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INTEGRABILITY OF ¢-BESSEL FOURIER TRANSFORMS
WITH GOGOLADZE -MESKHIA TYPE WEIGHTS

Abstract. In the paper, we consider the ¢-integrability of func-
tions A(t)|Fy,»(f)(t)|", where A(t) is a Gogoladze-Meskhia-Moricz
type weight and F ,(f)(t) is the g-Bessel Fourier transforms of a
function f from generalized integral Lipschitz classes. There are
some corollaries for power type and constant weights, which are
analogues of classical results of Titchmarsh et al. Also, a g-analogue
of the famous Herz theorem is proved.
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1. Introduction. Let f: R — C be an integrable function in
Lebesgue’s sense over R (f € L'(R)). Then the Fourier transform of
f is defined by

~

Fla) = (2m)" 12 J f(He it dt, zeR.

~

In the case 1 < p < 2, we define f(z) as a limit in LY(R), 1/p+1/q = 1,
by

~

b
f(z) = (L) lim (2r)"Y? Jf(x)e_m dt.

a——0o0,
b—+00

In particular, f € LY(R) and the following Hausdorff-Young type in-
equality proved by Titchmarsh (see [16, Ch. IV, Theorem 74|)

~ /p
il <cisty = [I1rapa)”, rer®, 1<p<z
R
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holds. For p = 2 the inequality in (1) is substituted by the Plancherel
equality. More about these results can be found in [16, Ch. III and IV]|
or [3, Ch. 5].

For f e LP(R), 1 < p < o0, we consider the modulus of smoothness of
order k € N:

s 8), = sup 18kl A4 = R0 (5) ros - 2m)

0<hg

The following result of Titchmarsh is well known (see |16, Ch. 4,
Theorem 84]):

Theorem 1. Let 1 < p < 2,0 < a < 1, f € Lip(a,p). Then
f(t) e LP(R) for all B satisfying the inequality

I _
p+ap—1 p—1

Unfortunately, in [16] and in many papers where Theorem 1 is pre-
sented there is no information that this theorem is an analogue of Szasz’s
results for trigonometric series (see, e.g., [15] and [12]- [14] in literature
from this paper).

We will write that a non-negative measurable function A(¢) € L}, .(R,)
belongs to the class A, v > 1, if there exists C(y) > 1, such that

2i+1 27,
1/ .
( f M(t)dt) T < C(y)2i- f At)dt, ieZ. 2)
21 2i—1

It is clear that a measurable function A(t) > 0 with the property
sup{A(t): 2° <t < 277} Ceinf{\(t): 27 <t < 2}, ieZ.

is contained in all classes A,, v > 1. From the last assertion, we deduce
that A(t) = t*, a € R, belongs to all classes A,, v > 1. Further we assume
that A(t) = A(—t) for ¢t > 0.

An analogue of (2) for sequences was introduced by Gogoladze and
Meskhia [9]. The condition (2) was suggested by Méricz [13] who proved
the following result:
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Theorem 2. Letl <p<2and fe P(R). If1/p+1/g=1,0<r <gq,
and X\ € Ap/p—rp4r), then

f AO|F@)] dt < fx(t)t—r/qw( fom/t), dt
|t]>2 1

The aim of the present paper is to obtain an analogue and a gener-
alization of Theorem 2 for the ¢-Bessel Fourier transform. Some ana-
logues of Theorem 1 for Fourier-Bessel (or Hankel) transform proved by
Platonov [14]. An analogue of Theorem 1 for g-Fourier-Dunkl transforms
can be found in [5]. Analogues and extensions of Theorem 2 for Fourier-
Dunkl transforms are proved by Volosivets [17], while for the first Hankel-
Clifford transform see [18]. The main result of the present paper and its
corollaries is similar to that of [17] and [18], but the subject of the present
paper is discrete and methods are different from used in the cited papers.
Also, we obtain an analogue of the famous Herz theorem (see Corollary 4).

2. Definitions and lemmas. Let 0 < ¢ < 1, v > —1, and
Ry ={¢":neZ} ForaeCand ne N = {1,2,...}, set

(a50)0 =1, (a;q)n = H(l —aq'), (a;q)x = H(l —aq’).

