2)) + b(2)

where ad — bc # 0, a,b,c,d € P, and 7 is a monic polynomial of degree
greater than or equal to 1.

(15)
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(i) If uw is a (TDF), then v is also a (TDF). Moreover, if u satisfies

Au(2)S3(u)(2) + Bu(2)S?*(u)(2) + Cu(2)S(u)(2) + Dy(2) = 0, (16)

then for the linear form v we get

A(2)S?(0)(2) + By(2)S*(v)(2) + Cy(2)S(v)(2) + Dy(2) = 0, (17)

where

Ay(2) = 0x[Au](2)d*(2) = o[ Bu](2)e(2)d(2) +
+07[Cu](2)d(2)c*(2) — 02 [ Du](2)¢(2),

By(2) = —30,[A](2)b(2)d*(2) + 0,[Bu](2)(a(2)d*(2)+
+20(2)d(2)c(2)) — 0.[Cu](2)(b(2) (2)+
+2d(2)c(2)a(2)) + 30:[Dy](2)a(z)?(2), (18)

Co(2) = 30x[Au](2)d(2)V(2) — 0= Bu](2)(c(2)b* (2) +
+20(2)a(2)d(2)) + 0-[Cu](2)(d(2)a*(2)+
+2b(2)a(2)c(2)) — 30:[D,](2)c(2)a?(2),

Dy(2) = —0[Au](2)b%(2) + o[ Bu] (2)a(2)b*(2)—

— 0:[CL](2)b(2)a*(2) + o[ Dy](2)a?(2).

(i) When m = my, if v is a (TDF), then u is also a (TDF).

Proof.
(i) The proof is similar to that of [7, Proposition 5.2].
(ii) Assume that v is a (TDF) satisfying (7)

Ay(2)S(0)(2) + Bo(2)S*(v)(2) + Co(2)S(v)(2) + Dy(2) = 0. (19)

Replacing (15) in (19), and multiplying both sides of the resulting equation

)i
by (c(2)S(uw)(me(2)) + d(z ))3 after some computations, we get
A, (2)H1(2) + By(2)Ha(2) + Cu(2)Hs(2) + Dy(2)Ha(2) =
with

Ha(2) =a’(2)S* () (mi(2)) + 3b(2)a* (2) % (u) (m(2)) +
+ 3a(2)b*(2) S (u)(v) + b°(2),
Ha(2) =c(2)a’(2)S° (u) (m(2)) + (d(2)a” (2) +2b(2)a(2)e(2)) S* () (m(2)) +
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Therefore, S(u)(m(z)) satisfies
Au(2) 8% (w) (m(2) +Bu(2) S () (i (2) HCu(2) S () (e (2) +Du(2) =0, (20)

where the polynomials A,, B,, C,, and D, are

Au(Z)ZAv() *(2) + Bu(2)e(2)a’(2) + Co(2)a(2)e(2)” + Dy(2)c*(2),

)
(

Bu(z) = ()()()+B()(()()+2b()2)0())+
Co(2)(b(2)c*(2) + 2d(2)e(2)a(2)) + 3Dy (2)d(2)c* (2),
Culz) = ( Ja(2)b"(2) + By(2)(c(2)b"(2) + 2b(2)a(2)d(2))+
Cy(2)(a(2)d(2)" +2b(2)d(2)c(2)) +3Dy(2)e(2)d(2),
Dy(z) = ( )b(2)* + By(2)d(2)b*(2) + Co(2)b(2)d* (2) +Dv(2)d3(2)(- |
21

Now, Lemma 1 ensures the existence of polynomials A, ,(z), B..(2),
Cuv(z),and Dy, (2), v =0,1,..., k—1, with each A, ,(2), By, (2), Cuu(2),
and D, (z) not necessarily of degree v, such that

k-1 k-1
Au(2) = 3 2 om[Au](2),  Bu(2) = ) 2 0m [Bus(2),
v=0 v=0
k-1 k-1
- Z Zuo'ﬂk [Cu,u] <Z>7 DU(Z) = Z ZVUWk [D%V] (Z)
v=0 v=0
Thus, (20) can be rewritten as
k-1
1278, (mi(2)) = 0, (22)
v=0
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2ivT

