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ON APPLICATIONS OF THE DIHEDRAL GROUP TO
INTERPOLATION PROBLEMS FOR ENTIRE FUNCTIONS

Abstract. We consider a particular case of the dihedral group of
rotations and study linear poly-element functional equations asso-
ciated with that group. We search for a solution in the class of
functions that are holomorphic in the plane with a cut along “half”
of the boundary of its fundamental region and vanish at infinity.
We suggest a method for the regularization of such equations based
on the theory of the Carleman boundary-value problem. The in-
verse involutive shift is induced by the generating transformations
of the group. The solution is searched in the form of a Cauchy-
type integral with an unknown density. The solution is a lower
function that is Borel-associated with a certain entire function of
exponential type (upper function).
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1. Introduction and problem statement. Let 𝐷 be a simply
connected domain. The involutive shift 𝛼(𝑡) : 𝜕+𝐷 → 𝜕−𝐷 is called
the Carleman shift. Applications of the boundary-value problem with
the Carleman shift to various branches of analysis are given in the review
article [7]. Of particular interest is the case when 𝐷 is the fundamental
domain of the proper discontinuous group of linear-fractional transforma-
tions.

Let 𝐷 be the interior of the fundamental polygon (see [8, ch.VII, § 3])
of a finite properly discontinuous group Γ. This paper aims at describing
some applications of the theory of such groups to interpolation problems
for entire functions of exponential type (henceforth referred to as e. f. e. t.).
For the sake of definiteness, we consider as a model problem the case of a
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circular sector 𝐷 enclosed by the line segment ℓ1 : 𝑡 ∈ ℓ1 ⇒ arg 𝑡 = −3−1𝜋,
the arc ℓ2 of the circle |𝑡| = 1: 𝑡 ∈ ℓ2 ⇒ |arg 𝑡| < 3−1𝜋, and the line seg-
ment ℓ3 : 𝑡 ∈ ℓ3 ⇒ arg 𝑡 = 𝜋/3. The vertices of the sector are 𝑡1 = 0,
𝑡2 = exp(−3−1𝜋𝑖), and 𝑡3 = exp(3−1𝜋𝑖), enumerated as they are tra-
versed along the positively oriented boundary 𝜕𝐷. This is the fundamen-
tal polygon of the special case of the dihedral group (see [8, ch.VII, § 6])
with generating transformations 𝜎1(𝑧) = 𝛽𝑧, where 𝛽 = exp (2𝜋𝑖/3), and
𝜎2(𝑧) = 𝑧−1. This group contains only six transformations. In addition to
𝜎1 and 𝜎2, the group contains the transformations 𝜎0(𝑧) = 𝑧, 𝜎3 = 𝜎−1

1 ,
𝜎4(𝑧) = 𝛽2𝑧−1, and 𝜎5(𝑧) = 𝛽𝑧−1. Let us explain the choice of the group.
The vertex 𝑡1 is common to three congruent fundamental polygons meeting
at this point. On the other hand, it was proven in [1] that a lacunary ana-
logue of the Poincaré theta series that does not contain the Cauchy kernel
as a term exists if and only if each vertex of the fundamental polygon is
common to either an even or an infinite number of congruent fundamen-
tal polygons that meet at a point. It was this case that was considered
in [4], where another dihedral group was studied, namely the one in which
each vertex of the fundamental polygon is common to an even number of
congruent fundamental polygons that meet at this point. Of course, we
have in this case a finite sum instead of a theta series. The result obtained
in [1] is, however, essential in what follows. The group considered in [6]
also satisfies the restriction given in [1].

Let us define a Carleman involutive shift

𝛼(𝑡) =
{︀
𝜎𝑗(𝑡), 𝑡 ∈ ℓ𝑗, 𝑗 = 1, 3

}︀
that changes the orientation of 𝜕𝐷. The derivative 𝛼′(𝑡) is discontinuous
at the vertices. According to the method that was suggested for the first
time in [5], we do not consider the whole boundary 𝜕𝐷 but its “half” Ω
meeting the following three conditions:

1) Ω is a piecewise-smooth curve (or a finite set of such curves Ω𝑗

satisfying the condition Ω𝑘 ∩ Ω𝑚 = ∅, 𝑘 ̸= 𝑚) that does not contain
congruent points.

2) Ω ∪ 𝛼(Ω) = 𝜕𝐷 (excluding possibly the vertices 𝑡𝑘 and the nodes
of Ω).

