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ON THE INVERSE PROBLEM OF THE
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PARABOLIC EQUATION

Abstract. In this paper, the inverse problem of the Bitsadze–
Samarsky type is studied for a fractional order equation with a
Hadamard–Caputo fractional differentiation operator. The prob-
lem is solved using the spectral method. The spectral aspects of
the obtained problem are investigated, root functions are found,
and their basis property is proved. The conjugate problem is in-
vestigated. The uniqueness and existence theorems for a regular
solution to this problem are proved.
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1. Problem statement. The Hadamard integration operator of
order 𝛼 > 0 is the expression [1]

𝐻𝐽
𝛼
0𝑡𝑦(𝑡) =

1

Γ(𝛼)

𝑡∫︁
0

(︂
ln
𝑡

𝜏

)︂𝛼−1

𝑦(𝜏)
𝑑𝜏

𝜏
, 𝑡 > 0.

If 𝛼 = 0, we suppose that 𝐻𝐽
0
0𝑡𝑦(𝑡) = 𝑦(𝑡).

For 𝛼 ∈ (𝑚− 1,𝑚],𝑚 = 1, 2, . . ., the following expression

𝐻𝐶𝐷
𝛼
0𝑡𝑦(𝑡) = 𝐻𝐽

𝑚−𝛼
0𝑡 (𝛿𝑚𝑦(𝑡)) ≡ 1

Γ(𝑚− 𝛼)

1∫︁
0

(︂
ln
𝑡

𝜏

)︂𝑚−𝛼−1

𝛿𝑚𝑦(𝜏)
𝑑𝜏

𝜏

is called the Hadamard–Caputo differentiation operator of the order 𝛼 > 0,
where 𝛿 = 𝑡 𝑑

𝑑𝑡
and 𝛿𝑘 = 𝛿 · 𝛿𝑘−1, 𝑘 ⩾ 1 [2].
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Let 0 < 𝛼 ⩽ 1, 𝛽 > 0. Consider the following equation:

𝑡−𝛽
𝐻𝐶𝐷

𝛼
0𝑡𝑢(𝑥, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑡) + 𝑔(𝑥). (1)

For the case 𝛼 = 1, 𝛽 = 1, we get

𝑡−𝛽
𝐻𝐶𝐷

𝛼
0𝑡𝑢(𝑡, 𝑥) = 𝑡−1

(︁
𝑡
𝜕

𝜕𝑡

)︁
𝑢(𝑡, 𝑥) =

𝜕𝑢(𝑡, 𝑥)

𝜕𝑡

and equation (1) coincides with the classical parabolic equation.
Let Ω = {(𝑥, 𝑡) : 0 < 𝑥 < 1, 0 < 𝑡 < 𝑇}, where 𝑇 is a positive real num-

ber. For equation (1), consider the following problem in the domain Ω:
Problem 𝐵𝑆. Find a pair of functions (𝑢(𝑥, 𝑡), 𝑔(𝑥)) from the class

𝑢(𝑥, 𝑡), 𝑡−𝛽
𝐻𝐶𝐷

𝛼
0𝑡𝑢(𝑥, 𝑡), 𝑢𝑥𝑥(𝑥, 𝑡) ∈ 𝐶(Ω̄), 𝑔(𝑥) ∈ 𝐶[0, 1], (2)

satisfying in the domain Ω equation (1) and the conditions

𝑢(𝑥, 0) = 𝜙(𝑥), 0 ⩽ 𝑥 ⩽ 1, (3)

𝑢(𝑥, 𝑇 ) = 𝜓(𝑥), 0 ⩽ 𝑥 ⩽ 1, (4)

𝑢(0, 𝑡) = 0, 0 ⩽ 𝑡 ⩽ 𝑇, (5)

𝑢(1, 𝑡) = 𝑢(𝑥0, 𝑡), 0 ⩽ 𝑡 ⩽ 𝑇. (6)

Here 𝜙(𝑥), 𝜓(𝑥) are the given functions, 𝛽, 𝑎, 𝑥0 are the given real numbers,
such that 𝛽 > 0, 0 < 𝑥0 < 1.

Among the first works devoted to the issues related to the solvability
of nonlocal problems, we note the work of T. Carleman [3] (see also [4]),
where the problem with a nonlocal condition, which consists in finding a
holomorphic function in a bounded domain that connects the values of
this function at different points of the boundary, is studied. This problem
was reduced to a singular integral equation with deviation. We should
also note the papers [5] and [6], where abstract nonlocal elliptic boundary
value problems were studied.

A nonlocal boundary-value problem of a new type for an elliptic differ-
ential equation that arises in plasma theory was formulated by A. V. Bit-
sadze and A. A. Samarskii [7]. This problem was reduced to an integral
Fredholm equation of the second kind. Using the extremum principle for
elliptic equations, the uniqueness of the classical solution is proved.

Further, the results on the theory of partial differential equations and
functional-differential equations made it possible to study the solvability
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problem for a wide class of nonlocal elliptic boundary value problems. In
the monograph [8] (see also [9]), a detailed classification of nonlocal elliptic
boundary value problems is given, the uniqueness and solvability of such
problems in Sobolev spaces and weighted Kondratiev spaces are studied,
the properties of the index, the spectral properties of the corresponding
operators, the asymptotic behavior of solutions, and the smoothness of
generalized solutions are considered. In addition, applications of nonlocal
problems to the processes of heat distribution, diffusion, and cooling of
aircraft engines are described.

Similar problems with operators of integer or fractional order with
Riemann–Liouville, Caputo, and Hadamard–Caputo derivatives were stud-
ied in [10], [11], [12], [13], and for parabolic systems in [14], [15].

Note that inverse problems for a parabolic equation of fractional order
with the Gerasimov–Caputo operator were also studied in [16], [17], and
for degenerate equations, in [18], [19].

In this paper, an inverse problem of the Bitsadze-Samarskii type is
studied for a degenerate fractional parabolic equation with the Hadamard–
Caputo operator. Using the spectral method, the eigenvalues, as well as
the corresponding root functions, are found, and their basis property is
proved. The spectral issues of the conjugate problem are also investigated.

2. The Cauchy problem for a one-dimensional fractional dif-
ferential equation.

In this subsection, we study the Cauchy problem for a one-dimensional
fractional differential equation with a Hadamard–Caputo derivative.

