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1. Introduction. Consider a system of transcendental equations of
the form

$

’

&

’

%

𝑓1p𝑧q “ 0,

. . .

𝑓𝑛p𝑧q “ 0,

(1)

where 𝑓1p𝑧q, . . . , 𝑓𝑛p𝑧q are entire functions of complex variables
𝑧 “ p𝑧1, . . . ,𝑧𝑛q in C𝑛.

Systems of transcendental equations arise in various fields of knowl-
edge, for example, in chemical kinetics [4]. As a rule, the number of roots
in such systems is infinite. In what follows, we will assume that the set of
roots of the system (1) is discrete. Therefore, it is at most countable.

This article considers the following problem: suppose that the first
coordinates of the roots of the system are found. How to find the remaining
coordinates?

For systems of algebraic equations, the classical method of elimina-
tion reduces the system to a triangular form. The method is based on
Sylvester’s resultant theory. Having the first coordinates of all the roots,
we substitute them into the previous equations, and again we get polyno-
mials in a smaller number of variables. Solving them, we find the second
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coordinates of the roots, and so on. In fact, we are talking about finding
several systems of resultants, which is quite difficult.

This can be done in a different way. The article [1] provides a method
for finding other coordinates of the roots, based on the introduction of
auxiliary functions and the calculation of power sums of roots based on
the theory of multidimensional residues. For systems of transcendental
equations of the form (1), we apply similar reasoning, which uses power
sums to a negative degree and their number is infinite.

This method simplifies the whole procedure. For example, in the case
when the roots of the system are simple, to determine another coordinate,
it is not necessary to find the resultant from other variables. For algebraic
systems, this method is described in [1].

Let ℰ denote the set of roots with non-zero coordinates
𝑤p𝜈q “

`

𝑤1p𝜈q, . . . , 𝑤𝑛p𝜈q
˘

, 𝜈 “ 1, 2, . . . , numbered in increasing order of
modules: |𝑤p1q| 6 |𝑤p2q| 6 . . . 6 |𝑤p𝜈q| 6 . . . .

Consider power sums 𝑆𝛼 of roots of ℰ , where 𝛼 “ p𝛼1, . . . , 𝛼𝑛q is a
non-negative multi-index (all components are non-negative and integer)
and 𝛼1 ` . . .` 𝛼𝑛 ą 0, of the form

𝑆𝛼 “
8
ÿ

𝜈“1

1

𝑤𝛼1

1p𝜈q ¨ 𝑤
𝛼2

2p𝜈q ¨ ¨ ¨𝑤
𝛼𝑛

𝑛p𝜈q

.

Lemma 1. The series 𝑆𝛼 converges absolutely for any multi-indices 𝛼
if and only if the series

8
ÿ

𝜈“1

1

𝑤1p𝜈q

, . . . ,
8
ÿ

𝜈“1

1

𝑤𝑛p𝜈q

absolutely converges.

Proof. Indeed, the series

ˇ

ˇ

ˇ

8
ÿ

𝜈“1

1

𝑤𝛼1

1p𝜈q ¨ 𝑤
𝛼2

2p𝜈q ¨ . . . ¨ 𝑤
𝛼𝑛

𝑛p𝜈q

ˇ

ˇ

ˇ
6

8
ÿ

𝜈“1

1

|𝑤𝛼1

1p𝜈q ¨ 𝑤
𝛼2

2p𝜈q ¨ . . . ¨ 𝑤
𝛼𝑛

𝑛p𝜈q|
6

6
´

8
ÿ

𝜈“1

1

|𝑤1p𝜈q|

¯𝛼1

¨

´

8
ÿ

𝜈“1

1

|𝑤2p𝜈q|

¯𝛼2

¨ . . . ¨
´

8
ÿ

𝜈“1

1

|𝑤𝑛p𝜈q|

¯𝛼𝑛

converges as a product of convergent series.
Obviously, the opposite is also true. l
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The concept of power sums for transcendental systems of equations
was considered in [6], [8], [12], [13], [14]. The results of these articles
were based on the calculation of power sums through the so-called residue
integrals [17].

Hence, an entire function of zero genus is defined [16, chapter 7] as

𝑅 p𝑧1q “ 𝑧𝑠1 ¨
8
ź

𝜂“1

´

1´
𝑧1
𝑤1p𝜂q

¯

, (2)

where 𝑠 is the multiplicity of the zero of the system (1) at zero, 𝑠 > 0. In
formula (2), the infinite product converges absolutely and uniformly on
the complex plane C.

