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SMIRNOV AND BERNSTEIN-TYPE INEQUALITIES,
TAKING INTO ACCOUNT HIGHER-ORDER

COEFFICIENTS AND FREE TERMS OF POLYNOMIALS

Abstract. The starting point in the theory of differential inequali-
ties for polynomials is the book "Investigation of aqueous solutions
by specific gravity" by D. I. Mendeleev. In this work, he dealt not
only with chemical, but also mathematical problems. The question
raised in this book led to appearance of a large number of works
on various types of differential inequalities for polynomials. In our
paper, we obtain Smirnov and Bernstein-type inequalities that use
higher-order coefficients and free terms of polynomials.
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1. Introduction. By 𝒫𝑛 denote the set of all polynomials of degree
at most 𝑛 P N. Let D stand for the open unit disk“ t𝑧 P C : |𝑧| ă 1u.

Consider the following problem (the Mendeleev problem):
Let 𝐵 Ă C be a compact set, 𝑓p𝑧q P 𝒫𝑛 be a polynomial, such that

|𝑓p𝑧q| 6 𝑀 for 𝑧 P 𝐵. Give an estimate for |𝑓 1p𝑧q| on 𝐵.
This problem in its original form was posed in 1887 by the famous

chemist D. I. Mendeleev in [13, S 86]. Mendeleev considered only real
polynomials of degree two and the compact set 𝐵 “ r𝑎, 𝑏s. In [20, p. 340],
the problem was presented in the general form.

In 1889, A. A. Markov solved the original Mendeleev problem.

Theorem A. [10], [11, p. 51–75] Suppose that 𝑓 P 𝒫𝑛 and |𝑓p𝑥q| 6 𝑀
for 𝑥 P r𝑎, 𝑏s. Then

|𝑓 1p𝑥q| 6 𝑀𝑛2.

Here equality is attained only for the functions

𝑓p𝑥q “ ˘𝑀𝑇𝑛

ˆ

2𝑥´ 𝑎´ 𝑏

𝑏´ 𝑎

˙
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where 𝑇𝑛p𝑥q “ cosp𝑛 arccos𝑥q are the Chebyshev polynomials.

In [12], V. A. Markov obtained an estimation for the 𝑘-th derivative
of a polynomial 𝑓 , 1 6 𝑘 6 𝑛.

Let us note that Mendeleev and the Markov brothers dealt only with
real polynomials.

From now on, in our article we shall consider complex polynomials
and the compact set 𝐵 “ BD. In this case, the solution of the Mendeleev
problem is the following theorem:

Theorem B. Let 𝑓 P 𝒫𝑛 and suppose that |𝑓p𝑧q| 6 𝑀 on BD. Then for
𝑧 P BD:

|𝑓 1p𝑧q| 6 𝑀𝑛.

Equality holds only if 𝑓p𝑧q “ 𝑒𝑖𝛾𝑀𝑧𝑛, 𝛾 P R.

In the literature, Theorem B is known as the Bernstein inequality.
However, it apparently was not Bernstein who first obtained this statement
in the presented form. The history is the following. In 1912, Bernstein
considered trigonometric polynomials

𝑓p𝑡q “
𝑛
ÿ

𝑘“0

p𝑎𝑘 cos 𝑘𝑡` 𝑏𝑘 sin 𝑘𝑡q

of degree 𝑛, |𝑓p𝑡q| 6 𝑀 for 𝑡 P r0, 2𝜋s, see [1]. He proved that
|𝑓 1p𝑡q| 6 2𝑀𝑛. In paper [6, p. 50], for such polynomials the estimate

|𝑓 1p𝑡q| 6 𝑀𝑛, 𝑡 P r0, 2𝜋s, (1)

was presented by Fejér. Inequality (1) can be also found in [7], Fekete
attributes the proof of (1) to Fejér. However, Bernstein [2, p. 39] at-
tributes the proof to Landau, who sent the proof of (1) to Bernstein in his
letter. In [18, p. 357], M. Riesz presented the statement of Theorem B as
a corollary of inequality (1).

Alternative proof of Theorem B was given by V. I. Smirnov [19], [20,
ch. V, section 1, 2˝, p. 346].

S. N. Bernstein generalized Theorem B in the following way:

Theorem C. [3] (see also [4, p. 497], [17, p. 510]) Consider polynomials
𝑓 and 𝐹 , such that:

1) deg 𝑓 6 deg𝐹 “ 𝑛,
2) |𝑓p𝑧q| 6 |𝐹 p𝑧q| on BD,
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3) 𝐹 has all its zeros in D.
Then we have

|𝑓 1p𝑧q| 6 |𝐹 1p𝑧q| f or 𝑧 P CzD.

For 𝑧 P CzD, equality holds only if 𝑓 “ 𝑒𝑖𝛾𝐹, 𝛾 P R.

Note that Theorem B follows from Theorem C with 𝐹 p𝑧q “𝑀𝑧𝑛.
V. I. Smirnov proved a stronger version of Theorem C. He considered

the operator
𝑆𝛼r𝑓 sp𝑧q “ 𝑧𝑓 1p𝑧q ´ 𝑛𝛼𝑓p𝑧q, 𝑓 P 𝒫𝑛,

where 𝛼 is a complex parameter.

Theorem D. [20, ch. V, § 1, p. 356] Let 𝑅 > 1, 𝑓 and 𝐹 be polynomials
from Theorem C. Then

|𝑆𝛼r𝑓 sp𝑧q| 6 |𝑆𝛼r𝐹 sp𝑧q|, |𝑧| “ 𝑅, (2)

for all 𝛼 P Ω𝑅, where Ω1 “ t𝛼 P C : Re𝛼 6 1{2u and for 𝑅 ą 1 the set

Ω𝑅 is the complement to the open disk with diameter
” 𝑅

𝑅 ` 1
,

𝑅

𝑅 ´ 1

ı

.

If 𝛼 P int Ω𝑅 and 𝑧 P CzD, the equality in (2) holds only if 𝑓 “ 𝑒𝑖𝛾𝐹,
𝛾 P R.

Taking 𝛼 “ 0 in Theorem D, we have Theorem C.
A. V. Olesov obtained a supplementation of the Smirnov inequality

(2). He enlarged the set of variation of the parameter 𝛼. In Theorem D,
this set pΩ𝑅q depends only on 𝑅. The Olesov set depends on 𝑅 too and
also on the higher-order coefficients and the free terms of the polynomials
𝑓p𝑧q, 𝐹 p𝑧q.