Let 0 < 𝛼 ⩽ 1, 𝛽 > 0. We introduce the following operators:

𝐵𝛽
𝛼𝑦(𝑡) = 𝑡−𝛽

𝐻𝐶𝐷
𝛼
0𝑡𝑦(𝑡),𝐵

−𝛽
𝛼 𝑦(𝑡) = 𝐽𝛼

0𝑡[𝜏
𝛽𝑦](𝑡)

and study some properties of these operators.
From the definition of operators 𝐻𝐽

𝛼
0𝑡𝑦(𝑡) and 𝐻𝐶𝐷

𝛼
0𝑡𝑦(𝑡), it follows that

𝐻𝐽
𝛼
0𝑡(𝑡

𝜇) = 𝜇−𝛼𝑡𝜇, 𝛼, 𝜇 > 0,𝐻𝐶𝐷
𝛼
0𝑡(𝑡

𝜇) =

{︃
0, 𝜇 = 0,

𝜇𝛼𝑡𝜇, 𝜇 > 0,
𝛼 ∈ (0, 1]. (7)

Lemma 1. Let 𝛼 ∈ (0, 1], 𝛽 > 0, and 𝑓(𝑡) ∈ 𝐶[0, 𝑑]. Then 𝐵−𝛽
𝛼 𝑓(𝑡) ∈

𝐶[0, 𝑑] and the following estimate holds:

⃦⃦
𝐵−𝛽

𝛼 𝑓(𝑡)
⃦⃦
𝐶[0,𝑑]

⩽
𝑑𝛽

𝛽𝛼
‖𝑓(𝑡)‖𝐶[0,𝑑],
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where ‖𝑓(𝑡)‖𝐶[0,𝑑] = max
0⩽𝑡⩽𝑑

|𝑓(𝑡)|.

Proof. Let 𝑓(𝑡) ∈ 𝐶[0, 𝑑]. Then, taking into account the definition of the
operator 𝐵−𝛽

𝛼 , we obtain

⃒⃒⃒
𝐵−𝛽

𝛼 𝑓(𝑡)
⃒⃒⃒
=

⃒⃒⃒ 1

Γ(𝛼)

𝑡∫︁
0

𝜏𝛽
(︂
ln
𝑡

𝜏

)︂𝛼−1

𝑓(𝜏)
𝑑𝜏

𝜏

⃒⃒⃒
⩽

⩽
‖𝑓(𝑡)‖𝐶[0,𝑑]

Γ(𝛼)

𝑡∫︁
0

(︁
ln
𝑡

𝜏

)︁𝛼−1

𝜏𝛽−1𝑑𝜏 =
‖𝑓(𝑡)‖𝐶[0,𝑑]

Γ(𝛼)

𝑡𝛽

𝛽𝛼

∞∫︁
0

𝜏𝛼−1𝑒−𝜏𝑑𝜏 =

=
‖𝑓(𝑡)‖𝐶[0,𝑑]

𝛽𝛼
𝑡𝛽.

Thus, we get the following estimate:

⃦⃦
𝐵−𝛽

𝛼 𝑓(𝑡)
⃦⃦
𝐶[0,𝑑]

=max
0⩽𝑡⩽𝑑

⃒⃒
𝐵−𝛽

𝛼 𝑓(𝑡)
⃒⃒
⩽

‖𝑓(𝑡)‖𝐶[0,𝑑]

𝛽𝛼
max
0⩽𝑡⩽𝑑

𝑡𝛽 =
𝑑𝛽

𝛽𝛼
‖𝑓(𝑡)‖𝐶[0,𝑑].

Lemma 1 is proved. □

Lemma 2. Let 0 < 𝛼 ⩽ 1 and 𝑓(𝑡) ∈ 𝐶1[0, 𝑑]. Then 𝐻𝐶𝐷
𝛼
0𝑡𝑓(𝑡) ∈

𝐶[0, 𝑑], 𝐻𝐶𝐷
𝛼
0𝑡𝑓(0) = 0, and the following estimate holds:

‖𝐻𝐶𝐷
𝛼
0𝑡𝑓(𝑡)‖𝐶[0,𝑑] ⩽ 𝑑‖𝑓 ′(𝑡)‖𝐶[0,𝑑].

Proof. If 𝛼 = 1, then 𝐻𝐶𝐷
1
0𝑡𝑓(𝑡) = 𝑡 𝑑

𝑑𝑡
𝑓(𝑡). Hence, for 𝑓(𝑡) ∈ 𝐶1[0, 𝑑] we

get 𝐻𝐶𝐷
1
0𝑡𝑓(𝑡) ∈ 𝐶[0, 𝑑]. It is obvious that 𝐻𝐶𝐷

1
0𝑡𝑓(𝑡)|𝑡=0= 𝑡 𝑑

𝑑𝑡
𝑓(𝑡)|𝑡=0 =

0.
Let 0 < 𝛼 < 1. Then

⃒⃒⃒
𝐻𝐶
𝐷𝛼

0𝑡𝑓(𝑡)
⃒⃒⃒
=

⃒⃒⃒ 1

Γ(1− 𝛼)

𝑡∫︁
0

(︁
ln
𝑡

𝜏

)︁−𝛼

𝛿𝑓(𝜏)
𝑑𝜏

𝜏

⃒⃒⃒
⩽

⩽
1

Γ(1− 𝛼)

𝑡∫︁
0

(︁
ln
𝑡

𝜏

)︁−𝛼

|𝑓 ′(𝜏)| 𝑑𝜏 ⩽

⩽ ‖𝑓 ′(𝑡)‖𝐶[0,𝑑]

1

Γ(1− 𝛼)

𝑡∫︁
0

(︁
ln
𝑡

𝜏

)︁−𝛼

𝑑𝜏 = 𝑡‖𝑓 ′(𝑡)‖𝐶[0,𝑑].
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Thus, we obtain

‖𝐻𝐶𝐷
𝛼
0𝑡𝑓(𝑡)‖𝐶[0,𝑑] ⩽ 𝑑‖𝑓 ′(𝑡)‖𝐶[0,𝑑],𝐻𝐶𝐷

𝛼
0𝑡𝑓(𝑡) |𝑡=0 = lim

𝑡→0
𝐻𝐶𝐷

𝛼
0𝑡𝑓(𝑡) = 0.

Lemma 2 is proved. □

Lemma 3. Let 0 < 𝛼 ⩽ 1, 𝛽 > 0 and 𝑓(𝑡) ∈ 𝐶1[0, 𝑑]. Then the
following equality holds:

𝐵−𝛽
𝛼

[︀
𝐵𝛽

𝛼[𝑓 ]
]︀
(𝑡) = 𝑓(𝑡)− 𝑓(0). (8)

Proof. As 𝑓(𝑡) ∈ 𝐶1[0, 𝑑], Lemma 2 implies that the function 𝐵𝛽
𝛼[𝑓 ](𝑡)

belongs to the class 𝐶[0, 𝑑]. If 𝛼 = 1, then

𝐵−𝛽
1

[︁
𝐵𝛽

1 [𝑓 ]
]︁
(𝑡) =

𝑡∫︁
0

𝜏𝛽𝐵𝛽
1 [𝑓 ](𝜏)

𝑑𝜏

𝜏
=

𝑡∫︁
0

𝜏𝛽𝜏−𝛽𝜏
𝑑

𝑑𝜏
𝑓(𝜏)

𝑑𝜏

𝜏
= 𝑓(𝑡)− 𝑓(0).