Next, let us consider the k-th roots of unity w,, i.e., w, = e & for
v=0,1,...,k—1. After the substitutions z «— w{"z, m =0,1,...,k—1,
in (22), and taking into account @t =1 and @? = w,, v =0,1,...,k—1,
we get

k—1
D@, (me(2)) =0, m=0,1,... k-1
v=0

By summing the k final equations, we obtain

k—1 k-1

S (X =) 2S, (mz)) =0 (24)

v=0 m=0

It is easy to see that 21;;10 wi =0 foral v =1,2,...,k—1 Hence,
(24) can be simplified as kSy(mi(z)) = 0. In the same way, for each
v=20,1,...,k—1, one has

S, (mu(2)) = 0. (25)

1

Replacing z by z~! in (23), we have

S,z = A, (27N (w) (27 + Bup (271 S (u) (27 1)+
+ Cup(zHSW) (27 + Dyu(z7h), v=0,1,....k—1.

Using Lemma 2 with Q(z) = S,(27') and taking into account (25), we
can deduce S,(2) =0, v = 0,1,...,k — 1. Since (4,,D,) # (0,0) and
(a,c) # (0,0), from the first relation of (21) we have A, # 0, so, there
exists 0 < vy < k — 1, such that A,,, # 0. Therefore, the desired result
follows by noting that S,,(z) = 0. [

As a consequence of Proposition 3 and under the assumption of Propo-
sition 3, the following statements hold:

Corollary.

(i) If u is a second-degree form (resp. (STDF)), then v is also a second-
degree form (resp. (STDF)).

(ii)) When = 7, if v is a second-degree form (resp. (STDF)), then u
is also a second-degree form (resp. (STDF)).

Remark. When k = 1 and r = 0, we recover again the same result for
the rational spectral transformation case [7].
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A~

Corollary. Let us assume that the polynomials A= Or|Au], B = 0x,[Bul,
C = 0n, [C |(2) and D = o, [D,](2) satisty

@ (2)A = c(z ) (2 )B +d(2)c(2)C = ¢*(2)
—3b(2)d%(2) A + (a(2)d(2) + 2b(2)d(2)c(2))
—(b(2)c*(2) + 2d(2)c(z)a(z ))C+3a(2’)02(2)
3d(2)b(2) A — (c(2)b*(2) + 2b(2)a(2)d(2)) B
(d( z)a*(2) + 2b(z)a(2)c(z ))C — 3e(2)a*(2)D =
—0*(2)A + a(2)0*(2) B — b(2)a*(2)C + a*(2) D
If we denote by D the determinant of the above linear system, then we
have

A~

A

+ U> SO

6*

6
D= (a(z)d(z) - b(z)c(z)) . (27)
Proof. The determinant D of the system (26) reads as
d3(z2) —c(2)d?(2) d(2)c*(z) —3(2)
_=3b(z)d?(2)  a(z)d?(z) + 2b(2)d(2)c(z)  —(b(z)c*(2) + 2d(2)c(2)a(z))  3a(z)c?(z

T 3d(2)bA(z)  —(c(2)(2) + 2b(2)a(2)d(2))  d(2)a®(z) + 2b(2)a(z)c(z)  —3c(z)a2(2)|
—b3(2) a(z)b*(z) —b(2)a?(2) a3(2)