The function 𝑅p𝑧1q is called the resultant of the system (1) with respect
to the variable 𝑧1. The concept of a resultant for systems of transcenden-
tal equations is not generally accepted. For the first time, for the case
of two equations, a similar concept of the resultant was introduced by
N.G. Chebotarev [5] (pp. 18–27). In the recent years, this concept was
considered in the works [8], [11], [14], [15]. The results of these articles
were based on the calculation of power sums 𝑆𝛼 through the so-called
residue integrals [17]. See also monographs [3], [9].

2. Auxiliary results In what follows, we assume that our system (1)
satisfies the conditions of Lemma 1.

We consider the cases when the roots can be simple or multiple.
Let 𝑧1p𝜇q denote distinct nonzero roots of the resultant, 𝜇 “ 1, . . . , and

let each root 𝑧1p𝜇q have multiplicity 𝑟𝜇 > 1. The multiplicity of the root
for holomorphic functions is always finite. Then the resultant looks like

𝑅 p𝑧1q “ 𝑧𝑠1 ¨
8
ź

𝜇“1

´

1´
𝑧1
𝑧1p𝜇q

¯𝑟𝜇
“

8
ÿ

𝛼“𝑠

𝑏𝛼𝑧
𝛼
1 . (3)

We introduce the functions

𝑃
p𝑡q
𝑗 p𝑧1q “

“´𝑧𝑠´11 ¨

8
ÿ

𝜇“1

´ 1

𝑧𝑡𝑗p𝜇,1q
` ¨ ¨ ¨ `

1

𝑧𝑡𝑗p𝜇,𝑟𝜇q

¯

ˆ

´

1´
𝑧1
𝑧1p𝜇q

¯𝑟𝜇´1

¨
ź

𝜂‰𝜇

´

1´
𝑧1
𝑧1p𝜂q

¯𝑟𝜂
“

“

8
ÿ

𝛽“1

𝑎
p𝑡q
𝑗𝛽𝑧

𝛽
1 , 𝑡, 𝑠 are integer, 𝑡 > 0, 𝑠 > 1, (4)
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where 𝑧𝑗p𝜇,1q, . . . , 𝑧𝑗p𝜇,𝑟𝜇q are the 𝑗-th coordinates of roots with first coor-
dinates equal to 𝑧1p𝜇q.

Lemma 2. The functions (4) are entire functions in the variable 𝑧1.

Proof.
Write the functions 𝑃 p𝑡q𝑗 p𝑧1q as

𝑃
p𝑡q
𝑗 p𝑧1q “

“ ´𝑧𝑠´11 ¨

8
ź

𝜂“1

´

1´
𝑧1
𝑧1p𝜂q

¯

ˆ

8
ÿ

𝜇“1

ˆ

´ 1

𝑧𝑡𝑗p𝜇,1q
` . . .`

1

𝑧𝑡𝑗p𝜇,𝑟𝜇q

¯

¨
1

1´ 𝑧1
𝑧1p𝜇q

˙

.

The infinite product
8
ź

𝜂“1

´

1´
𝑧1
𝑧1p𝜂q

¯

is an entire function of zero genus.

Let us prove that the series
8
ÿ

𝜇“1

ˆ

´ 1

𝑧𝑡𝑗p𝜇,1q
` ¨ ¨ ¨ `

1

𝑧𝑡𝑗p𝜇,𝑟𝜇q

¯

¨
1

1´ 𝑧1
𝑧1p𝜇q

˙

converges absolutely and uniformly on the complex plane C.
We have

ˇ

ˇ

ˇ

1

𝑧𝑡𝑗p𝜇,1q
` ¨ ¨ ¨ `

1

𝑧𝑡𝑗p𝜇,𝑟𝜇q

ˇ

ˇ

ˇ
6

8
ÿ

𝜇“1

ˇ

ˇ

ˇ

1

𝑧𝑡𝑗p𝜇q

ˇ

ˇ

ˇ
,

and this series converges by Lemma 1.
Let us prove that the series

8
ÿ

𝜈“1

1

𝑧𝑡𝑗p𝜈q
¨

1

1´
𝑧1
𝑧1p𝜈q

converges absolutely and uniformly on the complex plane C.