Theorem E. [15] Let 𝑓p𝑧q “ 𝑎𝑛𝑧
𝑛 ` . . .` 𝑎0 and 𝐹 p𝑧q “ 𝑏𝑛𝑧

𝑛 ` . . .` 𝑏0

be polynomials from Theorem C. Assume that 𝑅 > 1, 𝜆 “
1´ 𝑑

1` 𝑑
, where

𝑑 “ max
|𝑧|“1

ˇ

ˇ

ˇ

ˇ

𝑎0 ` 𝑧𝑏0
𝑎𝑛 ` 𝑧𝑏𝑛

ˇ

ˇ

ˇ

ˇ

. Then 𝑑 6 1 and

|𝑆𝛼r𝑓 sp𝑧q| 6 |𝑆𝛼r𝐹 sp𝑧q|

for |𝑧| “ 𝑅 and 𝛼 P 𝐺𝑅,𝜆, where

𝐺1,𝜆 “

"

𝛼 P C : Re𝛼 6
1

2
`

𝜆

2𝑛

*
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and for 𝑅 ą 1 the set 𝐺𝑅,𝜆 is the complement to the open disk with

diameter
„

𝑅 ` 𝜆{𝑛

𝑅 ` 1
,
𝑅 ´ 𝜆{𝑛

𝑅 ´ 1



.

The idea to use higher-order coefficients and the free terms in different
inequalities for polynomials belongs to V. N. Dubinin [5].

More results concerning the development of this subject can be found,
for example, in [17], [8], [14], [16].

In the previous theorems, it was required that all the zeroes of the
polynomial 𝐹 belong to D. In [9], this condition was waived. For a
polynomial 𝐹 having one zero outside D, the analogue of the Smirnov
inequality was proved.

Theorem F. [9] Let 𝑓 and 𝐹 be polynomials, such that
1) deg 𝑓 6 deg𝐹 “ 𝑛,
2) |𝑓p𝑧q| 6 |𝐹 p𝑧q|, 𝑧 P CzD,
3) 𝑧0 is a unique zero of 𝐹 lying in CzD, 𝑘 is order of 𝑧0, 1 6 𝑘 6 𝑛´1.

Let 𝑅 > 1. Then

|𝑆𝛼r𝑓 sp𝑧q| 6 |𝑆𝛼r𝐹 sp𝑧q|, |𝑧| “ 𝑅,

for 𝛼 P 𝐷𝑅, where 𝐷𝑅 is one of the following sets:

a) the half-plane
"

𝛼 P C : Re𝛼 6
´

1´
𝑘

𝑛

¯1

2
´

𝑘

𝑛

1

|𝑧0| ´ 1

*

for 𝑅 “ 1;

b) the complement to the strip
"

𝛼 P C :
´

1´
𝑘

𝑛

¯ 𝑅

𝑅 ` 1
`

𝑘

2𝑛
ă Re𝛼 ă

´

1´
𝑘

𝑛

¯ 𝑅

𝑅 ´ 1
`

𝑘

2𝑛

*

for 𝑅 “ |𝑧0| ą 1;

c) the complement to the open annulus bounded by the circles with
diameters
„

´

1´
𝑘

𝑛

¯ 𝑅

𝑅 ` 1
`

𝑘

𝑛
𝑅
´ 𝑅

𝑅2 ´ |𝑧0|2
´

|𝑧0|
ˇ

ˇ𝑅2 ´ |𝑧0|2
ˇ

ˇ

¯

,

´

1´
𝑘

𝑛

¯ 𝑅

𝑅 ´ 1
`

𝑘

𝑛
𝑅
´ 𝑅

𝑅2 ´ |𝑧0|2
`

|𝑧0|
ˇ

ˇ𝑅2 ´ |𝑧0|2
ˇ

ˇ

¯





Smirnov and Bernstein-type inequalities 7

and
„

´

1´
𝑘

𝑛

¯ 𝑅

𝑅 ´ 1
`

𝑘

𝑛
𝑅
´ 𝑅

𝑅2 ´ |𝑧0|2
´

|𝑧0|
ˇ

ˇ𝑅2 ´ |𝑧0|2
ˇ

ˇ

¯

,

´

1´
𝑘

𝑛

¯ 𝑅

𝑅 ` 1
`

𝑘

𝑛
𝑅
´ 𝑅

𝑅2 ´ |𝑧0|2
`

|𝑧0|
ˇ

ˇ𝑅2 ´ |𝑧0|2
ˇ

ˇ

¯



for

c-1) 𝑀 |𝑧0| 6 𝑅 ă |𝑧0|, where 𝑀 “

d

p𝑛´ 𝑘q|𝑧0| ` 𝑘

p𝑛´ 𝑘q|𝑧0| ` 𝑘|𝑧0|2
,

c-2) |𝑧0| ă 𝑅 6 𝐿|𝑧0|, where |𝑧0| ă 𝑛{𝑘´1, 𝐿 “

d

p𝑛´ 𝑘q|𝑧0| ´ 𝑘

p𝑛´ 𝑘q|𝑧0| ´ 𝑘|𝑧0|2
,

c-3) |𝑧0| > 𝑛{𝑘 ´ 1;

d) the complement to the open disk with diameter
„

´

1´
𝑘

𝑛

¯ 𝑅

𝑅 ` 1
`

𝑘

𝑛
𝑅
´ 𝑅

𝑅2 ´ |𝑧0|2
´

|𝑧0|
ˇ

ˇ𝑅2 ´ |𝑧0|2
ˇ

ˇ

¯

,

´

1´
𝑘

𝑛

¯ 𝑅

𝑅 ´ 1
`

𝑘

𝑛
𝑅
´ 𝑅

𝑅2 ´ |𝑧0|2
`

|𝑧0|
ˇ

ˇ𝑅2 ´ |𝑧0|2
ˇ

ˇ

¯



for
d-1) 1 ă 𝑅 ă𝑀 |𝑧0|,
d-2) 𝑅 ą 𝐿|𝑧0|, |𝑧0| ă 𝑛{𝑘 ´ 1.

In this paper, combining ideas and methods from [9] and [15], we obtain
new refinements of Bernstein’s and Smirnov’s inequalities.

2. Supplementation of the Smirnov inequality. In this section,
we obtain a refinement of the Smirnov inequality, basing on Theorem E. As
in [9], we consider the case when the polynomial 𝐹 has one zero outside D.

Theorem 1. Suppose 𝑓p𝑧q “ 𝑎𝑛𝑧
𝑛` . . .`𝑎0 and 𝐹 p𝑧q “ 𝑏𝑛𝑧

𝑛` . . .` 𝑏0
be polynomials, such that
1) deg 𝑓 6 deg𝐹 “ 𝑛,
2) |𝑓p𝑧q| 6 |𝐹 p𝑧q|, 𝑧 P CzD,
3) 𝑧0 is a unique zero of 𝐹 lying in 𝑧 P CzD, 𝑘 is order of 𝑧0, 1 6 𝑘 6 𝑛´1.