Let us introduce the g-integral of Jackson for f defined on R on intervals
from 0 to a € R} an from 0 to oo, as follows:

ff dz = (1 - q)a i
) -

Then, for 0 <a <b, a,be R, set

fbf(x fbf dx—f f(x)dyx.

For such integral, there is the following simple change of variables formula:

fla)dgr = (1—q) >, q"f(q")

neZ

©—3

b b/r
Jh(x/r)xm’“dqx = p2vi? J h(t)t**dt, reRS, v>-1, (3)

a/r
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(see [1]). A more general variant is in [11, (19.14)].
The third Jackson ¢-Bessel function J, (also called Hahn-Exton
g-Bessel function) is defined by

(qn—i-l, q © n(n+1)/2 )
Ju(z;q) = x ",
( (0w Z_: @), On
We consider also its normalized form:
. (q’ q>oo - 0 n(n+1)/2 )
Ju(@5q) = 57— ( z™".
@ Q) Z_: Y Q)@ On

These functions satisfy the orthogonality condition:

o]
—2n(v+1)

Cg v J]V(qnx7 q2)jlj(qu7 C]2)5U2y+1 dqx = ql—(snma
’ —q
0

where 6, is the Kronecker symbol,

v = ((1 - q)(q2§ q2)00)71(q2(y+1)5 q2)00

(see [12]). Further we write du, ,(z) instead of x?*!d,z.
Let A, . f(z) be the ¢-Bessel operator defined by

Ao f(x) =a?[f(g  a) — (1+ ) f(z) + ¢ fqz)].

The function j,(Ax;q) is a solution of the following difference equation:
Aq,uf('r) = _)‘Qf(x)

For 1 < p < o, denote by LI, the space of all real-valued functions f
defined on R} with finite norm

Ul = ([ 17 i)™

If xp is the indicator of a set ' and f(z)xp(v) € L? ,, then we write
fel? (E). The space L, consists of all bounded on R} functions and
is supplied by the usual sup-norm.

Define the g-Bessel Fourier transform F, ,(f) for fe L? , p>1, by

For( @) = cqu | F(O)7(xt, 6%) dpig,o ().

0%8
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Also, the ¢g-Bessel translation operator is introduced by

0

T(Zm(f) (y) = Cq,v ffq,u(f> (t) v (2t, q2)jv(yt, q2> dﬂq,u<t)~

It is known that for f € L;V the equality

T3 (f) W) dgu(y) = | fy) dg,u(y) (4)

©—3

holds (see |6, Proposition 5.2]). In [§], the problem of positivity of the
operator T, was discussed by Fitouhi and Dhaouadi. If from f > 0 on
Ry it follows that TY .f > 0 for all n € Z, then T is called positive.
For v > 0 and all g € (0,1), operators T, .., n € Z, are positive, while for
—1 < v < 0 the situation is more complicated. By virtue of this fact, we
consider v > 0 further.

In [8], it is proved that || T} . f|1,q,, < [ fll1,4,. for a positive operator

Ty, and f € L; . On the other hand, Dhaouadi [7] proved that

175 o flloo,q.0 < [ flloosq.vn [ € L

and, by the Riesz-Thorin interpolation theorem, concluded that (see |7,
Theorem 4])

Ty o flpav < fllpgy 1<p<o0, fely, (5)
Note that
u(z,¢*) <1, zeRf, v=0, (6)

(see [7, Remark 1]). In [1] it is proved that the inequality (6) is strong for
r e RY. From (6), the inequality

| Fa,0 (D) eo,q,0 < Cq ol Fllr a0 (7)

easily follows for f e L; .
Fora>0,m > 0,0 > 1, and p > 1, consider the ¢g-Besov space Bo“qe’;”

p7 b
consisting of all f € L? , such that

1/0
£ = 1l + (20wl .0 )pan)?) < 0.

keZ
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Let My, = [(1/q)%, (1/q)*1]. The Herz space K(a,0,p,q,v) contains all
function f on RY, such that Xy, € LY  for all k € Z and

. 1/
£l = 1l twoman = (216 Xanlg) < 0.

keZ
Here X is the indicator of a set E.