By Lemma 1, the series
8
ÿ

𝜈“1

1
ˇ

ˇ𝑧1p𝜈q
ˇ

ˇ

converges. This means

lim
𝜈Ñ8

1
ˇ

ˇ𝑧1p𝜈q
ˇ

ˇ

“ 0,

and, therefore,
lim
𝜈Ñ8

´

1´
𝑧1
𝑧1p𝜈q

¯

“ 1.
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Since 1´
𝑧1
𝑧1p𝜈q

is close in absolute value to one, we can assume that

8
ÿ

𝜈“1

ˇ

ˇ

ˇ

1

𝑧𝑡𝑗p𝜈q
¨

1

1´ 𝑧1
𝑧1p𝜈q

ˇ

ˇ

ˇ
6 2 ¨

8
ÿ

𝜈“1

1
ˇ

ˇ𝑧𝑡𝑗p𝜈q
ˇ

ˇ

.

Whence it follows that the series
8
ÿ

𝜈“1

1

𝑧𝑡𝑗p𝜈q
¨

1

1´
𝑧1
𝑧1p𝜈q

converges absolutely

and uniformly on the complex plane C.
This proves that the functions 𝑃 p𝑡q𝑗 p𝑧1q are entire functions of the vari-

able 𝑧1. l

Consider

𝑑𝑟𝜈𝑅p𝑧1q

𝑑𝑧𝑟𝜈1

ˇ

ˇ

ˇ

ˇ

𝑧1“𝑧1p𝜈q

“ p´1q𝑟𝜈 ¨ 𝑟𝜈 ! ¨ 𝑧
𝑠´𝑟𝜈
1p𝜈q ¨

ź

𝜇‰𝜈

´

1´
𝑧1p𝜈q
𝑧1p𝜇q

¯𝑟𝜇
.

Next, calculate

𝑑𝑟𝜈´1𝑃
p𝑡q
𝑗 p𝑧1q

𝑑𝑧𝑟𝜈´11

ˇ

ˇ

ˇ

ˇ

𝑧1“𝑧1p𝜈q

“

“ p´1q𝑟𝜈 ¨
´ 1

𝑧𝑡𝑗p𝜈,1q
` ¨ ¨ ¨ `

1

𝑧𝑡𝑗p𝜈,𝑟𝜈q

¯

p𝑟𝜈 ´ 1q! ¨ 𝑧𝑠´𝑟𝜈1p𝜈q ¨
ź

𝜇‰𝜈

´

1´
𝑧1p𝜈q
𝑧1p𝜇q

¯𝑟𝜇
.

Thus, we have proved the following statement:

Lemma 3. The equality

𝑑𝑟𝜈´1𝑃
p𝑡q
𝑗 p𝑧1q

𝑑𝑧𝑟𝜈´11

N

𝑟𝜈𝑅p𝑧1q𝑑𝑧
𝑟𝜈
1

ˇ

ˇ

ˇ

ˇ

𝑧1“𝑧1p𝜈q

“
1

𝑟𝜈

´ 1

𝑧𝑡𝑗p𝜈,1q
` ¨ ¨ ¨ `

1

𝑧𝑡𝑗p𝜈,𝑟𝜈q

¯

(5)

is valid.

The relations (5) allow us to write out the inverse power sums of the
𝑗-th coordinates of the roots 𝑧𝑗p𝜈,1q, . . . , 𝑧𝑗p𝜈,𝑟𝜈q if 𝑅p𝑧1q and 𝑃

p𝑡q
𝑗 p𝑧1q are

known. Substituting 𝑡 “ 1, . . . ,𝑟𝜈 , we compute the power sums

1

𝑧𝑡𝑗p𝜈,1q
` ¨ ¨ ¨ `

1

𝑧𝑡𝑗p𝜈,𝑟𝜈q
, 𝑡 “ 1, . . . ,𝑟𝜈 .
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Using Newton’s recurrent formulas (see, for example, [2, 7]), we find the

polynomial 𝑃 with roots
1

𝑧𝑗p𝜈,1q
, . . . ,

1

𝑧𝑗p𝜈,𝑟𝜈q
. Therefore, we can find the

roots 𝑧𝑗p𝜈,1q, . . . , 𝑧𝑗p𝜈,𝑟𝜈q.