Let 𝑅 > 1, 𝑑 “ max
|𝑧|“1

ˇ

ˇ

ˇ

𝑎0 ` 𝑧𝑏0
𝑎𝑛 ` 𝑧𝑏𝑛

ˇ

ˇ

ˇ
, 𝜇 “

|𝑧0|
𝑘 ´ 𝑑

|𝑧0|𝑘 ` 𝑑
. Then

|𝑆𝛼r𝑓 sp𝑧q| 6 |𝑆𝛼r𝐹 sp𝑧q|, |𝑧| “ 𝑅, (3)
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for 𝛼 P 𝐷𝑅,𝜇, where 𝐷𝑅,𝜇 is one of the following sets:
a) the half–plane

"

𝛼 P C : Re𝛼 6
´

1´
𝑘

𝑛

¯´1

2
`

𝜇

2𝑛

¯

´
𝑘

𝑛

1

|𝑧0| ´ 1

*

for 𝑅 “ 1;
b) the complement to the strip
"

𝛼 P C :
´

1´
𝑘

𝑛

¯𝑅 ` 𝜇{𝑛

𝑅 ` 1
`

𝑘

2𝑛
ă Re𝛼 ă

´

1´
𝑘

𝑛

¯𝑅 ´ 𝜇{𝑛

𝑅 ´ 1
`

𝑘

2𝑛

*

for 𝑅 “ |𝑧0| ą 1;
c) the complement to the open annulus bounded by the circles with

diameters
„

´

1´
𝑘

𝑛

¯𝑅 ` 𝜇{𝑛

𝑅 ` 1
`

𝑘

𝑛
𝑅
´ 𝑅

𝑅2 ´ |𝑧0|2
´

|𝑧0|
ˇ

ˇ𝑅2 ´ |𝑧0|2
ˇ

ˇ

¯

,

´

1´
𝑘

𝑛

¯𝑅 ´ 𝜇{𝑛

𝑅 ´ 1
`

𝑘

𝑛
𝑅

ˆ

𝑅

𝑅2 ´ |𝑧0|2
`

|𝑧0|
ˇ

ˇ𝑅2 ´ |𝑧0|2
ˇ

ˇ

¯



and
„

´

1´
𝑘

𝑛

¯𝑅 ´ 𝜇{𝑛

𝑅 ´ 1
`

𝑘

𝑛
𝑅
´ 𝑅

𝑅2 ´ |𝑧0|2
´

|𝑧0|
ˇ

ˇ𝑅2 ´ |𝑧0|2
ˇ

ˇ

¯

,

´

1´
𝑘

𝑛

¯𝑅 ` 𝜇{𝑛

𝑅 ` 1
`

𝑘

𝑛
𝑅
´ 𝑅

𝑅2 ´ |𝑧0|2
`

|𝑧0|
ˇ

ˇ𝑅2 ´ |𝑧0|2
ˇ

ˇ

¯



for

c-1) 𝑚|𝑧0| 6 𝑅 ă |𝑧0|, where 𝑚 “

d

p𝑛´ 𝑘qp𝑛´ 𝜇q|𝑧0| ` 𝑘𝑛

p𝑛´ 𝑘qp𝑛´ 𝜇q|𝑧0| ` 𝑘𝑛|𝑧0|2
;

c-2) |𝑧0| ă 𝑅 6 𝑙|𝑧0|, where

|𝑧0| ă
´𝑛

𝑘
´ 1

¯´

1´
𝜇

𝑛

¯

, 𝑙 “

d

p𝑛´ 𝑘qp𝑛´ 𝜇q|𝑧0| ´ 𝑘𝑛

p𝑛´ 𝑘qp𝑛´ 𝜇q|𝑧0| ´ 𝑘𝑛|𝑧0|2
;

c-3) |𝑧0| > p𝑛{𝑘 ´ 1qp1´ 𝜇{𝑛q;
d) the complement to the open disk with diameter
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„

´

1´
𝑘

𝑛

¯𝑅 ` 𝜇{𝑛

𝑅 ` 1
`

𝑘

𝑛
𝑅
´ 𝑅

𝑅2 ´ |𝑧0|2
´

|𝑧0|
ˇ

ˇ𝑅2 ´ |𝑧0|2
ˇ

ˇ

¯

,

´

1´
𝑘

𝑛

¯𝑅 ´ 𝜇{𝑛

𝑅 ´ 1
`

𝑘

𝑛
𝑅
´ 𝑅

𝑅2 ´ |𝑧0|2
`

|𝑧0|
ˇ

ˇ𝑅2 ´ |𝑧0|2
ˇ

ˇ

¯



for
d-1) 1 ă 𝑅 ă 𝑚|𝑧0|;
d-2) 𝑅 ą 𝑙|𝑧0|, |𝑧0| ă p𝑛{𝑘 ´ 1qp1´ 𝜇{𝑛q.

Proof. To prove Theorem 1, we will use methods from the proof of The-
orem 1 from [9].

Since 𝑧0 is a zero of the polynomial 𝐹 of order 𝑘, we have

𝐹 p𝑧q “ p𝑧 ´ 𝑧0q
𝑘𝐹0p𝑧q, (4)

where the polynomial 𝐹0p𝑧q “ 𝑏𝑛𝑧
𝑛´𝑘 ` . . .`

𝑏0
p´1q𝑘𝑧𝑘0

does not vanish in

CzD, deg𝐹0 “ 𝑛´ 𝑘. By condition 2,

𝑓p𝑧q “ p𝑧 ´ 𝑧0q
𝑘𝑓0p𝑧q; (5)

here 𝑓0p𝑧q “ 𝑎𝑛𝑧
𝑛´𝑘 ` . . . `

𝑎0
p´1q𝑘𝑧𝑘0

is a polynomial of degree at most

𝑛´ 𝑘. Also by condition 2, we have |𝑓0p𝑧q| 6 |𝐹0p𝑧q|, 𝑧 P CzD.
Our aim is to find values of the parameter 𝛼, such that (3) is true for

fixed 𝑅 > 1. Substitute (4) and (5) to (3) to obtain
ˇ

ˇ

ˇ
𝑧
`

𝑘p𝑧 ´ 𝑧0q
𝑘´1𝑓0p𝑧q ` p𝑧 ´ 𝑧0q

𝑘𝑓 10p𝑧q
˘

´ 𝛼𝑛p𝑧 ´ 𝑧0q
𝑘𝑓0p𝑧q

ˇ

ˇ

ˇ
6

6
ˇ

ˇ

ˇ
𝑧
`

𝑘p𝑧´ 𝑧0q
𝑘´1𝐹0p𝑧q`p𝑧´ 𝑧0q

𝑘𝐹 10p𝑧q
˘

´𝛼𝑛p𝑧´ 𝑧0q
𝑘𝐹0p𝑧q

ˇ

ˇ

ˇ
, |𝑧| “ 𝑅.