Lemma 1.

(i) Let fe Ly, p>1 Then 77, (f)(z) = Fou(Fouf)(x) = f(2),
reRy;

(ii) If fe Ly, then Fy o (f) € L, and |Fyo(f)l2q0 = [ fl2.q.0;

(iii) For any f e Lb ,, p = 1,2, the equality holds:

‘FQ:V<T;,xf>(y) :jV(yxaqz)Fq,u(f>(y); y,SEER;.

Proof. The statement (i) of Lemma 1 is proved in |6, Theorem 3.2|, while
(i) is established in |7, Theorem 3]. The part (iii) is proved in [1]| in the
case p = 2, but in other cases the proof is the same. []

From (7) and Lemma 1 (ii) by Riesz-Thorin, a theorem follows:

Lemma 2. Let 1<p<2,1/p+1/p'=1, fell . Then F,,(f)e€ L{;:V
and
”fq,V(f>Hp’,q,V < C”f”p,q,w (8>

Since in (5) the constant in the right-hand side is equal to 1, for m > 0
the difference of order m with step h may be defined by

a0
m v \m i v ]
o = (1= T0 = Y () @,
j=0 J
where [ is an identical operator and

(W) _mm=)mojrl) (m) _1

J ! 0

It is known that Z;O:O |(’?)| < o for m > 0 (see, e.g., [4]), therefore,
by (5) for f e Lb , one has A", , f e LF  and

q,v,h

HAZ?u,thp,q,V < Cm)| fllp, q,v 9)
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From Lemma 1 (iii), it follows that for f e Lb  p=1,2

Y

Far AT n ) (@) = (1= ju(yz, ¢*)" Foou(f)(z), 2Ry (10)
The next Lemma can be found in [1]:

Lemma 3. There exist there exist o, 3, > 0, such that
a < |j(t,¢*) = 1], teRy [l +0),

2 : 2 2
nt® < gt q®) =1 < pt?, teRy 0 (0,1].

We define the modulus of smootheness of order m > 0 for f € L, by

Wm(f7 5):0,(171/ = sup HAZ}y,hf”p,qw
0<h<d

We will write A(t) € A, 4., v = 1, if for i € Z the inequality

(1/q)"+* y (1/q)*

8l .
(| N d0) <o [ dug )
(1/9)* (1/q)*—*

holds. In Lemma 4 below, it is provided that A(t) = t*, o € R, satisfies
this condition.

3. Main results.

Theorem 3. Let1<p<2,%+§=1,y 0, felh, m=>0.If

A€ Apjipprin).aw = Apjp—r).q.» for some r € (0,p), A e LF/¥=[0,1]
and the integral

o0
f r@R/Ey (ft )p,qmdﬂq,r/(t)

converges, then \(t)|F,.,(f)(t)]" € L} ,

Proof. Let M; = [(1/q)",(1/q)**], i € Z,. By Lemma 3, (10) and
Hausolorf-Young type inequality (8), we have

ffqu DI digo(y) <
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f\fqu D (L Jula, )™ dytg.o(y) <
S f Fan ()@ (1= gy, )™ g () = | Foo (A2, i FIE ., <
0

CQHAqVq( )Hqu\CVQC’u (f? )pq,I/'

By the Holder inequality and the condition A € Ay /y—p), 4., We have for
0<r<yp:

f A B (1) (O dpig () <

M;

/

< ([P g, 0) ™ < ([ 1FOF diotn) ™ <

M; M;

< Ol (frq)p. g q DY J M) dpg, (). (11)

pi-1
By definition,

—i—1

f g(t>d:uq,l/() (1-9) ( i " 1 i >
—(1-g)( 3o Z)qg = (1—q)g " Yglg™™). (12)

n=——1 n=—1

Thus, (11) may be rewritten as

[ro1FnOr dusn<es [l D a0,

M; M; 1

Summing up (13) over i = 0,1,2,..., we obtain

[AOIF O i) < 00 [ 2L . )