3. Main result. Let us show that the coefficients of functions 𝑃 p𝑡q𝑗 p𝑧1q
can be expressed in terms of coefficients 𝑅p𝑧1q and power sums. To do
this, consider the auxiliary system of functions:

𝜙
p𝑡q
𝑗 p𝜆q “

“´𝜆𝑠´1¨
8
ÿ

𝜇“1

´ 1

𝑧𝑡𝑗p𝜇,1q
` ¨ ¨ ¨ `

1

𝑧𝑡𝑗p𝜇,𝑟𝜇q

¯

¨
1

1´ 𝜆
𝑧1p𝜇q

¨

8
ź

𝜂“1

´

1´
𝜆

𝑧1p𝜂q

¯𝑟𝜂
, 𝑡 > 0, 𝑠 > 1.

After reduction:

𝜙
p𝑡q
𝑗 p𝜆q “

“ ´𝜆𝑠´1 ¨
8
ÿ

𝜇“1

´ 1

𝑧𝑡𝑗p𝜇,1q
` ¨ ¨ ¨ `

1

𝑧𝑡𝑗p𝜇,𝑟𝜇q

¯

¨

´

1´
𝜆

𝑧1p𝜇q

¯𝑟𝜇´1

¨
ź

𝜂‰𝜇

´

1´
𝜆

𝑧1p𝜂q

¯𝑟𝜂
“

“ ´𝜆𝑠´1 ¨
8
ÿ

𝑚“0

𝑎
p𝑡q
𝑗𝑚 ¨ 𝜆

𝑚, 𝑎
p𝑡q
𝑗0 “ 1.

Using the geometric series formula for sufficiently small |𝜆| and the
formula (3) for resultant, we have:

𝜙
p𝑡q
𝑗 p𝜆q “ �́�𝑠´1 ¨

8
ÿ

𝜇“1

´ 1

𝑧𝑡𝑗p𝜇,1q
` ¨ ¨ ¨ `

1

𝑧𝑡𝑗p𝜇,𝑟𝜇q

¯

¨

8
ÿ

𝑚“0

´ 𝜆

𝑧1p𝜇q

¯𝑚

¨

8
ź

𝜂“1

´

1´
𝜆

𝑧1p𝜂q

¯𝑟𝜂
“

“ ´𝜆𝑠´1 ¨
8
ÿ

𝑚“0

𝜆𝑚 ¨
´

8
ÿ

𝜇“1

1

𝑧𝑚1p𝜇q
¨

´ 1

𝑧𝑡𝑗p𝜇,1q
` ¨ ¨ ¨ `

1

𝑧𝑡𝑗p𝜇,𝑟𝜇q

¯¯

¨

8
ź

𝜂“1

´

1´
𝜆

𝑧1p𝜂q

¯𝑟𝜂
“

“ ´
1

𝜆
¨

´

8
ÿ

𝑚“0

𝑆𝑚𝑒1`𝑡𝑒𝑗 ¨ 𝜆
𝑚
¯

¨

´

8
ÿ

𝑘“𝑠

𝑏𝑘 ¨ 𝜆
𝑘
¯

“

“ ´
1

𝜆
¨

8
ÿ

𝑙“𝑠

𝜆𝑙 ¨
´

ÿ

𝑚`𝑘“𝑙

𝑆𝑚𝑒1`𝑡𝑒𝑗 ¨ 𝑏𝑘

¯

“ 𝜆𝑠´1 ¨
8
ÿ

𝑙“𝑠

𝜆𝑙´𝑠 ¨
´

ÿ

𝑚`𝑘“𝑙

𝑆𝑚𝑒1`𝑡𝑒𝑗 ¨ 𝑏𝑘

¯

.

Denote 𝑙 ´ 𝑠 “ 𝑝; then

𝜙
p𝑡q
𝑗 p𝜆q “ ´𝜆

𝑠´1
¨

8
ÿ

𝑝“0

𝜆𝑝 ¨
´

ÿ

𝑚`𝑘“𝑝`𝑠

𝑆𝑚𝑒1`𝑡𝑒𝑗 ¨ 𝑏𝑘

¯

,
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where 𝑆𝑚𝑒1`𝑡𝑒𝑗 “
8
ÿ

𝜈“1

1

𝑧𝑚1p𝜈q ¨ 𝑧
𝑡
𝑗p𝜈q

are power sums for the multi-index 𝑚𝑒1`

𝑡𝑒𝑗 “ p𝑚, 0, . . . , 0, 𝑡, 0, . . . , 0q, the first component of the multi-index is
equal to 𝑚, the 𝑗-th component is equal to 𝑡, and the other components
are zeros.