(6)

Let us observe that for 𝑧 “ 𝑧0 inequality (6) takes place for all pairs of the
polynomials 𝑓0 and 𝐹0 and all 𝛼 P C. Therefore, we further consider the
nontrivial case when 𝑧 ‰ 𝑧0. For such 𝑧, inequality (6) is equivalent to

ˇ

ˇ𝑆𝛽r𝑓0sp𝑧q
ˇ

ˇ 6
ˇ

ˇ𝑆𝛽r𝐹0sp𝑧q
ˇ

ˇ, |𝑧| “ 𝑅, (7)

with the parameter

𝛽 “ 𝛽p𝛼q “
1

𝑛´ 𝑘

´

𝛼𝑛´ 𝑘
𝑧

𝑧 ´ 𝑧0

¯

. (8)
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Since the polynomials 𝑓0 and 𝐹0 satisfy conditions of Theorem E (with
deg𝐹0 “ 𝑛´ 𝑘), inequality (7) takes place when 𝛽 P 𝐺𝑅,𝜇, where

𝜇 “
1´ 𝑑0
1` 𝑑0

, 𝑑0 “ max
|𝑧|“1

ˇ

ˇ

ˇ

𝑎0
p´1q𝑘𝑧𝑘0

` 𝑧 𝑏0
p´1q𝑘𝑧𝑘0

𝑎𝑛 ` 𝑧𝑏𝑛

ˇ

ˇ

ˇ
.

So,

𝑑0 “
𝑑

|𝑧0|𝑘
, 𝜇 “

|𝑧0|
𝑘 ´ 𝑑

|𝑧0|𝑘 ` 𝑑
.

Finally, inequality (3) is valid for 𝛼, such that the corresponding 𝛽
`

see
(8)

˘

belongs to 𝐺𝑅,𝜇 for all 𝑧, |𝑧| “ 𝑅.
From (8), we have

𝛼 “
´

1´
𝑘

𝑛

¯

𝛽 `
𝑘

𝑛

𝑧

𝑧 ´ 𝑧0
.

Hence, the desired set 𝐷𝑅,𝜇 of values of the parameter 𝛼 can be found as

𝐷𝑅,𝜇 “
č

|𝑧|“𝑅

𝐺𝑧,

where 𝐺𝑧 is the set
´

1 ´
𝑘

𝑛

¯

𝐺𝑅,𝜇 shifted by
𝑘

𝑛

𝑧

𝑧 ´ 𝑧0
. Find sets 𝐺𝑧 for a

fixed 𝑅 > 1.

a) Consider the case 𝑅 “ 1. By Theorem E, the set 𝐺1,𝜇 is the half-
plane

"

𝛽 P C : Re 𝛽 6
1

2
`

𝜇

2𝑛

*

.

The function 𝜑p𝑧q “
𝑧

𝑧 ´ 𝑧0
maps the circle BD to the circle with diameter

”

´
1

|𝑧0| ´ 1
,

1

|𝑧0| ` 1

ı

. Therefore, for |𝑧| “ 𝑅 the sets 𝐺𝑧 are the half-

planes
!

𝛼 P C : Re𝛼 6
´

1´
𝑘

𝑛

¯´1

2
`

𝜇

2𝑛

¯

` 𝑐
)

,

where 𝑐 takes all values from the segment
”

´
𝑘

𝑛

1

|𝑧0| ´ 1
,
𝑘

𝑛

1

|𝑧0| ` 1

ı

. The

intersection 𝐷𝑅,𝜇 of these half-planes over all 𝑐 is the half-plane
!

𝛼 P C : Re𝛼 6
´

1´
𝑘

𝑛

¯´1

2
`

𝜇

2𝑛

¯

´
𝑘

𝑛

1

|𝑧0| ´ 1

)

.
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Now let 𝑅 ą 1. By Theorem E, set 𝐺𝑅,𝜇 is the complement to the

open disk with diameter
”𝑅 ` 𝜇{𝑛

𝑅 ` 1
,
𝑅 ´ 𝜇{𝑛

𝑅 ´ 1

ı

. Therefore, 𝐺𝑧 is also the

complement to an open disk 𝐻𝑧. The intersection of 𝐺𝑧 over all 𝑧, |𝑧| “ 𝑅,
will depend on the location of 𝑧0 relative to the circle |𝑧| “ 𝑅.

b) Assume that |𝑧0| “ 𝑅. Then function 𝜑p𝑧q “
𝑧

𝑧 ´ 𝑧0
maps the circle

|𝑧| “ 𝑅 onto the straight line Re 𝑧 “ 1{2. Therefore, centers of the disks

𝐻𝑧 lie on the straight line Re 𝑧 “
𝑘

2𝑛
`𝑎

´

1´
𝑘

𝑛

¯

(𝑎 is the center of 𝐺𝑅,𝜇).
This implies that 𝐷𝑅,𝜇 “

Ş

|𝑧|“𝑅

𝐺𝑧 is the complement to the strip

!

𝛼 P C :
´

1´
𝑘

𝑛

¯𝑅 ` 𝜇{𝑛

𝑅 ` 1
`

𝑘

2𝑛
ă Re𝛼 ă

´

1´
𝑘

𝑛

¯𝑅 ´ 𝜇{𝑛

𝑅 ´ 1
`

𝑘

2𝑛

)

.

c), d) Now let |𝑧0| ‰ 𝑅. Then the function 𝜑p𝑧q “
𝑧

𝑧 ´ 𝑧0
maps

the circle |𝑧| “ 𝑅 to the circle of radius 𝜌 “
𝑅|𝑧0|

ˇ

ˇ𝑅2 ´ |𝑧0|2
ˇ

ˇ

centred at

𝐶 “
𝑅2

𝑅2 ´ |𝑧0|2
. This yields that the centers of the disks 𝐻𝑧 form the

circle 𝑇 with center

1

2

´

1´
𝑘

𝑛

¯´𝑅 ` 𝜇{𝑛

𝑅 ` 1
`

𝑅 ´ 𝜇{𝑛

𝑅 ´ 1

¯

`
𝑘

𝑛
𝐶 “

´

1´
𝑘

𝑛

¯𝑅2 ´ 𝜇{𝑛

𝑅2 ´ 1
`

𝑘

𝑛
𝐶

and radius 𝜌𝑘{𝑛.
If radius of 𝐻𝑧 does not exceed radius of 𝑇 , i.e.,

´

1´
𝑘

𝑛

¯𝑅p1´ 𝜇{𝑛q

𝑅2 ´ 1
6

𝑘

𝑛

𝑅|𝑧0|
ˇ

ˇ𝑅2 ´ |𝑧0|2
ˇ

ˇ

, (9)

then the intersection 𝐷𝑅,𝜇 of all 𝐺𝑧 is the complement to the annulus

!

𝛼 P C :
𝑘

𝑛
𝜌´

´

1´
𝑘

𝑛

¯𝑅p1´ 𝜇{𝑛q

𝑅2 ´ 1
ă

ă

ˇ

ˇ

ˇ
𝛼 ´

´

1´
𝑘

𝑛

¯𝑅2 ´ 𝜇{𝑛

𝑅2 ´ 1
´

𝑘

𝑛
𝐶
ˇ

ˇ

ˇ
ă

𝑘

𝑛
𝜌`

´

1´
𝑘

𝑛

¯𝑅p1´ 𝜇{𝑛q

𝑅2 ´ 1

)

.