For 0 < 𝛼 < 1, taking into account the formula

𝐻𝐽
𝛼
0𝑡 𝐻𝐽

𝛽
0𝑡 = 𝐻𝐽

𝛼+𝛽
0𝑡 , 𝛼, 𝛽 ⩾ 0

from [1], we get

𝐵−𝛽
𝛼

[︀
𝐵𝛽

𝛼[𝑓 ]
]︀
(𝑡) =

1

Γ(𝛼)

𝑡∫︁
0

(︁
ln
𝑡

𝜏

)︁𝛼−1

𝜏𝛽𝐵𝛽
𝛼[𝑓 ](𝜏)

𝑑𝜏

𝜏
=

= 𝐻𝐽
𝛼
0𝑡

[︀
𝐻𝐽

1−𝛼
0𝑡 [𝜏𝑓 ′]

]︀
(𝑡) = 𝐻𝐽

1
0𝑡 [𝑓

′] (𝑡) = 𝑓(𝑡)− 𝑓(0).

Lemma 3 is proved. □

In the domain (0, 𝑑), consider the following Cauchy problem:

𝐵𝛽
𝛼𝑦(𝑡) = 𝜆𝑦(𝑡), 0 < 𝑡 < 𝑑, (9)

𝑦(0) = 𝑏, (10)

where 𝑏 is a real positive number.
A solution to this problem is a function from the class 𝑦(𝑡) ∈ [0, 𝑑],

𝐵𝛽
𝛼𝑦(𝑡) ∈ 𝐶(0, 𝑑) satisfying equation (9) and condition (10) in the classical

sense.
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Let a function 𝑦(𝑡) be a solution to problem (9), (10). Applying the
operator 𝑦(𝑡) to both parts of (9), we have

𝐵−𝛽
𝛼

[︀
𝐵𝛽

𝛼𝑦
]︀
(𝑡) = 𝜆𝐵−𝛽

𝛼 [𝑦](𝑡), 0 < 𝑡 < 𝑑.

Hence, taking into account (7) and (8), we obtain

𝑦(𝑡) = 𝑏+ 𝜆𝐵−𝛽
𝛼 [𝑦](𝑡), 0 < 𝑡 < 𝑑.

Thus, if 𝑦(𝑡) is a solution of problem (9), (10), then it satisfies the
Volterra integral equation of the second kind of the type

𝑦(𝑡) =
𝜆

Γ(𝛼)

𝑡∫︁
0

𝐾(𝑡, 𝜏)𝑦(𝜏)𝑑𝜏 + 𝑏, (11)

where 𝐾(𝑡, 𝜏) = (ln(𝑡)− ln(𝜏))𝛼−1𝜏𝛽−1.
To find a solution to the integral equation (11), we apply the method

of normalized systems [20]. To do this, denote 𝐿1 = 𝐸, 𝐿2 = 𝜆𝐵−𝛽
𝛼 ,

where 𝐸 is the unit operator. Then equation (11) can be rewritten as
(𝐿1 − 𝐿2)𝑦(𝑡) = 𝑏. As 𝐿1 = 𝐸, we get 𝐿−1

1 = 𝐸. Let 𝑔0 = 𝑏. Further,
we use the technique used in [20]. According to this method, consider the
system

𝑔𝑘(𝑡) = (𝐿−1
1 · 𝐿2)

𝑘
𝑔0, 𝑘 = 1, 2, . . . .

For 𝑘 = 1, we get

𝑔1(𝑡) = (𝜆𝐵−𝛽
𝛼 )𝑔0 = 𝜆𝐵−𝛽

𝛼 [𝑏] =
𝜆𝑏

Γ(𝛼)

𝑡∫︁
0

(︂
ln
𝑡

𝜏

)︂𝛼−1

𝜏𝛽−1𝑑𝜏 =

=
𝜆𝑏

Γ(𝛼)

∞∫︁
0

𝜉𝛼−1𝑡𝛽−1𝑒−(𝛽−1)𝜉𝑡𝑒𝜉𝑑𝜉 =
𝜆𝑏𝑡𝛽

𝛽𝛼Γ(𝛼)

∞∫︁
0

𝑠𝛼−1𝑒−𝑠𝑑𝑠 =
𝜆𝑏

𝛽𝛼
𝑡𝛽.

Let 𝑘 = 2. Then we get

𝑔2(𝑡) = (𝜆𝐵−𝛽
𝛼 )𝑔1(𝑡) = 𝑏

𝜆2

𝛽𝛼Γ(𝛼)

𝑡∫︁
0

(︁
ln
𝑡

𝜏

)︁𝛼−1

𝜏 2𝛽−1𝑑𝜏 =

= 𝑏
𝜆2𝑡2𝛽

𝛽𝛼Γ(𝛼)

∞∫︁
0

𝜉𝛼−1𝑒−2𝛽𝜉𝑑𝜉 =
𝜆2𝑏

2𝛼𝛽2𝛼
𝑡2𝛽.
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Further, using the method of mathematical induction, for 𝑘 ⩾ 2 the
function 𝑔𝑘(𝑡) can be represented as

𝑔𝑘(𝑡) = (𝜆𝐵−𝛽
𝛼 )

𝑘
𝑏 =

𝜆𝑘𝑏

(𝑘!)𝛼𝛽𝑘𝛼
𝑡𝑘𝛽.

Lemma 4. Let 0 < 𝛼 ⩽ 1 and 𝛽 > 0. Then problem (9), (10) has a
unique solution, which has the form

𝑦(𝑡) = 𝑏
∞∑︁
𝑘=0

𝜆𝑘

(𝑘!)𝛼𝛽𝑘𝛼
𝑡𝑘𝛽. (12)

Proof. Let us first show the convergence of the series (12). To do this,
we evaluate the ratio 𝑔𝑘+1(𝑡)

𝑔𝑘(𝑡)
. Then we get⃒⃒⃒⃒

𝑔𝑘+1(𝑡)

𝑔𝑘(𝑡)

⃒⃒⃒⃒
=

⃒⃒⃒⃒
𝜆𝑘+1𝑡𝛽(𝑘+1)

𝛽𝛼(𝑘+1)((𝑘 + 1)!)𝛼

⃒⃒⃒⃒
:

⃒⃒⃒⃒
𝜆𝑘𝑡𝛽𝑘

𝛽𝛼𝑘(𝑘!)𝛼

⃒⃒⃒⃒
=

|𝜆|𝑡𝛽

𝛽𝛼𝑘
→

𝑘→∞
0.

Therefore, by the d’Alembert criterion, the series (12) converges uni-
formly for 𝑡 ∈ [0,𝑑] (in general, for 𝑡 ⩾ 0). Since the functions 𝑔𝑘(𝑡),
𝑘 = 1, 2, . . . , are continuous on [0,+∞), the sum of the series is also
continuous in 𝑡 ∈ [0, 𝑑].