We get the expressions for 𝑎p𝑡q𝑗𝑝 :

𝑎
p𝑡q
𝑗𝑝 “

ÿ

𝑚`𝑘“𝑝`𝑠

𝑆𝑚𝑒1`𝑡𝑒𝑗 ¨ 𝑏𝑘, (6)

where 𝑝 “ 𝑙 ´ 𝑠, 𝑠 > 1, 𝑙 “ 𝑠, 𝑠` 1, . . . , 𝑏0 “ 1, 𝑡 > 0, 𝑚 > 0, 𝑘 > 0.
The power sums 𝑆𝑚𝑒1`𝑡𝑒𝑗 are found differently for different types of

systems of equations [8], [12], [13], [14]. Thus, we only need to know the
coefficients of the resultant 𝑏𝑘, and the coefficients 𝑎p𝑡q𝑗𝑝 are found using the
formulas (6).

Thus, the following theorem is proved:

Theorem 1. Assume that the first coordinates of the system roots (9)
are known. Then, by formula (5), one can obtain power sums of 𝑗-th
coordinates of the roots, having known the first coordinates. In this way,
the problem of finding 𝑗-th coordinates is reduced to finding the roots
of the polynomial in one variable, whose degree is equal to the number
of roots of the system (9) with the given first coordinates. Moreover,
the coefficients of the polynomials 𝑃 p𝑡q𝑗 are found by formula (6), and
the power sums 𝑆𝑚𝑒1`𝑡𝑒𝑗 are found in a way depending on the type of
system (9) (see [8], [12], [13], [14]).

4. Examples.

Example 1. Consider the system of equations
#

𝑧1 ` 𝑎2𝑧
2
2 ` 𝑏2𝑧1𝑧2 ` 𝑐2𝑧1𝑧

2
2 “ 0,

𝑧2 ` 𝑎1𝑧1𝑧2 ` 𝑏1𝑧
2
1 ` 𝑐1𝑧

2
1𝑧2 “ 0.

(7)

Let us find the resultant of this system with respect to the variable 𝑧1
using any method, for example, the Sylvester resultant [7]. Write down
the system (7) with respect to the variable 𝑧2:

#

𝑧2 p1` 𝑎1𝑧1 ` 𝑐1𝑧
2
1q ` 𝑏1𝑧

2
1 “ 0,

𝑧22 p𝑎2 ` 𝑐2𝑧1q ` 𝑧2𝑏2𝑧1 ` 𝑧1 “ 0.
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As a resultant, we take the determinant

𝑅p𝑧1q “

⃒⃒⃒⃒
⃒⃒1` 𝑎1𝑧1 ` 𝑐1𝑧

2
1 𝑏1𝑧

2
1 0

0 1` 𝑎1𝑧1 ` 𝑐1𝑧
2
1 𝑏1𝑧

2
1

𝑎2 ` 𝑐2𝑧1 𝑏2𝑧1 𝑧1

⃒⃒⃒⃒
⃒⃒ “

“ 𝑧1 ¨
“

𝑧41
`

𝑐21 ` 𝑏
2
1𝑐2 ´ 𝑏1𝑏2𝑐1

˘

` 𝑧31
`

2𝑎1𝑐1 ` 𝑎2𝑏
2
1 ´ 𝑎1𝑏1𝑏2

˘

`

`𝑧21
`

𝑎21 ` 2𝑐1 ´ 𝑏1𝑏2
˘

` 𝑧12𝑎1 ` 1
‰

.

So, the system (7) has 5 roots.
To determine the multiple roots of the resultant, we need to find its

discriminant (see, for example, [7]).
Consider the polynomial

𝑄p𝑧1q “ 𝑑0𝑧
4
1 ` 𝑑1𝑧

3
1 ` 𝑑2𝑧

2
1 ` 𝑑3𝑧1 ` 𝑑4 “

“ 𝑧41
`

𝑐21 ` 𝑏
2
1𝑐2 ´ 𝑏1𝑏2𝑐1

˘

` 𝑧31
`

2𝑎1𝑐1 ` 𝑎2𝑏
2
1 ´ 𝑎1𝑏1𝑏2

˘

`

` 𝑧21
`

𝑎21 ` 2𝑐1 ´ 𝑏1𝑏2
˘

` 𝑧12𝑎1 ` 1.