This annulus is bounded by the circles with diameters
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”´

1´
𝑘

𝑛

¯𝑅 ` 𝜇{𝑛

𝑅 ` 1
`

𝑘

𝑛
𝑅
´ 𝑅

𝑅2 ´ |𝑧0|2
´

|𝑧0|
ˇ

ˇ𝑅2 ´ |𝑧0|2
ˇ

ˇ

¯

,

´

1´
𝑘

𝑛

¯𝑅 ´ 𝜇{𝑛

𝑅 ´ 1
`

𝑘

𝑛
𝑅
´ 𝑅

𝑅2 ´ |𝑧0|2
`

|𝑧0|
ˇ

ˇ𝑅2 ´ |𝑧0|2
ˇ

ˇ

¯ı

and
”´

1´
𝑘

𝑛

¯𝑅 ´ 𝜇{𝑛

𝑅 ´ 1
`

𝑘

𝑛
𝑅
´ 𝑅

𝑅2 ´ |𝑧0|2
´

|𝑧0|
ˇ

ˇ𝑅2 ´ |𝑧0|2
ˇ

ˇ

¯

,

´

1´
𝑘

𝑛

¯𝑅 ` 𝜇{𝑛

𝑅 ` 1
`

𝑘

𝑛
𝑅
´ 𝑅

𝑅2 ´ |𝑧0|2
`

|𝑧0|
ˇ

ˇ𝑅2 ´ |𝑧0|2
ˇ

ˇ

¯ı

.

In the case opposite to (9), i.e.,
´

1´
𝑘

𝑛

¯𝑅p1´ 𝜇{𝑛q

𝑅2 ´ 1
ą

𝑘

𝑛

𝑅|𝑧0|
ˇ

ˇ𝑅2 ´ |𝑧0|2
ˇ

ˇ

,

the intersection of all 𝐺𝑧 is the complement to the disk
"

𝛼 P C :
ˇ

ˇ

ˇ
𝛼 ´

´

1´
𝑘

𝑛

¯𝑅2 ´ 𝜇{𝑛

𝑅2 ´ 1
´

𝑘

𝑛
𝐶
ˇ

ˇ

ˇ
ă

𝑘

𝑛
𝜌`

´

1´
𝑘

𝑛

¯𝑅p1´ 𝜇{𝑛q

𝑅2 ´ 1

*

.

Thus, 𝐷𝑅,𝜇 is the complement to the open disk with diameter
„

´

1´
𝑘

𝑛

¯𝑅 ` 𝜇{𝑛

𝑅 ` 1
`

𝑘

𝑛
𝑅
´ 𝑅

𝑅2 ´ |𝑧0|2
´

|𝑧0|

|𝑅2 ´ |𝑧0|2|

¯

,

´

1´
𝑘

𝑛

¯𝑅 ´ 𝜇{𝑛

𝑅 ´ 1
`

𝑘

𝑛
𝑅
´ 𝑅

𝑅2 ´ |𝑧0|2
`

|𝑧0|
ˇ

ˇ𝑅2 ´ |𝑧0|2
ˇ

ˇ

¯



.

Let us solve inequality (9) with respect to 𝑅.
If 𝑅 ą |𝑧0|, then (9) takes the form

𝑅2

ˆ

´

1´
𝑘

𝑛

¯´

1´
𝜇

𝑛

¯

´
𝑘

𝑛
|𝑧0|

¯

6 |𝑧0|
2

ˆ

´

1´
𝑘

𝑛

¯´

1´
𝜇

𝑛

¯

´
𝑘

𝑛|𝑧0|

˙

. (10)

If
´

1´
𝑘

𝑛

¯´

1´
𝜇

𝑛

¯

´
𝑘

𝑛
|𝑧0| ą 0,

i.e.,

|𝑧0| ă
p𝑛´ 𝑘qp𝑛´ 𝜇q

𝑘𝑛
, (11)
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then
𝑅2

|𝑧0|2
6

p𝑛´ 𝑘qp𝑛´ 𝜇q|𝑧0| ´ 𝑘𝑛

p𝑛´ 𝑘qp𝑛´ 𝜇q|𝑧0| ´ 𝑘𝑛|𝑧0|2
. (12)

Since the last fraction is positive (moreover, this is more than 1), we
rewrite (12) as

𝑅 6 𝑙|𝑧0|, 𝑙 “

d

p𝑛´ 𝑘qp𝑛´ 𝜇q|𝑧0| ´ 𝑘𝑛

p𝑛´ 𝑘qp𝑛´ 𝜇q|𝑧0| ´ 𝑘𝑛|𝑧0|2
ą 1. (13)

Combining (11) and (13), we get c-2). If (11) is true and 𝑅 ą 𝑙|𝑧0|, then
we get d-2).

In the case
´

1´
𝑘

𝑛

¯´

1´
𝜇

𝑛

¯

´
𝑘

𝑛
|𝑧0| “ 0, (14)

rewrite inequality (10) in the following way:

|𝑧0|
2 𝑘

𝑛

´

|𝑧0| ´
1

|𝑧0|

¯

> 0.

The last inequality is obviously true.
For

´

1´
𝑘

𝑛

¯´

1´
𝜇

𝑛

¯

´
𝑘

𝑛
|𝑧0| ă 0, (15)

(10) is equivalent to

𝑅2

|𝑧0|2
>

´

1´
𝑘

𝑛

¯´

1´
𝜇

𝑛

¯

´
𝑘

𝑛|𝑧0|
´

1´
𝑘

𝑛

¯´

1´
𝜇

𝑛

¯

´
𝑘

𝑛
|𝑧0|

.

Since the left-hand side of this inequality is more than 1, the right-hand
side is less than 1, so the inequality is always true. Finally, (13) and (14)
give us c-3).

It remains to consider the case 1 ă 𝑅 ă |𝑧0|. For such 𝑅, inequality
(9) takes the form

´

1´
𝑘

𝑛

¯𝑅p1´ 𝜇{𝑛q

𝑅2 ´ 1
6

𝑘

𝑛

𝑅|𝑧0|

|𝑧0|2 ´𝑅2
.