Further, applying the operator 𝐵𝛽
𝛼 to the functions 𝑔𝑘(𝑡), and taking

into account (7), we have

𝐵𝛽
𝛼𝑔0(𝑡) = 0,

𝐵𝛽
𝛼𝑔𝑘(𝑡) = 𝐵𝛽

𝛼

[︁ 𝜆𝑘

(𝑘!)𝛼𝛽𝑘𝛼
𝑡𝑘𝛽

]︁
=

𝜆𝑘

𝛽𝑘𝛼−1((𝑘 − 1)!)𝛼
𝑡(𝑘−1)𝛽 = 𝜆𝑔𝑘−1(𝑡), 𝑘 ⩾ 1.

Then, formally applying the operator 𝐵𝛽
𝛼 to the series (12), we obtain

𝐵𝛽
𝛼𝑦(𝑡) =

∞∑︁
𝑘=0

𝐵𝛽
𝛼𝑔𝑘(𝑡) = 𝜆

∞∑︁
𝑘=1

𝑔𝑘−1(𝑡) = 𝜆

∞∑︁
𝑘=0

𝑔𝑘(𝑡) = 𝜆𝑦(𝑡). (13)

This implies a uniform convergence of the series
∞∑︀
𝑘=0

𝐵𝛽
𝛼𝑔𝑘(𝑡) and ful-

fillment of the condition 𝐵𝛽
𝛼𝑦(𝑡) ∈ 𝐶[0, 𝑑]. It also follows from (13) that

a function (12) satisfies equation (9). It is obvious that 𝑦(0) = 𝑏, i.e.,
condition (10) is also satisfied. Lemma 4 is proved. □
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Remark. Function (12) can be represented as

𝑦(𝑡) = 𝑏 · 𝐿𝛼

(︂
𝜆𝑡𝛽

𝛽𝛼

)︂
,

where 𝐿𝛼(𝑧) is written as

𝐿𝛼(𝑧) =
∞∑︁
𝑘=0

𝑧𝑘

(𝑘!)𝛼
,𝛼 > 0, 𝑧 ∈ 𝑅, (14)

and is called the Le Roy function [21].
Now, in the domain (0, 𝑑), we consider an inhomogeneous equation of

the form
𝐵𝛽

𝛼𝑦(𝑡) = 𝜆𝑦(𝑡) + 𝑎, 0 < 𝑡 < 𝑑, 𝑎 ̸= 0, (15)

and find its solution from the class 𝑦(𝑡) ∈ [0, 𝑑], 𝐵𝛽
𝛼𝑦(𝑡) ∈ 𝐶(0, 𝑑), satis-

fying condition (10). Since the solution to equation (9) is known, then,
according to the theory, it is sufficient to find a particular solution to
equation (15). It is easy to see that such a solution is a constant function
of the type 𝑦(𝑡) = − 𝑎

𝜆
. Then the solution to problem (15), (10) is written

as

𝑦(𝑡) =
(︁
𝑏+

𝑎

𝜆

)︁
𝐿𝛼

(︂
𝜆𝑡𝛽

𝛽𝛼

)︂
− 𝑎

𝜆
. (16)

3. A spectral problem for a second-order differential equation.
To solve the 𝐵𝑆 problem, we apply the Fourier method, according

to which we look for a non-trivial solution of a homogeneous equation
((𝑔(𝑥) = 0)), corresponding to (1) in the form 𝑢(𝑥,𝑡) = 𝑋(𝑥) · 𝑇 (𝑡). Sub-
stituting it into equation (1) and using conditions (5) and (6) to find the
eigenvalues 𝜆 and eigenfunctions 𝑋(𝑥), we obtain a problem for eigenval-
ues in the form

−𝑋 ′′(𝑥) = 𝜆𝑋(𝑥), 0 < 𝑥 < 1, (17)

𝑋(0) = 0, 𝑋(1) = 𝑋(𝑥0), 0 < 𝑥0 < 1. (18)

Further, we find the eigenfunctions of problem (17), (18). For 𝜆 ⩽ 0,
this problem has only the trivial solution, so consider the case with 𝜆 > 0.
In this case, we obtain two series of eigenvalues:

𝜆𝑛1 =

(︂
(2𝑛− 1) 𝜋

1 + 𝑥0

)︂2

, 𝜆𝑛2 =

(︂
2𝑛𝜋

1− 𝑥0

)︂2

, 𝑛 ∈ 𝑁, (19)
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which correspond to eigenfunctions of the form

𝑋𝑛1(𝑥) = sin
√︀
𝜆𝑛1𝑥, 𝑋𝑛2(𝑥) = sin

√︀
𝜆𝑛2𝑥, 𝑛 ∈ 𝑁. (20)

Note that among the two series of eigenvalues from (19), there are
coinciding ones. Indeed, comparing 𝜆𝑠1 and 𝜆𝑚2 from (19), we obtain the
following relation between 𝑥0, 𝑠 and 𝑚:

𝑥0 =
2𝑠− 2𝑚− 1

2𝑠+ 2𝑚− 1
, 𝑠,𝑚 ∈ 𝑁 ; (21)

in this case, the corresponding values of 𝜆𝑠1 and 𝜆𝑚2 coincide, so that
the system of eigenfunctions (20) is not complete and the problem of
supplementing this system with associated functions [22] arises.

Problem (17), (18) was first studied in [22], where the completeness
of the root functions of the differential operator corresponding to this
problem was shown.

The spectral problem in a more general formulation than the problem
of the form (17), (18), is studied in [23]. A more general basis property
criterion is found, which makes it possible to study the basis property of
systems of eigenfunctions and associated functions of the above-mentioned
problem, as well as of its adjoint problem.

Now, since relation (21) depends on the point 𝑥0, let us find out the
nature of this point, thereby uttering the results of the aforementioned
works.

Clearly, when 𝑥0 is an irrational number from the interval (0, 1), re-
lation (21) does not hold, and, so, both eigenvalues (19) and the corre-
sponding eigenfunctions are different. The following example shows that
(21) does not hold even for some rational values of 𝑥0. Indeed, consider
the case of 𝑥0 = 1

2
. Then, from (21) it follows 2𝑠 = 6𝑚 + 1. By virtue of

the fact that 𝑚, 𝑠 ∈ 𝑁 , 6𝑚+1 is always odd, and 2𝑠 is even, that is, (21)
does not occur under any 𝑚, 𝑠 ∈ 𝑁 . So, there are rational fractions in
which all eigenfunctions are distinct. Now we give a criterion that shows
the relationship between the values of 𝑥0, 𝑠 and 𝑚 at which the equality
(21) takes place, and also gives an algorithm for finding the corresponding
values of 𝑚, 𝑠 ∈ 𝑁 .