The discriminant of this polynomial 𝑄p𝑧1q is

𝐷p𝑄q “ 𝑑60 ¨

⃒⃒⃒⃒
⃒⃒⃒⃒ 4 𝑆1 𝑆2 𝑆3

𝑆1 𝑆2 𝑆3 𝑆4

𝑆2 𝑆3 𝑆4 𝑆5

𝑆3 𝑆4 𝑆5 𝑆6

⃒⃒⃒⃒
⃒⃒⃒⃒ ,

where 𝑆𝑗 are the power sums of the roots of the polynomial 𝑄p𝑧1q.
These power sums can be found using Newton’s recurrent formulas [7]:

𝑆𝑗𝑑0 ` 𝑆𝑗´1𝑑1 ` 𝑆𝑗´2𝑑2 ` ¨ ¨ ¨ ` 𝑆1𝑑𝑗´1 ` 𝑗𝑑𝑗 “ 0, if 1 6 𝑗 6 4,

and 𝑆𝑗𝑑0 ` 𝑆𝑗´1𝑑1 ` ¨ ¨ ¨ ` 𝑆𝑗´4𝑑4 “ 0, if 𝑗 ą 4.

Thus, if 𝐷p𝑄q “ 0, then the resultant has multiple roots. If 𝐷p𝑄q ‰ 0,
then the resultant has no multiple roots. It is not difficult to show that
discriminant 𝐷p𝑄q is not equal to 0 indentically.

Consider the case when 𝐷p𝑄q ‰ 0, i.e., when the resultant has no
multiple roots.

Write our system (7) in the form

𝑓1 “ 𝑧1 `𝑄1 “ 0, 𝑓2 “ 𝑧2 `𝑄2 “ 0,

where 𝑄1 “ 𝑎2𝑧
2
2 ` 𝑏2𝑧1𝑧2 ` 𝑐2𝑧1𝑧

2
2 , 𝑄2 “ 𝑎1𝑧1𝑧2 ` 𝑏1𝑧

2
1 ` 𝑐1𝑧

2
1𝑧2.
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Consider the residue integral

𝐽𝛽 “
1

p2𝜋𝑖q2

ż

𝛾p𝑟q

1

𝑧𝛽`𝐼
¨
𝑑𝑓

𝑓
“

1

p2𝜋𝑖q2

ż

𝛾p𝑟1,𝑟2q

1

𝑧𝛽1`11 ¨ 𝑧𝛽2`12

𝑑𝑓1
𝑓1
^
𝑑𝑓2
𝑓2
,

where 𝛾p𝑟q “ t𝑧 P C2 : |𝑧1| “ 𝑟1, |𝑧2| “ 𝑟2u, 𝑟1 ą 0, 𝑟2 ą 0, 𝛽 “ p𝛽1, 𝛽2q, is
multi-index, 𝛽1 > 0, 𝛽2 > 0, 𝛽𝑗 P Z, 𝐼 “ p1, 1q.

According to the result from [12], the residue integral 𝐽𝛽 is equal to

𝐽𝛽 “
ÿ

}𝛼}6}𝛽}`2

p´1q}𝛼}M

„

∆ ¨𝑄𝛼1
1 ¨𝑄𝛼2

2

𝑧𝛽`p𝛼1`1q𝛽1`p𝛼2`1q𝛽2



, (8)

where 𝛽1 “ p1, 0q, 𝛽2 “ p0, 1q, ∆ is the Jacobian of the system of func-
tions (7),

∆ “1` 𝑎1𝑧1 ` 𝑏2𝑧2 ` p𝑐1 ´ 2𝑏1𝑏2q𝑧
2
1 ` p𝑐2 ´ 2𝑎1𝑎2q𝑧

2
2 ´ 4𝑎2𝑏1𝑧1𝑧2´

´ p𝑏2𝑐1 ` 4𝑏1𝑐2q𝑧
2
1𝑧2 ´ p𝑎1𝑐2 ` 4𝑎2𝑐1q𝑧1𝑧

2
2 ´ 3𝑐1𝑐2𝑧

2
1𝑧

2
2 ,

M is a linear functional that associates the Laurent series (under the sign
of the functional M) with its constant term.