Solving this inequality, we find

𝑅 > |𝑧0|𝑚, 𝑚 “

d

p𝑛´ 𝑘qp𝑛´ 𝜇q|𝑧0| ` 𝑘𝑛

p𝑛´ 𝑘qp𝑛´ 𝜇q|𝑧0| ` 𝑘𝑛|𝑧0|2
ă 1.
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Hence, for 𝑚|𝑧0| 6 𝑅 ă |𝑧0| we obtain c-1). For 1 ă 𝑅 ă 𝑚|𝑧0|, we have
d-1). l

Remark. Comparing Theorem F and Theorem 1, we see that the set
𝐷𝑅,𝜇 of variation of the parameter 𝛼 in (3) from Theorem 1 is larger than
the analogous set 𝐷𝑅 from Theorem F. This is quite expected, because
additional characteristics (the higher-order coefficients and the free terms
of the polynomials 𝑓 and 𝐹 ) are used for description of 𝐷𝑅,𝜇. In case a),
Theorem 1 gives us an additional strip. In case b), we have two addi-
tional strips. In c), we obtain two additional annuli, in d), an additional
annulus. Also note that 𝑚 ă 𝑀 , 𝑙 ą 𝐿, where 𝑀, 𝐿 are the constants
from Theorem F, 𝑚, 𝑙 are the constants from Theorem 1. Therefore, in
Theorem 1 we have larger set c) (not b)), for a larger set of 𝑅 values.

3. Refinement of the Bernstein inequality.
In this section, we obtain a refinement of the Bernstein inequality. For

that, we need the following lemma.

Lemma 1. Suppose 1 ă 𝑅 ă |𝑧0|. If 1 ă 𝑅 6 𝑅1 or 𝑅2 6 𝑅 ă |𝑧0|,
where

𝑅1 “
1

2𝑛

˜

´ 𝑘 ` p𝑛´ 𝑘q
´

|𝑧0| ´
𝜆

𝑛

¯

`

`

c

´

𝑘 ´ p𝑛´ 𝑘q
´

|𝑧0| ´
𝜆

𝑛

¯¯2

` 4p𝑛´ 𝑘q𝜆|𝑧0|

¸

,

𝑅2 “
1

2𝑛

˜

𝑘 ` p𝑛´ 𝑘q
´

|𝑧0| `
𝜆

𝑛

¯

`

`

c

´

𝑘 ` p𝑛´ 𝑘q
´

|𝑧0| `
𝜆

𝑛

¯¯2

´ 4p𝑛´ 𝑘q𝜆|𝑧0|

¸

,

𝜆 is the constant from Theorem E; then the set 𝐷𝑅,𝜇 from Theorem 1
contains the point 𝛼 “ 0.

Proof. As we have proved (see (8)), the relationship between the param-
eters 𝛼 and 𝛽 from the proof of Theorem 1 is the following;

𝛽 “ 𝛽p𝛼q “
1

𝑛´ 𝑘

ˆ

𝛼𝑛´ 𝑘
𝑧

𝑧 ´ 𝑧0

˙

.
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Therefore, 𝛼 “ 0 belongs to 𝐷𝑅,𝜇 if and only if the domain 𝐺𝑅,𝜆 from
Theorem E contains

𝛽p0q “ ´
𝑘

𝑛´ 𝑘

𝑧

𝑧 ´ 𝑧0

for all 𝑧, |𝑧| “ 𝑅.
The image Γ𝑅 of the circle t𝑧 P C : |𝑧| “ 𝑅u under the function

´
𝑘

𝑛´ 𝑘

𝑧

𝑧 ´ 𝑧0
is the circle with diameter

”

´
𝑘

𝑛´ 𝑘

𝑅

|𝑧0|`𝑅
,

𝑘

𝑛´ 𝑘

𝑅

|𝑧0|´𝑅

ı

.

By Theorem E, for 𝑅 ą 1 the set 𝐺𝑅,𝜆 is the complement to the open

disk, bounded by the circle 𝑇 with diameter
”𝑅 ` 𝜆{𝑛

𝑅 ` 1
,
𝑅 ´ 𝜆{𝑛

𝑅 ´ 1

ı

. Hence,

𝛽p0q P 𝐺𝑅,𝜆 for all 𝑧, |𝑧| “ 𝑅, only in one of the following cases:
1) Γ𝑅 lies to the left of 𝑇 , i.e.,

𝑘

𝑛´ 𝑘

𝑅

|𝑧0| ´𝑅
6

𝑅 ` 𝜆{𝑛

𝑅 ` 1
; (16)

2) Γ𝑅 lies to the right of 𝑇 , i.e.,

´
𝑘

𝑛´ 𝑘

𝑅

|𝑧0| `𝑅
>

𝑅 ´ 𝜆{𝑛

𝑅 ´ 1
; (17)

3) the interior of Γ𝑅 contains 𝑇 or 𝑇 is tangent to Γ𝑅, i.e.,

´
𝑘

𝑛´ 𝑘

𝑅

|𝑧0| `𝑅
6

𝑅 ` 𝜆{𝑛

𝑅 ` 1
and

𝑘

𝑛´ 𝑘

𝑅

|𝑧0| ´𝑅
>

𝑅 ´ 𝜆{𝑛

𝑅 ´ 1
. (18)

Consider the first case. Let us solve (16) with respect to 𝑅. Inequality
(16) is equivalent to the following inequality:

𝑛𝑅2
`

ˆ

𝑘 ´ p𝑛´ 𝑘q
´

|𝑧0| ´
𝜆

𝑛

¯

˙

𝑅 ´ p𝑛´ 𝑘q
𝜆

𝑛
|𝑧0| 6 0. (19)

Solving (19), we find that 1 ă 𝑅 6 𝑅1.
In the second case, inequality (17) is not true, because the left-hand

side of (17) is negative, while the right-hand side is positive.
We finish the proof by considering the third case. The first inequality

of (18) is obviously true. Let us solve the second one. This inequality can
be rewritten as

𝑛𝑅2
´

ˆ

𝑘 ` p𝑛´ 𝑘q
´

|𝑧0| `
𝜆

𝑛

¯

˙

𝑅 `
𝜆

𝑛
p𝑛´ 𝑘q|𝑧0| > 0. (20)
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Discriminant of the equation

𝑛𝑅2
´

ˆ

𝑘 ` p𝑛´ 𝑘q
´

|𝑧0| `
𝜆

𝑛

¯

˙

𝑅 `
𝜆

𝑛
p𝑛´ 𝑘q|𝑧0| “ 0

equals

𝐷 “

ˆ

𝑘 ` p𝑛´ 𝑘q
´

|𝑧0| `
𝜆

𝑛

¯

˙2

´ 4p𝑛´ 𝑘q𝜆|𝑧0|.

Prove that 𝐷 ą 0. Write 𝐷 in the form

𝐷 “ 𝑘2
` p𝑛´ 𝑘q2

´

|𝑧0| `
𝜆

𝑛

¯2

` 2p𝑛´ 𝑘q
´

|𝑧0|p𝑘 ´ 2𝜆q `
𝑘𝜆

𝑛

¯

.