Expanding D by the first row and their corresponding cofactors, we have
D = d*(2)D; + 3b(2)d*(2)Dy + 3d(2)b*(2)Ds + b*(2) Dy, (28)
where

a(2)d?(z) + 2b(2)d(2)c(z) = (b(2)c*(2) + 2d(2)c(2)a(z))  3a(z)c*(2)
Dy =|—(c(2)b*(2) + 2b(z)a(z)d(z))  d(2)a*(z) + 2b(z)a(2)c(z)  —3c(2)a?(2)],

a(2)b? () —b(z)a*(2) a’(z)
—c(2)d*(2) d(z)c*(z) —A(z

Dy =|—(c(2)b*(2) + 2b(2)a(2)d(z)) d(z)a*(z) + 2b(2)a(z)c(z) —3c(z)a*(z)|,
a(z)b?(z) —b(2)a?(z) a3(z)

—e(2)d(2) A=) () —(2)
Dy =[a(2)d%(=) + 2b(z)d(2)elz) —(b(z)c3(2) + 2 :
)

a(2)b?(z
—c(2)d?*(2) d(z)c*(2) —*(2)

Dy =| a(2)d*(z) +2b(2)d(2)c(z)  —(b(2)c*(2) + 2d(2)c(2)a(z))  3a(z)(z) |.
—(c(2)b?(2) + 2b(2)a(2)d(2))  d(2)a®(z) + 2b(2)a(z)c(z)  —3c(z)a®(z)
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First, we need to evaluate Dy, 1 < k < 4. For Dy, we have

Dy = (a(2)d*(z) + 2b(2)d(2)c(2)) D11+
+ (e(2)b?(2) + 2b(2)a(2)d(2))D1a + a(2)b*(2)D13, (29)

where
D d(z)a*(z) + 2b(2)a(z)c(z) —3c(2)a?(z)
~b(z)a%(2) Ao |
b _ |~0()E(R) + 2d(2)e(2)a(2)) 3a(2)e*(2)
- —b(2)a*(2) a®(2)
D, . — —(b(2)c*(2) + 2d(2)c(2)a(z))  3a(z)c*(z2)
o d(z)a*(z) + 2b(z)a(z)c(z —3c(2)a?(z)

Dy = (a(2)d*(z) + 2b(z)d
2(c(2)b*(2) + 2b(2)a(z)d(

b
+ 3a(2)b*(2)(d(2)c

—
w
S~—
S
—
w
2=
—
Y
w
N—
S
ot
—~
w
~— —
|
S
—
N
N—
S
—
w
N~—
IS
w
N—
N—
~ +

+

In the same way, we have

Dy = —c(2)d?*(2)Dyy — d(2)c*(2)Day — ¢*(2) Dy,

where
Dy — d(z)a?(z) + 2b(2)a(z)c(z) —3c(2)a?(z2)
W (z) o) |
Dy, = —(c(2)b?(2) + 2b(2)a(2)d(z)) —3c(z)a*(2)
’ a(2)b*(2) a3 (2) ;
Dys — —(c(2)b%(2) + 2b(2)a(2)d(z)) d(2)a®(z) + 2b(2)a(2)c(2)
3 a(z)b?(z) —b(2)a?(z)
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Clearly, we obtain

a’(z)—

~

N

Dy = —c(2)d*(2)(d(2)a” (2) —c(2)b(2)a’ (2)) —2d(2)c* () (c(2)b(
—d(2)b(2)a(2)") + ¢*(2)(c(2)a® (2)b%(2) — d(2)b* (2)a’(2))

= (a(2)d(2) = b(=)e(2))". (31)

On the other hand,

D3 = —c(2)d*(2)D — d(2)c*(2) D32 — ¢(2) D33,

where

—b(2)a?(z)

Thus we deduce

— —(a(2)2() (a(2)d(z) ~ b(=)e(z)". (32)

—d(2)*(2)(d*(2)a*(2) + 2d(2)c(2)b(2)a®(2) — 3 (2)b?(2)a*(2))+
+ ¢ (2)(a(2)c*(2)b°(2) — b(z)d*(2)a’(2)) =