Let 𝑥0 be a rational number from the interval (0, 1), such that 𝑥0 = 𝑝
𝑞
,

𝑝 < 𝑞, and 𝑝, 𝑞- are coprime natural numbers. Here are some known facts
about the number 𝑥0:

1) Numbers 𝑝 + 𝑞 and 𝑞 − 𝑝 at the same time are both either even or
odd.
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2) Let the number 𝑞 − 𝑝 (or 𝑝+ 𝑞) be even; then either 𝑝+ 𝑞 or 𝑞 − 𝑝
is a multiple of 4.

Lemma 5. Let 𝑥0 ∈ (0, 1) be a rational number, such that 𝑥0 = 𝑝
𝑞
,

𝑝 < 𝑞, 𝑝 and 𝑞 be odd coprime natural numbers, such that 𝑞 − 𝑝 is a
multiple of 4. Then there exists countable numbers 𝑠 and 𝑚, such that
for two series of eigenvalues from (19) the equality 𝜆𝑠1 = 𝜆𝑚2 is valid.

Proof. Indeed, from the condition on 𝑥0, the relation (21) will take the
following form:

𝑠 =
𝑚(𝑝+ 𝑞)

𝑞 − 𝑝
+

1

2
. (22)

By condition, 𝑞− 𝑝 is a multiple of 4, then it is represented as 𝑞− 𝑝 = 4𝑟,
where 𝑟 ∈ 𝑁 . Hence, 𝑞 = 𝑝+ 4𝑟. Then (22) takes the following form

𝑠 =
𝑚(𝑝+ 2𝑟)

2𝑟
+

1

2
. (23)

By condition, 𝑝, 𝑞 are odd numbers. Then, obviously, the number 𝑝+2𝑟
is also odd, and the numbers 𝑝 + 2𝑟 and 2𝑟 have no common divisors.
Therefore, the condition 𝑠 ∈ 𝑁 can be provided only by choosing 𝑚, and
it is easy to see that it is true if and only if 𝑚 = 𝑘 · 𝑟, where 𝑘 is any odd
natural number. Thus, at these values 𝑚 from (23) we have:

𝑠 =
𝑘(𝑝+ 2𝑟)

2
+

1

2
,

and, since 𝑘(𝑝+ 2𝑟) is odd, it follows that 𝑠 ∈ 𝑁 .
Finally, to find the values 𝑠 and 𝑚, at which (21) is true, we obtained

the following formulae:

𝑚 = 𝑘 · 𝑟, 𝑠 =
𝑚(𝑝+ 𝑞)

𝑞 − 𝑝
+

1

2
, (24)

where 𝑟 = 𝑞−𝑝
4

, 𝑘 = 1, 3, 5, . . . . □

Taking Lemma 1 and formula (21) into account, we divide the rational
numbers from the interval (0, 1) into two sets 𝑄1 and 𝑄2, where the set 𝑄2

contains all rational numbers satisfying the conditions of Lemma 1, and
𝑄1 contains the remaining rational numbers.

Let us consider the case 𝑥0 ∈ 𝑄1. In this case, we obtain two series
of eigenvalues (19), which correspond to eigenfunctions (20), and all these
functions are different.
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The spectral problem (17)–(18) is not self-adjoint, and, therefore, the
system (20) is not orthogonal. Then, according to the spectral theory of
operators, the problem arises of studying the problem adjoint to problem
(17)–(18). It is easy to determine that the following problem is adjoint to
it:

−𝑌 ′′(𝑥) = 𝜆𝑌 (𝑥), 𝑥 ∈ (0, 𝑥0) ∪ (𝑥0, 1), (25)

𝑌 (0) = 0, 𝑌 (1) = 0, (26)

𝑌 (𝑥0 + 0) = 𝑌 (𝑥0 − 0), 𝑌 ′(1) = 𝑌 ′(𝑥0 + 0)− 𝑌 ′(𝑥0 − 0). (27)

Note that the solution of equation (25) that satisfies conditions (26)
and (27) is found uniquely, that is, it has no extra conditions. This prob-
lem should be considered as two boundary-value problems with gluing
conditions of the form (27).

As in the case of problem (17)–(18), consider the case 𝑥0 ∈ 𝑄1. Then,
solving the problem (25)–(27), we find that the numbers (19) are also
eigenvalues of this problem, and the corresponding eigenfunctions have
the form

{𝑌𝑛1(𝑥);𝑌𝑛2(𝑥)}, 𝑛 ∈ 𝑁, (28)

where

𝑌𝑛1 (𝑥) =

⎧⎪⎨⎪⎩
4

1 + 𝑥0
sin

√︀
𝜆𝑛1𝑥, 0 ⩽ 𝑥 ⩽ 𝑥0,

− 2

(𝑥0 + 1) cos
√︀
𝜆𝑛1

sin
√︀
𝜆𝑛1 (1− 𝑥) , 𝑥0 ⩽ 𝑥 ⩽ 1,

𝑌𝑛2 (𝑥) =

⎧⎪⎨⎪⎩
0, 0 ⩽ 𝑥 ⩽ 𝑥0,

− 2

(1− 𝑥0) cos
√︀
𝜆𝑛2

sin
√︀
𝜆𝑛2 (1− 𝑥) , 𝑥0 ⩽ 𝑥 ⩽ 1,

Lemma 6. The systems of the functions (20) and (28) are biorthonor-
mal, i.e., it takes place

(𝑋𝑠1(𝑥), 𝑌𝑚𝑗
(𝑥))

𝐿2(0,1)
=

{︃
1, 𝑠 = 𝑚, 𝑗 = 1,

0, 𝑠 ̸= 𝑚, 𝑗 = 1, 2,

(𝑌𝑠2(𝑥), �̃�𝑚𝑗
(𝑥))

𝐿2(0,1)
=

{︃
1, 𝑠 = 𝑚, 𝑗 = 2,

0, 𝑠 ̸= 𝑚, 𝑗 = 1, 2.
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The proof of Lemma 6 is carried out directly by calculating the correspond-
ing integrals. From Lemma 6 it follows that the system {𝑌𝑛1(𝑥);𝑌𝑛2(𝑥)}
is an biorthogonal adjoint to the system {𝑋𝑛1(𝑥);𝑋𝑛2(𝑥)}, 𝑛 ∈ 𝑁 .

Lemma 7. Let 𝑥0 ∈ 𝑄1. Then:
1) The system of the root functions of the problems (17), (18) and

(25)–(27) consists only of the eigenfunctions (i.e., there are no associated
functions);

2) System (20) is complete and minimal;
3) Systems of eigenfunctions (20) and (28) form the Riesz basis in

𝐿2(0, 1).

Note that more detailed information about the Riesz bases can be
found in [24]. Before proving the lemma, we present some definitions and
facts concerning Riesz bases.