Clearly, if 𝑘 ´ 2𝜆 > 0, then 𝐷 ą 0.
Consider the opposite case, when 𝑘 ă 2𝜆. Since 𝑘 > 1 and, by Theo-

rem E, 𝜆 P r0, 1s, we have that the inequality 𝑘 ă 2𝜆 takes place only if
𝑘 “ 1, 𝜆 ą 1{2. For 𝑘 “ 1, 𝐷 ą 0 iff

ˆ

1` p𝑛´ 1q
´

|𝑧0| `
𝜆

𝑛

¯

˙2

ą 4p𝑛´ 1q𝜆|𝑧0|. (21)

First, note that for 1{2 ă 𝜆 6 1

ˆ

1`p𝑛´1q
´

|𝑧0|`
𝜆

𝑛

¯

˙2

ą p𝑛´1q
´

|𝑧0|`
𝜆

𝑛

¯

ˆ

p𝑛´1q
´

|𝑧0|`
𝜆

𝑛

¯

`2

˙

ą

ą p𝑛´ 1q|𝑧0|

ˆ

p𝑛´ 1q|𝑧0| `
5

2
´

1

2𝑛

˙

. (22)

Further, note that

4p𝑛´ 1q𝜆|𝑧0| 6 4p𝑛´ 1q|𝑧0|. (23)

Taking into account (22) and (23), it is sufficient to show that

p𝑛´ 1q|𝑧0| `
5

2
´

1

2𝑛
> 4. (24)

to prove (21). Inequality (24) is equivalent to

|𝑧0| >
3𝑛` 1

2𝑛p𝑛´ 1q
. (25)
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If
3𝑛` 1

2𝑛p𝑛´ 1q
ă 1, (26)

then (25) is true, because |𝑧0| ą 1. Inequality (26) is fulfilled for 𝑛 > 3.
So, for 𝑛 > 3, 𝑘 “ 1, 𝜆 ą 1{2 we have also proved that 𝐷 ą 0.

It remains to consider the case 𝑛 “ 2, 𝑘 “ 1, 1{2 ă 𝜆 6 1. In this
situation, 𝐷 ą 0 if and only if

1`
´

|𝑧0| `
𝜆

2

¯2

` 2
´

|𝑧0| `
𝜆

2

¯

ą 4𝜆|𝑧0|. (27)

Rewrite (27):

|𝑧0|
2
` p2´ 3𝜆q|𝑧0| `

´𝜆2

4
` 𝜆` 1

¯

ą 0.

Since for 1{2 ă 𝜆 6 1 discriminant of the corresponding equation is neg-
ative, it follows that (27) is true.

Consequently, in any case 𝐷 ą 0.
Solving (20) with respect to 𝑅, we obtain that 𝑅 > 𝑅2, where

𝑅2 “
𝑘`p𝑛´ 𝑘qp|𝑧0|`𝜆{𝑛q`

b

`

𝑘 ` p𝑛´ 𝑘qp|𝑧0|`𝜆{𝑛q
˘2
´ 4p𝑛´ 𝑘q𝜆|𝑧0|

2𝑛
.

l

Lemma 1 will be used to prove the following theorem.

Theorem 2. Let 𝑓p𝑧q “ 𝑎𝑛𝑧
𝑛 ` . . .` 𝑎0 and 𝐹 p𝑧q “ 𝑏𝑛𝑧

𝑛 ` . . .` 𝑏0 be
polynomials, such that

1) deg 𝑓 6 deg𝐹 “ 𝑛;
2) all the zeros 𝑧1, . . . , 𝑧𝑚 of 𝐹 belong to D, |𝑧1| ą |𝑧2| > |𝑧𝑖|,

𝑖 “ 3, . . . ,𝑚, 𝑘 is order of 𝑧1, 1 6 𝑘 6 𝑛´ 1;
3) |𝑓p𝑧q| 6 |𝐹 p𝑧q|, |𝑧| > |𝑧2|.
Then

|𝑓 1p𝑧q| 6 |𝐹 1p𝑧q| (28)

for all 𝑧, such that |𝑧| P r|𝑧2|,`8qzp𝑟1, 𝑟2q, where

𝑟1 “
1

2𝑛

˜

´ 𝑘|𝑧2| ` p𝑛´ 𝑘q
´

|𝑧1| ´
r𝜆|𝑧2|

𝑛

¯

`
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`

d

p𝑘|𝑧2| ´ p𝑛´ 𝑘qp|𝑧1| ´
r𝜆|𝑧2|

𝑛
qq2 ` 4p𝑛´ 𝑘qr𝜆|𝑧1||𝑧2|

¸

,

𝑟2 “
1

2𝑛

˜

𝑘|𝑧2| ` p𝑛´ 𝑘q
´

|𝑧1| `
r𝜆|𝑧2|

𝑛

¯

`

`

d

´

𝑘|𝑧2| ` p𝑛´ 𝑘q
´

|𝑧1| `
r𝜆|𝑧2|

𝑛

¯¯2

´ 4p𝑛´ 𝑘qr𝜆|𝑧1||𝑧2|

¸

,

r𝜆 “
|𝑧2|

𝑛 ´ 𝑑

|𝑧2|𝑛 ` 𝑑
, 𝑑 is the constant from Theorem 2.

Proof. Firstly, suppose that |𝑧2| ą 0. Construct new polynomials

r𝑓p𝑤q “ 𝑓p|𝑧2|𝑤q “ 𝑎𝑛|𝑧2|
𝑛𝑤𝑛

` . . .` 𝑎0,

r𝐹 p𝑤q “ 𝐹 p|𝑧2|𝑤q “ 𝑏𝑛|𝑧2|
𝑛𝑤𝑛

` . . .` 𝑏0.

It is easily shown that all the assumptions of Theorem theo1 hold for the
polynomials r𝑓 and r𝐹 . The zeros