D5 = 2c(2)d*(2)(d(2)c(z)a’ (2) — b(2)c*(2)a’(2))—

Finally,

: O
o —
Toaa al
D — Py S
—~ 26\@/ O =
—~
N OICEORS
T8 3
_ SCIN _
27
D4 -~ N
N \Z/Z
T 2E Ty
~ = QO
-~ —~ )\~M~/
O S [N
5 T e T 3
(Z\ —~ 9 M\./
= N n R
— N — =
=N bb
_ S < ]
— N l_l
g L+ =
—
— -~ 'R
= B B =
~— o] el 22
~ O N db
e —~ 8 \l/\l/
—~ N T ZZ
N — N =
~— o = a,(C\
_ _
I I I
DAA — “7
Q Q

where
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and

a(z)d?(z) + 2b(2)d(2)c(z)  —(b(2)c2(2) + 2d(2)c(2)a(z)) |

Dy3 = —(e(2)b2(2) + 2b(2)a(2)d(2))  d(2)a®(2) + 2b(z)c(2)a(z)

A simple computation yields

Dy = 3e(2)(2)(b(2)a(2)cH(2) — d(2)e*(2)a* () +
+ 3d(2)c? (2)(c(2)d* (2)a*(2) — a(2)b*(2)c (2))+
+(2)(V(2) 3(Z) d*(2)a’(z)) =
A(2) (a(2)d(z) — b(2)e(2))°. (33)
Therefore, from (28) and taking into account (30)—(33), we get (27). []

5. Applications. In this section, we deal with some interesting
applications of the above transformations.

Lemma 4. [10] Let u be a linear form in P’. The formal Stieltjes series
S(u) and S (0% (u)) associated with the regular moment linear forms u
and o7 (u) (resp.) are related by

S(or () (mi(2)) = 5 <“)<Z>, (34)

Tk

where ny_, is the polynomial defined as
Me—1(2) = Ao(2,k — 15 2). (35)
Proposition 4. Let u and w be two forms in P’, such that
M(z)w = N(x)or, (a), (36)

where M (x) and N(x) are polynomials.
(a) If w is a (TDF'), then u is also a (TDF). Moreover, if w satisfies

Aw(2)S3(W)(2) + Bw(2)S*(w)(2) + Cw(2)S(W)(2) + Dw(2) = 0,

then for the linear form u we get

Au(2)S?(u)(2) + Byu(2)S%(0)(2) + Cyu(2)S(0)(2) + Dy(2) = 0, (37)
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e- (38)
— 20, [Bu]()B(2)A + 0, [C](2)D(2) A%(2)
Da(2) =02, [Aw](2)B3(2) + 0, [ Bu](2)A(2)B2(2)—
02 [Ow](2)B(2)AX(2) + 0, [Du](2) A%(2),
with
A(2) = s (2)om [M](2),

B(2) = =nk-1(2)om, [07, (W) N](2) + ni1(2)om [WhM](2), (39)

where the polynomial ny_; is defined in (35).
(b) When 7 € P, ifu is a (TDF), then w is also a (TDF).

Proof. From (5) and replacing z by m(z), (36) can be rewritten as

0r [M](2)S(w) (mi(2)) + o, [WhM](2) =
= 0x, [N](2)S (07, (W) (7k(2)) + o 07, (W) N](2). (40)
Combining (34) and (40), one easily shows that
(2o M)
[N](=

k=1 (2) o [og, (W) N(2) + nk-1(2) o, [W M](2)
1(2) '

S(u)(z)

Or

Q
)
=

In other words,

where the polynomials A, B, and D are given in (39).
Applying Proposition 3 for a(z) = A(z),b(z) = B(z),c¢(z) = 0, and
d(z) = D(z), we obtain (37) and (38). []
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Remark. From Remark 1, we observe that the formal Stieltjes functions
S(u) and S(w) associated with the forms u an w, respectively, are re-
lated by

D(z)u = A(x)g, (T,T(W)),
(ufoD) () — <gk (T,T(w>)90A) (z) + B(z) = 0,

where the polynomials A, B, and D are given in (39).