Calculating by formula (8), we get

𝐽p0,0q “ ´𝑎1𝑏2 ´ 3𝑎2𝑏1.

According to the result from [12], this integral is equal to the power
sum 𝑆p1,1q.

Similarly, we can calculate power sums 𝑆𝑚𝑒1`𝑡𝑒𝑗 with any number to
apply the equality (6), using, for example, computer system Maple. How-
ever, these power sums look very cumbersome and it makes no sense to
give them here.

Example 2. Consider the model of Zel’dovich-Semenov ideal mixing re-
actor (see. [4, Ch. 2, Eq. (2.2.1)]. It has the form

$

’

&

’

%

p1´ 𝑥q𝑒
𝑦

1`𝛽𝑦 ´
𝑥

𝐷𝑎
“
𝑑𝑥

𝑑𝜏
,

p1´ 𝑥q𝑒
𝑦

1`𝛽𝑦 ´
𝑦

𝑆𝑒
“ 𝛾

𝑑𝑦

𝑑𝜏
,

where 𝛽, 𝐷, 𝑆, 𝑒 are positive parameters.
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Denote 𝐷𝑎 “ 𝑎, 𝑆𝑒 “ 𝑏. The stationary states of the system satisfy
the system of equations

$

&

%

p1´ 𝑥q𝑒
𝑦

1`𝛽𝑦 ´
𝑥

𝑎
“ 0,

p1´ 𝑥q𝑒
𝑦

1`𝛽𝑦 ´
𝑦

𝑏
“ 0.

(9)

This system has been studied in [18]. We will look at it from the point
of view of our article.

The system (9) obviously has no roots with zero coordinates.
From the system (9) we obtain 𝑥 “

𝑎

𝑏
𝑦.

To solve the system (9), we make the replacement 𝑡 “
𝑦

1` 𝛽𝑦
. We get

$

’

&

’

%

´ 𝑡

𝑏p1´ 𝛽𝑡q
´

1

𝑎

¯

𝑒𝑡 `
𝑡

𝑎𝑏p1´ 𝛽𝑡q
“ 0,

𝑥 “ 1´
𝑡

𝑏p1´ 𝛽𝑡q
𝑒´𝑡.

Hence,
p𝑎𝑡´ 𝑏p1´ 𝛽𝑡qq 𝑒𝑡 ` 𝑡 “ 0. (10)

Let us denote
𝜓p𝑡q “ p𝑎𝑡´ 𝑏p1´ 𝛽𝑡qq 𝑒𝑡 ` 𝑡.

We can assume that the function 𝜓p𝑡q is a resultant of the variable 𝑡 of
the system (9). It is an entire function of first order growth of exponential
type.

Let us show that it has no multiple zeros.
Let us consider the derivative

𝜓
1

“ p𝑎𝑡´ 𝑏p1´ 𝛽𝑡qq 𝑒𝑡 ` 1` 𝑒𝑡p𝑎` 𝑏𝛽q “ 0,

The multiple roots of the function 𝜓p𝑡q satisfy the system
#

𝜓p𝑡q “ 0,

𝜓
1

p𝑡q “ 0.

From the first and second equations of the system we obtain

´𝑡` 1` 𝑒𝑡p𝑎` 𝑏𝛽q “ 0, i.e., 𝑒𝑡 “
𝑡´ 1

𝑎` 𝑏𝛽
.
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Then, from the first equation we get

𝑡2 `
𝑏

𝑎` 𝛽𝑏
p1´ 𝑡q “ 0.

Let us substitute the roots of this equation into the function 𝜓p𝑡q. Simple
calculations show that for almost all parameter values, the function 𝜓p𝑡q
at these roots is not identically zero. Therefore, 𝜓 and 𝜓

1 do not have
common zeros. Consequently, the function 𝜓p𝑡q has simple zeros for almost
all parameter values.

The number of real zeros of the function 𝜓p𝑡q was studied in [18]. It
is shown that it has one or three real zeros. Therefore, Theorem 1 and
Lemma 3 imply that under the same conditions the system (9) has one or
three roots with real coordinates.
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