𝑧2
|𝑧2|

, . . . ,
𝑧𝑚
|𝑧2|

of the polynomial r𝐹 lie in

D and the zero
𝑧1
|𝑧2|

of order 𝑘 lies outside D. Applying Theorem 2 to r𝑓

and r𝐹 , we get
|𝑆𝛼r

r𝑓 sp𝑤q| 6 |𝑆𝛼r r𝐹 sp𝑤q|

for |𝑤| “ r𝑅 > 1 and 𝛼 P 𝐷
r𝑅,r𝜇, where

r𝜇 “

ˇ

ˇ

ˇ

𝑧1
𝑧2

ˇ

ˇ

ˇ

𝑘

´ r𝑑

ˇ

ˇ

ˇ

𝑧1
𝑧2

ˇ

ˇ

ˇ

𝑘

` r𝑑
“
|𝑧1|

𝑘|𝑧2|
𝑛´𝑘 ´ 𝑑

|𝑧1|𝑘|𝑧2|𝑛´𝑘 ` 𝑑
,

r𝑑 “ max
|𝑧|“1

ˇ

ˇ

ˇ

𝑎0 ` 𝑧𝑏0
𝑎𝑛|𝑧2|𝑛 ` 𝑧𝑏𝑛|𝑧2|𝑛

ˇ

ˇ

ˇ
“

𝑑

|𝑧2|𝑛
,

𝑑 is the constant from Theorem 2.
By Lemma 1, if

1 ă r𝑅 6
1

2𝑛

˜

´ 𝑘 ` p𝑛´ 𝑘q
´

|𝑧1|

|𝑧2|
´

r𝜆

𝑛

¯

`
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`

d

ˆ

𝑘 ´ p𝑛´ 𝑘q
´

|𝑧1|

|𝑧2|
´

r𝜆

𝑛

¯

˙2

` 4p𝑛´ 𝑘qr𝜆
|𝑧1|

|𝑧2|

¸

or

1

2𝑛

˜

𝑘 ` p𝑛´ 𝑘q
´

|𝑧1|

|𝑧2|
`

r𝜆

𝑛

¯

`

`

d

ˆ

𝑘 ` p𝑛´ 𝑘q
´

|𝑧1|

|𝑧2|
`

r𝜆

𝑛

¯

˙2

´ 4p𝑛´ 𝑘qr𝜆
|𝑧1|

|𝑧2|

¸

6 r𝑅 ă
|𝑧1|

|𝑧2|
,

where
r𝜆 “

1´ r𝑑

1` r𝑑
“
|𝑧2|

𝑛 ´ 𝑑

|𝑧2|𝑛 ` 𝑑
,

then 𝛼 “ 0 P 𝐷
r𝑅,r𝜇, i.e., the inequality

| r𝑓 1p𝑤q| 6 | r𝐹 1p𝑤q| (29)

takes place for |𝑤| “ r𝑅. Putting 𝑧 “ |𝑧2|𝑤, 𝑅 “ |𝑧2| r𝑅, from (29) we
obtain the inequality

|𝑓 1p𝑧q| 6 |𝐹 1p𝑧q|,

which is true for |𝑧| “ 𝑅 P r|𝑧2|, |𝑧1|szp𝑟1, 𝑟2q.
To prove (28) for |𝑧| > |𝑧1|, we apply Theorem C to the polynomials

𝑓p|𝑧1|𝑤q, 𝐹 p|𝑧1|𝑤q.
To finish the proof, we consider the case |𝑧2| “ 0. Then

𝑓p𝑧q “ 𝑎p𝑧 ´ 𝑧1q
𝑘𝑧𝑛´𝑘, 𝐹 p𝑧q “ 𝑏p𝑧 ´ 𝑧1q

𝑘𝑧𝑛´𝑘, |𝑎| 6 |𝑏|.

For these polynomials, (28) is true for all 𝑧 P C. l

In [9, Corollary 1 from Theorem 3], the following statement was proved:

Theorem G. Suppose polynomials 𝑓 and 𝐹 satisfy the conditions of
Theorem 2. If 𝑅 P r|𝑧2|,`8qzp𝜌1, 𝜌2q, where

𝜌1 “
´

1´
𝑘

𝑛

¯

|𝑧1| ´
𝑘

𝑛
|𝑧2|, 𝜌2 “

´

1´
𝑘

𝑛

¯

|𝑧1| `
𝑘

𝑛
|𝑧2|,

then the Bernstein inequality

|𝑓 1p𝑧q| 6 |𝐹 1p𝑧q|
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takes place for |𝑧| “ 𝑅.

Let us show that Theorem 2 is a supplementation of Theorem G. For
this aim, we prove that

𝜌1 ă 𝑟1 (30)

and
𝜌2 ą 𝑟2, (31)

where 𝜌1, 𝜌2 are the constants from Theorem 2, 𝑟1, 𝑟2 are the constants
from Theorem G.

Rewrite (30) in the form

´

1´
𝑘

𝑛

¯

|𝑧1| ´
𝑘

𝑛
|𝑧2| ă

1

2𝑛

˜

´ 𝑘|𝑧2| ` p𝑛´ 𝑘q
´

|𝑧1| ´
r𝜆|𝑧2|

𝑛

¯

`

`

d

ˆ

𝑘|𝑧2| ´ p𝑛´ 𝑘q
´

|𝑧1| ´
r𝜆|𝑧2|

𝑛

¯

˙2

` 4p𝑛´ 𝑘qr𝜆|𝑧1||𝑧2|

¸

.

This inequality is equivalent to

d

ˆ

𝑘|𝑧2| ´ p𝑛´ 𝑘q
´

|𝑧1| ´
r𝜆|𝑧2|

𝑛

¯

˙2

` 4p𝑛´ 𝑘qr𝜆|𝑧1||𝑧2| ą

ą p𝑛´ 𝑘q
´

|𝑧1| `
r𝜆|𝑧2|

𝑛

¯

´ 𝑘|𝑧2|. (32)

If the right-hand side of (32) is negative, then (32) is always true. Further,
we shall assume that the right-hand side of (32) is greater than or equal
to zero. Squaring both parts of (32), we get

´
p𝑛´ 𝑘q

𝑛
|𝑧1| `

𝑘

𝑛
|𝑧2| ` 2|𝑧1| ą

p𝑛´ 𝑘q

𝑛
|𝑧1| ´ 𝑘|𝑧2|,

which reduces to the correct inequality

´|𝑧1| ă |𝑧2|.

Therefore, (30) is true.
Now, consider inequality (31):
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´

1´
𝑘

𝑛

¯

|𝑧1| `
𝑘

𝑛
|𝑧2| ą

1

2𝑛

˜

𝑘|𝑧2| ` p𝑛´ 𝑘q
´

|𝑧1| `
r𝜆|𝑧2|

𝑛

¯

`

`

d

ˆ

𝑘|𝑧2| ` p𝑛´ 𝑘q
´

|𝑧1| `
r𝜆|𝑧2|

𝑛

¯

˙2

´ 4p𝑛´ 𝑘qr𝜆|𝑧1||𝑧2|

¸

.

Write this as
d

ˆ

𝑘|𝑧2| ` p𝑛´ 𝑘q
´

|𝑧1| `
r𝜆|𝑧2|

𝑛

¯

˙2

´ 4p𝑛´ 𝑘qr𝜆|𝑧1||𝑧2| ă

ă p𝑛´ 𝑘q|𝑧1| `
´

𝑘 ´
𝑛´ 𝑘

𝑛
r𝜆
¯

|𝑧2|. (33)

Note that the right-hand side of (33) is positive. Square both parts of (33)
and obtain the inequality

p𝑛´ 𝑘q

𝑛
|𝑧1| `

𝑘

𝑛
|𝑧2| ´ 2|𝑧1| ă ´

p𝑛´ 𝑘q

𝑛
|𝑧1| ´

𝑘

𝑛
|𝑧2|.

The last inequality takes place if

|𝑧1| ą |𝑧2|,

which is true. Hence, (31) is also true.

Remark. Summing up, we have obtained that, generally speaking, com-
pared to Theorem G, Theorem 2 gives us two additional annuli in D,
where the Bernstein inequality takes place for polynomials satisfying the
conditions of Theorem G.
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des polynomes de degré donné. Mémoires de la Classe des sciences.
Académie royale de Belgique. Deuxiéme série. Tome IV, 1912. (in
French)
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