Corollary. Let u be a third-degree form. Then the Christoffel trans-

formation v = N(x)o} (u) of the form o (u), where N € P, is also a

third-degree form and satisfies

A (2)S3(v)(2) + By(2)S*(v)(2) + Cy(2)S(v)(2) + Dy(2) = 0,

with

A(2) =0 [A() (0, [N]2))

ABy(2) =30, [A] (21 (2)0, [0, (0N (2) (0, [N1()) +
+07Fk[ (Z)nk 1 )(Uﬂk[N] )2’

ACy(2) =307, [ 4] ()0, [N](2) (s () [0, (WAON(2) )+
+ 207, [Bal (2)11 ()02, [0, (WO V) (2)0, [N](2) +
+ 02, [Cul (=)0 [N1(2)n (2),

ADy(2) =00, [Au () (1 (2)ome [0, (WO (2) ) +

s () (72, %, (N (2)) +

-1 (), [0, (WON](2) + o, [Dal (2 (2),

+ o [Bul(
+ o [Cul(
where \ Is a normalization constant chosen in order to be A, monic.

Corollary. Let u be a third-degree form. Then the Geronimus transfor-
mation v of the form ¢} (u), i.e., M(x)v = o (u), where M € P, is also
a third-degree form and satisfies

Ay (2)S3(V)(2) + By (2)S*(v)(2) + Cy(2)S(v)(2) + Dy(2) = 0,
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with
Ay (2) =07, [Au] (2),
ABy(2) = — 307, [Au](2)k—1(2)0n, [VO M ] (2)+
+U7rk[B ](Z)nk 1( )O-ﬂ'k[M](Z)7
ACy(2) =80, [Aul(2) (-1 ()0, [VOM] (2)) "~
(2)nk-1(2) 0w, [M](2)+

20, [Bu](2)nk-1(2 )UW[VQO M]

+ 0 [Cal (2) (M-1(2)0, [M](2)),
Mma=admwwmw%W%M»

+ O [Bul ()71 (2)0m, [M(2) (111 (2) 0, [VO M (2)) -

O [Cul (2)1 (2) 0, [VO M (2) (01 (2) 7, [M](2)) *+

+ 0 [Dal(2) (1 (2) 0w, [M](2)),

where \ is a normalization constant chosen in order to be A, monic.

Finally, we prove that if u is a third-degree form, then v = o7 (u)+adgs
and w = o7 (u) + ady, where a, 8 € C, are also third-degree forms.

Proposition 5. Let u be a third-degree form. Then v = o (u) + adg,
where a, § € C, is also a third-degree form.

Proof. From the definition of the form v, we have

(V)n = (0F,(0)), +af", n>0.

Thus,
Q

SW)(E) = S(on w)(:) -

By considering the change of variable z < 7. (2) in the previous equation,
and combining the resulting equation with (34), we obtain

(m(2) = B 1 (2)S(V) (me(=) + amy 1 (2)

Wk(Z) — B '
If @ # 0, then, applying Proposition 3 for a(z) = (m(z) — ﬁ)nk,l(z),
b(z) = ang-1(2), c(z) = 0, and d(z) = m(z) — 3, the requested result
follows. []

S(u)(z) =

Proposition 6. Let u be a third-degree form. Then w = o7 (u) + adp,
where o, 8 € C, is also a third-degree form.
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Proof. From the definition of the form w, we have
(W), = (0* (u))n —anfB™ 1t n>0.

Then
«

(z—B8)*
By considering the change of variable z < m(z) in the previous equation,

and combining the resulting equation with (34), we can show that the
formal Stieltjes functions S(u) and S(w) are related by

(m(2) = 8)"m1(2)S (W) (7a(2)) — o (2)
(m(=) — B)° |
If o # 0, the desired result follows by applying Proposition 3 for
a(2) = (m(2) = B)*m-1(2), b(2) = —am—1(2), ¢(2) =0, d(2) = (m(2) = B)*. [

Acknowledgements. The author is very much thankful to the Re-
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S(w)(z) = S(a* (u))(z) +

Tk

S(u)(z) =
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