1/q
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It A e L2770, 1], then A() € L'[1/q, 1], and the integral in the right-
hand side of (14) is finite, since ¢! and w,,(t,1/t) are bounded on [1/q¢, 1].
Finally, by the condition A € L2/ ™[0, 1] and (8):

[AO1Z OO digtt) < ([1700OF o)

1

) —r 1—r/p'
x <J|]-"(t)|p/(p Vg (1)) <o

0
The proof is completed. []
We give two auxiliary statements.

Lemma 4. A function \,(t) = t*, o € R, belongs to any class A,
v =1

Proof. By (12), we have

= (th d”’q’”(t))l/7 = (L= q)g™ Mg~ 2 =

M;
=(1— q)l/’Yq—(i+1)(a+(2u+2)/fy

Y

while

I = J t%dpg, () = (1 — q)q—i(1+a+2y+1)’
M; 1

and we obtain I, < C(q,v,~)q "@+20h=D], 7

Lemma 5. A function A (t) = %, a € R, belongs to LZ\¥ [0, 1],
0<r<yp,ifand only if « > —(1 —r/p")(2v + 2).

Proof. By definition, we obtain that the integral

1 1
ftap’/(p’—r)dlqu(t) _ Jtocp’/(p’—r)+2v+1 dqj,,(t) =
0 0

o0
1 —q Z n(ap’/(p'—r)+2v+2)
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converges if and only if ap//(p —r)+2v+2>00r a>—(2v+2)(1—r/p’). O

Now we obtain some consequences of the main result.

Corollary 1. Let 1 <p <2, m>0,1/p+1/p =1, v >0, acR,
felb , andre(0,p). Ifa> (r/p - 1)(21/ +2) and the integra]

ee}

Jtr e 1) 0 (15)

1

converges, then t*|F, ,(f)(t)|" € L; ,

Corollary 2. Let p, p/, m, v and r be as in Corollary 1, and
Wi (fy0)p g = O(0P), B>0. If > (r/p' — 1)(2v + 2) and

/ 2 2
p,>r>p(a—|— v+ )’
2042+ p'p

(16)

then t*|F, ,(f)(t)|" € Lé,u

Proof. Under conditions of Corollary 2, the integral (15) converges if
a—r(2v+2)/p —rf+2v+1 < —1 and this inequality is equivalent to
(16). O

If @ = 0, then the case r = ¢ is also admissible. Corollary 3 is an
analogue of the Titchmarsh result.

Corollary 3.  Let p, p/, m, v, and r be as in Corollary 1 and
Win(f,0)p.q.0 = O(67), B> 0. If

/
. (2v + 2)p _ (2v +2)p 7
w+2+pB p2rv+2+8)—(2v+2)

then F, ,(f) € Ly,

Now we state some estimates for the g-Bessel Fourier transform from
g-Besov space.

Theorem 4. Leta>0,1<p<2 m>0,and 0 > 1. IffeB;‘;fgﬁ
then

Z q—kea i T Fos )9/17/ . (17)
z=k

keZ

7
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Proof. In the proof of Theorem 3, it is established that for i € Z

0

j Fas DI (@ — oy, )™ diag () < C?. (o)

0

Therefore,

Hf”% = Z(q_kawm(fa qk)p,q,u)g >

keZ

qu_k(’“(flfq AW (1= G(d . ¢*)™ dﬂq,y(y))e/p

keZ

WV

QZQ“‘M( f DO~ a0 ) o))

keZ

But by Lemma 3 for y > ¢~* the inequality 1— j,(¢"*y, ¢*) = Cy > 0 holds
and one has

0

11 > s S0 ([ D@ duant))™. 19

kEZ
gk

that is equivalent to (17). O

Corollary 4 is an analogue of the famous theorem of Herz for the clas-
sical Fourier transform (see [10]). The proof in our case is simpler.

Corollary 4. Leta>0,1<p<2,m>0,and0 > 1. If f € B} (f )
then qu(f) € K(a70>p7Qa ) and “fq7V< )”K a,0,p,q,v) < CHf”B

Proof. The result follows from (18) and the obvious inequality

f Fars DO ditgn(y) > f Fas DO ditgn(y).

The proof is completed. []
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