Definition 1. [24] A complete and minimal system of the functions
{𝜙𝑛(𝑥)} is called a Bessel system, if for any 𝑓 ∈ 𝐿2(𝑎, 𝑏) the series of
squared coefficients of its biorthogonal expansion {𝜙𝑛(𝑥)} converges, i.e.,

𝑓 ∈ 𝐿2(𝑎, 𝑏) implies that
∞∑︀
𝑛=1

⃒⃒
(𝑓, 𝜓𝑛)𝐿2(𝑎,𝑏)

⃒⃒2
< ∞, where {𝜓𝑛(𝑥)} is the

system of associated functions.

Definition 2. [24] A complete and minimal system of functions {𝜙𝑛(𝑥)}
is called a Hilbert system, if for any sequence of numbers 𝑐𝑛, such that
∞∑︀
𝑘=1

𝑐2𝑛 <∞, there exists one and only one 𝑓 ∈ 𝐿2(𝑎, 𝑏), for which these 𝑐𝑛

are the coefficients of its biorthogonal expansion in {𝜙𝑛(𝑥)}, i.e.,

𝑐𝑛 = (𝑓, 𝜓𝑛)𝐿2(𝑎,𝑏)
, 𝑛 = 1, 2, . . . .

Definition 3. [24] A complete and minimal system is called a Riesz
basis, if it is both Bessel and Hilbert system at the same time.

Proof. The proof of part 1) follows from [22] and also from Lemma 1. The
completeness of system (20) was proved in [22], and the minimality follows
from Lemma 6. Thus, systems (20) and (28) satisfy all three conditions A
from [23]. Let us now verify the fulfillment of the conditions for the basis
property of the main theorem from [23]. As follows from this theorem, for
this it suffices to prove that the following two conditions are satisfied:

a)
∑︀

𝜆⩽|𝜆𝑘𝑖
|⩽𝜆+1

1 ⩽ 𝐶1, 𝑖 = 1, 2, for any real 𝜆 ⩾ 0,
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b) ‖𝑋𝑘𝑖‖0 · ‖𝑌𝑘𝑖‖0 ⩽ 𝐶2, 𝑖 = 1, 2, for all numbers 𝑘.

The fulfillment of the first condition is verified directly. To check the
second condition, we calculate the corresponding norms:

‖𝑋𝑛1(𝑥)‖0 =

√︃
1

2
−

sin 2
√︀
𝜆𝑛1

2
√︀
𝜆𝑛1

,‖𝑋𝑛2(𝑥)‖0 =

√︃
1

2
−

sin 2
√︀
𝜆𝑛2𝑥

2
√︀
𝜆𝑛1

,

‖𝑌𝑛1(𝑥)‖0 =
2

1 + 𝑥0

√︃
2𝑥0 +

1− 𝑥0

2cos2
√︀
𝜆𝑛1

+
𝑡𝑔
√︀
𝜆𝑛1√︀
𝜆𝑛1

,

‖𝑌𝑛2(𝑥)‖0 =
1

| cos𝜆𝑛2|

√︂
2

1− 𝑥0
,

where 𝑛 ∈ 𝑁.
Then, since 𝑥0 is a fixed rational number, the fulfillment of condition

b) follows from Lemma 5, as well as from the finiteness of the set of values
cos𝜆𝑛1 and cos𝜆𝑛2 . Thus, systems (20) and (28) satisfy all conditions of
the main theorem from [23]. Hence, it follows that these systems form a
Riesz basis. Lemma 7 is proved. □

The spectral questions of problems (17), (18) and (25)–(27) are studied
in the same way for values 𝑥0 from 𝑄2. Note that in this case, these
problems, in addition to eigenfunctions, also have associated functions
that correspond to those eigenvalues, whose serial numbers are determined
by formulae (24).

4. Existence and uniqueness of a solution to Problem 𝐵𝑆.
Now we turn to the study of the existence and uniqueness of the so-

lution of problem 𝐵𝑆. According to the theory, we will seek the solution
𝑢(𝑥, 𝑡), 𝑔(𝑥) of problem in the form of an expansion in a specially chosen
basis from the system of functions {𝑋𝑛 𝑖

}, 𝑖 = 1, 2 from (20):

𝑢(𝑥,𝑡) =
∞∑︁
𝑛=1

(𝑢𝑛1(𝑡) ·𝑋𝑛1(𝑥) + 𝑢𝑛2(𝑡) ·𝑋𝑛2(𝑥)), (29)

𝑔(𝑥) =
∞∑︁
𝑛=1

(𝑔𝑛1 ·𝑋𝑛1(𝑥) + 𝑔𝑛2 ·𝑋𝑛2(𝑥)), (30)

where 𝑢𝑛1(𝑡), 𝑢𝑛2(𝑡) are unknown functions, 𝑔𝑛1 , 𝑔𝑛2 are unknown con-
stants, 𝑛 ∈ 𝑁 .
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Substituting (29) and (30) into equation (1), we obtain the following
equations for finding the functions 𝑢𝑛1(𝑡), 𝑢𝑛2(𝑡) and constants 𝑔𝑛1 , 𝑔𝑛2 :

𝑡−𝛽
𝐻𝐶𝐷

𝛼
0𝑡𝑢𝑛𝑖

(𝑡) + 𝜆𝑛𝑖
𝑢𝑛𝑖

(𝑡) = 𝑔𝑛𝑖
, 𝑖 = 1, 2. (31)

From representation (29), taking into account conditions (3) and the
completeness of system (20), we obtain that the unknown functions 𝑢𝑛1(𝑡),
𝑢𝑛2(𝑡) satisfy the conditions

𝑢𝑛𝑖
(0) = 𝜙𝑛𝑖

, 𝑖 = 1, 2, (32)

where 𝜙𝑛1 , 𝜙𝑛2 are expansion coefficients of the function 𝜙(𝑥) in terms of
the system of functions (20), which are found by the formulas

𝜙𝑛𝑖
=

1∫︁
0

𝜙(𝑥)𝑌𝑛𝑖
(𝑥)𝑑𝑥, (33)

and 𝑌𝑛𝑖
(𝑥), 𝑖 = 1, 2, are functions defined by formulas (28).

Applying the operator 𝐵−𝛽
𝛼 to both parts of equation (31), taking into

account formulas (15) and (16), we find that the solution to equation (31)
that satisfies the condition (32) has the form

𝑢𝑛𝑖
(𝑡) = 𝜙𝑛𝑖

· 𝐿𝛼

(︁
− 𝜆𝑛𝑖

𝑡𝛽

𝛽𝛼

)︁
+
𝑔𝑛𝑖

𝜆𝑛𝑖

[︁
1− 𝐿𝛼

(︁
− 𝜆𝑛𝑖

𝑡𝛽

𝛽𝛼

)︁]︁
, 𝑖 = 1, 2, (34)

where 𝐿𝛼 (𝑧) is the Le-Roy function, which has the form (14).
Now we find the unknown constants 𝑔𝑛1 ,𝑔𝑛2 . To do this, we expand

the function 𝜓(𝑥) into a series in terms of the system of functions (20):

𝜓(𝑥) =
∞∑︁
𝑛=1

(𝜓𝑛1 ·𝑋𝑛1(𝑥) + 𝜓𝑛2 ·𝑋𝑛2(𝑥)),

where 𝜓𝑛1 , 𝜓𝑛2 are expansion coefficients, i.e.,

𝜓𝑛𝑖
=

1∫︁
0

𝜓(𝑥)𝑌𝑛𝑖
(𝑥)𝑑𝑥, 𝑖 = 1, 2. (35)

Further, from representation (29), taking into account condition (4),
we obtain that the unknown functions 𝑢𝑛𝑖

(𝑡), 𝑖 = 1, 2, also satisfy the
conditions

𝑢𝑛𝑖
(𝑇 ) = 𝜓𝑛𝑖

, 𝑖 = 1, 2. (36)
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Then, taking into account the conditions (36) and using (34) to find
the constants 𝑔𝑛1 ,𝑔𝑛2 , we obtain the following equations:

𝜙𝑛𝑖
· 𝐿𝛼

(︁
− 𝜆𝑛𝑖

𝑇 𝛽

𝛽𝛼

)︁
+
𝑔𝑛𝑖

𝜆𝑛𝑖

[︁
1− 𝐿𝛼

(︁
− 𝜆𝑛𝑖

𝑇 𝛽

𝛽𝛼

)︁]︁
= 𝜓𝑛𝑖

, 𝑖 = 1, 2.

From here we find

𝑔𝑛𝑖
=
𝜆𝑛𝑖

(︁
𝜓𝑛𝑖

− 𝜙𝑛𝑖
𝐿𝛼

(︁
− 𝜆𝑛𝑖𝑇

𝛽

𝛽𝛼

)︁)︁
1− 𝐿𝛼

(︁
− 𝜆𝑛𝑖𝑇

𝛽

𝛽𝛼

)︁ , 𝑖 = 1, 2. (37)

Substituting all this into the expression for functions 𝑢𝑛1(𝑡), 𝑢𝑛2(𝑡), we
obtain

𝑢𝑛𝑖
(𝑡) =

𝐿𝛼

(︁
− 𝜆𝑛𝑖 𝑡

𝛽

𝛽𝛼

)︁
− 𝐿𝛼

(︁
− 𝜆𝑛𝑖𝑇

𝛽

𝛽𝛼

)︁
1− 𝐿𝛼

(︁
− 𝜆𝑛𝑖𝑇

𝛽

𝛽𝛼

)︁ 𝜙𝑛𝑖
+
1− 𝐿𝛼

(︁
− 𝜆𝑛𝑖 𝑡

𝛽

𝛽𝛼

)︁
1− 𝐿𝛼

(︁
− 𝜆𝑛𝑖𝑇

𝛽

𝛽𝛼

)︁𝜓𝑛𝑖
, 𝑖 = 1, 2.

(38)
Thus, a formal solution of the problem is found in the form of series

(29) and (30), where the coefficients 𝑔𝑛1 ,𝑔𝑛2 and functions 𝑢𝑛1(𝑡),𝑢𝑛2(𝑡) are
determined, respectively, by formulas (37) and (38).

Now we will consider the proof of theorems on the existence and
uniqueness of a solution to the 𝐵𝑆 problem.

5. The uniqueness of a solution to Problem 𝐵𝑆. In proving
the uniqueness and existence of a solution to problem 𝐵𝑆, we use the
following estimate for the Le-Roy function 𝐿𝛼 (𝑧) obtained in [21].

Lemma 8. Let 0 < 𝛼 < 𝛽 < 1. Then for any 𝑧 ⩾ 0 the estimate is
valid:

𝑒−𝑧 ⩽ 𝐿𝛽(−𝑧) < 𝐿𝛼(−𝑧) ⩽
1

1 + 𝑧
.

From here it is easy to obtain the following estimate:

Corollary 1. For any 𝑧 > 𝜀 > 0 it holds that

1

1− 𝐿𝛼(−𝑧)
⩽
𝑧 + 1

𝑧
⩽ 𝐶 <∞.

Theorem 1. If a solution to the 𝐵𝑆 problem exists, it is unique.

Proof. Let us assume the opposite. Let there be two solutions {𝑢1(𝑥, 𝑡), 𝑔1(𝑥)}
and {𝑢2(𝑥, 𝑡),𝑔2(𝑥)} to the 𝐵𝑆 problem.
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Introduce the notation �̃�(𝑥, 𝑡) = 𝑢1(𝑥, 𝑡)− 𝑢2(𝑥, 𝑡) and 𝑔(𝑥) = 𝑔1(𝑥)−
𝑔2(𝑥). Then the functions �̃�(𝑥, 𝑡) and 𝑔(𝑥) satisfy the equation

𝑡−𝛽
𝐻𝐶𝐷

𝛼
0𝑡�̃� = �̃�𝑥𝑥 + 𝑔(𝑥) (39)

and conditions

�̃�(𝑥, 0) = 0, �̃�(𝑥, 𝑇 ) = 0, 0 ⩽ 𝑥 ⩽ 1, (40)

�̃�(0, 𝑡) = 0, �̃�(1, 𝑡) = �̃�(𝑥0, 𝑡), 0 ⩽ 𝑡 ⩽ 𝑇. (41)

Consider the functions

�̃�𝑛𝑖
(𝑡) =

1∫︁
0

�̃�(𝑥, 𝑡)𝑌𝑛𝑖
(𝑥)𝑑𝑥, 𝑖 = 1, 2, (42)

where functions 𝑌𝑛𝑖
(𝑥), 𝑖 = 1, 2 are determined by formulas (28).

Applying operator 𝐵−𝛽
𝛼 to both parts of equality (42) and taking into

account equation (39), as well as conditions (40), (41), we conclude that
the function �̃�𝑛𝑖

(𝑡) and constant 𝑔𝑛𝑖
satisfy the following equation and

conditions:

𝑡−𝛽
𝐻𝐶𝐷

𝛼
0𝑡�̃�𝑛𝑖

(𝑡) + 𝜆𝑛𝑖
�̃�𝑛𝑖

(𝑡) = 𝑔𝑛𝑖
, �̃�𝑛𝑖

(0) = 0, �̃�𝑛𝑖
(𝑇 ) = 0, (43)

where
𝑔𝑛𝑖

= (𝑔(𝑥), 𝑌𝑛𝑖
(𝑥))0.

From (31) and (34), we obtain that the solution of this equation, which
satisfies the first boundary condition in (43)), has the form

�̃�𝑛𝑖
(𝑡) =

𝑔𝑛𝑖

𝜆𝑛𝑖

[︁
1− 𝐿𝛼

(︁
− 𝜆𝑛𝑖

𝑡𝛽

𝛽𝛼

)︁]︁
, 𝑖 = 1, 2.

Hence, satisfying the second boundary condition in (43), we obtain

𝑔𝑛𝑖

𝜆𝑛𝑖

[︁
1− 𝐿𝛼

(︁
− 𝜆𝑛𝑖

𝑇 𝛽

𝛽𝛼

)︁]︁
= 0, 𝑖 = 1, 2.

As 𝐿𝛼 (0) = 1, 𝜆𝑛𝑖
⩾ 𝜆1𝑖 > 0, we get 𝐿𝛼

(︁
− 𝜆𝑛𝑖𝑇

𝛽

𝛽𝛼

)︁
̸= 1. Then it follows

that �̃�𝑛𝑖
(𝑡) = 0, 𝑔𝑛𝑖

= 0. Consequently, problem (43) has only a trivial
solution.
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As a result, we obtain that for any fixed 𝑡 ∈ [0, 𝑇 ] functions �̃�(𝑥, 𝑡),
𝑔(𝑥) are orthogonal to system (28), which is complete in 𝐿2(0, 1). Then
�̃�(𝑥, 𝑡) = 0, 𝑔(𝑥) = 0 almost everywhere in Ω and [0, 1], respectively. Since
𝑢 ∈ 𝐶(Ω̄), 𝑓(𝑥) ∈ 𝐶[0, 1], from here we get that �̃�(𝑥, 𝑡) ≡ 0, 𝑔(𝑥) ≡ 0. The
uniqueness of the solution of problem is proved. □

6. The existence of a solution to Problem 𝐵𝑆. Let us prove the
existence of a solution to the problem.

Theorem 2. Let the functions 𝜙(𝑥), 𝜓(𝑥) satisfy the conditions

𝜙(𝑥) ∈ 𝐶4[0, 1], 𝜙(0) = 𝜙′′(0) = 0, 𝜙(1) = 𝜙(𝑥0), 𝜙
′′(1) = 𝜙′′(𝑥0),

𝜓(𝑥) ∈ 𝐶4[0, 1], 𝜓(0) = 𝜓′′(0) = 0, 𝜓(1) = 𝜓(𝑥0), 𝜓
′′(1) = 𝜓′′(𝑥0).

Then a solution to problem 𝐵𝑆 exists.

Proof. Since the system (20) forms the Riesz basis in the space 𝐿2(0, 1),
the functions 𝑢(𝑥, 𝑡) and 𝑔(𝑥) can be represented in the form (29) and (30),
where the coefficients 𝑔𝑛1 ,𝑔𝑛2 and functions 𝑢𝑛1(𝑡), 𝑢𝑛2(𝑡) are determined,
respectively, by formulas (37), (38).

It is easy to show by direct calculation that the functions 𝑢(𝑥, 𝑡) and
𝑔(𝑥), defined by series (29) and (30), satisfy equation (1) and conditions
(3)–(6). It remains to show that the functions 𝑢(𝑥, 𝑡) and 𝑔(𝑥) are from
class (2).

Let us show that 𝑢𝑥𝑥 ∈ 𝐶(Ω). From (29), differentiating twice with
respect to the variable 𝑥, we obtain

𝑢𝑥𝑥(𝑥,𝑡) =
∞∑︁
𝑛=1

(−𝜆𝑛1 · 𝑢𝑛1(𝑡)𝑋𝑛1(𝑥)− 𝜆𝑛2 · 𝑢𝑛2(𝑡)𝑋𝑛2(𝑥)). (44)

As |𝑋𝑛𝑖
(𝑥)| ⩽ 1, 𝑖 = 1, 2, it follows that

|𝑢𝑥𝑥(𝑥,𝑡)| ⩽
∞∑︁
𝑛=1

(𝜆𝑛1 |𝑢𝑛1(𝑡)|+ 𝜆𝑛2 |𝑢𝑛2(𝑡)|). (45)

Let us estimate the functions 𝑢𝑛1(𝑡) and 𝑢𝑛2(𝑡). Taking Lemma 1 and
Corollary 1 into account, from (38) we get

|𝑢𝑛𝑖
(𝑡)| ⩽ (|𝜙𝑛𝑖

|+ |𝜓𝑛𝑖
|) , 𝑖 = 1, 2. (46)

Here and below 𝐶 is positive (in general, different) constant.
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Further, taking into account (46) and the conditions of Theorem 2,
integrating by parts the expressions for the coefficients 𝜙𝑛𝑖

, 𝜓𝑛𝑖
, 𝑖 = 1, 2

in (33), (35), we obtain from (45)

|𝑢𝑥𝑥(𝑥,𝑡)| ⩽
∞∑︁
𝑛=1

(︂
1

𝜆𝑛1

(︀⃒⃒
𝜙(4)
𝑛1

⃒⃒
+
⃒⃒
𝜓(4)
𝑛1

⃒⃒)︀
+

1

𝜆𝑛2

(︀⃒⃒
𝜙(4)
𝑛2

⃒⃒
+
⃒⃒
𝜓(4)
𝑛2

⃒⃒)︀)︂
,

where

𝜙(4)
𝑛𝑖

=
1

𝜆2𝑛𝑖

1∫︁
0

𝜙𝐼𝑉 (𝑥)𝑌𝑛𝑖
(𝑥)𝑑𝑥,𝜓(4)

𝑛𝑖
=

1

𝜆2𝑛𝑖

1∫︁
0

𝜓𝐼𝑉 (𝑥)𝑌𝑛𝑖
(𝑥)𝑑𝑥, 𝑖 = 1, 2.

Thus, the series (44) is majorized by the series

∞∑︁
𝑛=1

1

𝑛2

(︀⃒⃒
𝜙(4)
𝑛1

⃒⃒
+
⃒⃒
𝜓(4)
𝑛1

⃒⃒
+
⃒⃒
𝜙(4)
𝑛2

⃒⃒
+
⃒⃒
𝜓(4)
𝑛2

⃒⃒)︀
,

whose convergence follows from the Cauchy-Schwarz inequality, as well as

from the convergence of the series
∞∑︀
𝑛=1

|𝜙(4)
𝑛𝑖 |2,

∞∑︀
𝑛=1

|𝜓(4)
𝑛𝑖 |2, 𝑖 = 1, 2.

Then, according to the Weierstrass theorem [25], the series (44) con-
verges absolutely and uniformly in the domain Ω̄, and its sum is a con-
tinuous function in this domain. In the same way, it is shown that
𝑡−𝛽

𝐻𝐶𝐷
𝛼
0𝑡𝑢(𝑥, 𝑡) ∈ 𝐶(Ω), and 𝑔(𝑥) ∈ 𝐶[0, 1] follows from the fact that

𝑡−𝛽
𝐻𝐶𝐷

𝛼
0𝑡𝑢(𝑥, 𝑡) ∈ 𝐶(Ω), and from equation (1). □
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