3) If 𝐵1 is the convex hull of the set Ω, then 𝐷 ∖𝐵1 ̸= ∅.
It is obvious that a certain degree of arbitrariness is possible in the

choice of Ω. In any case, the choice is restricted by the condition that the
fixed points 0 and 1 of the shift as well as one of the vertices 𝑡2 or 𝑡3, must
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belong to its closure. The goal of the paper is to study the functional
equation

(𝑉 𝑓) (𝑧) = 𝑓(𝑧) +
𝑁∑︁
𝑗=1

𝐺𝑗(𝑧)𝑓 [𝜎𝑗(𝑧)] = 𝑔(𝑧); 𝑧 ∈ 𝐷, (1)

𝑁 = 4, 5, under the following assumptions.
I. The coefficients 𝐺𝑗(𝑧) and the right-hand side term 𝑔(𝑧) are holo-

morphic in the closure 𝐷.
II. The solution 𝑓(𝑧) is holomorphic outside Ω and 𝑓(∞) = 0. Its

boundary values 𝑓±(𝑡) satisfy a Hölder condition on any compact in Ω.
Moreover, at most logarithmic singularities are allowed at the nodes of Ω.
We denote this class of solutions by 𝐵.

The paper consists of three sections. Firstly, we study Equation (1)
in the particular case when ∀𝑗 𝐺𝑗(𝑧) ≡ 1. Then, we study Equation (1)
in the general case. At last, we consider some interpolation problems for
e. f. e. t. induced by Equation (1). It is obvious that 𝑓(𝑧) ∈ 𝐵 is the
lower function Borel-associated with the e. f. e. t. 𝐹 (𝑧) (upper function)
(see [2, § 1, 1.1]).

2. The study of the functional equation.
Assume that Ω = Ω1 ∪ Ω2, where Ω1 ⊂ ℓ1 ∪ ℓ3 and Ω2 ⊂ ℓ2. We shall

search for a solution to Equation (1) in the form of a Cauchy-type integral

𝑓(𝑧) =
1

2𝜋𝑖

∫︁
Ω

(𝜏 − 𝑧)−1𝜙(𝜏)𝑑𝜏 (2)

with unknown density 𝜙(𝜏). According to (2), we can rewrite Equa-
tion (1) as

(𝐸𝜙) (𝑧) ≡ 1

2𝜋𝑖

∫︁
Ω

𝐴(𝑧, 𝜏)𝜙(𝜏)𝑑𝜏 = 𝑔(𝑧), 𝑧 ∈ 𝐷, (3)

where

𝐴(𝑧, 𝜏) = (𝜏 − 𝑧)−1 +
𝑁∑︁
𝑗=1

[𝜏 − 𝜎𝑗(𝑧)]
−1 . (4)

Assume that 𝑧 → 𝑡 ∈ Ω. Then, according to the Sokhotsky formu-
las, we have (𝐸+𝜙) (𝑡) = 2−1𝜙(𝑡) + (𝐸𝜙) (𝑡). The integral (𝐸𝜙) (𝑡) is
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understood in the sense of the Cauchy principal value and is obtained by
formally replacing 𝑧 ∈ 𝐷 with 𝑡 ∈ Ω in formula (3).

If 𝑧 → 𝛼(𝑡), then (𝐸+𝜙) (𝛼(𝑡)) = −2−1𝜙(𝑡) + (𝐸𝜙) (𝛼(𝑡)). Therefore,
(𝐸+𝜙) (𝑡)− (𝐸+𝜙) (𝛼(𝑡)) = (𝑇𝜙) (𝑡), where

(𝑇𝜙) (𝑡) ≡ 𝜙(𝑡) +
1

2𝜋𝑖

∫︁
Ω

𝐾(𝑡, 𝜏)𝜙(𝜏)𝑑𝜏 = 𝑔(𝑡)− 𝑔 [𝛼(𝑡)] , (5)

and
𝐾(𝑡, 𝜏) = 𝐴(𝑡, 𝜏)− 𝐴 [𝛼(𝑡), 𝜏 ] . (6)

We shall consider two cases.
1) 𝑁 = 5. Kernel (4) includes all the group transformations and is

automorphic in the first variable, i. e., 𝐾(𝑡, 𝜏)=0 and 𝜙(𝑡)=𝑔(𝑡)−𝑔[𝛼(𝑡)].
So, using the identity

𝜎′(𝜏) [𝜎(𝜏)− 𝑧]−1 =
[︀
𝜏 − 𝜎−1(𝑧)

]︀−1 −
[︀
𝜏 − 𝜎−1(∞)

]︀−1
,

valid for a linear fractional function, we obtain

(𝐸𝜙) (𝑧) = 𝑔(𝑧)− 3

𝜋𝑖

∫︁
𝛼(Ω2)

𝜏−1𝑔(𝑧)𝑑𝜏

for 𝑧 ∈ 𝐷. Here, condition 2) was used on the set Ω, the above identity
and the equality 1

2𝜋𝑖

∫︀
𝜕𝐷

𝑔(𝜏)𝐴(𝑧, 𝜏)𝑑𝜏 = 𝑔(𝑧), 𝑧 ∈ 𝐷.

Theorem 1. In the case we are considering, Equation (1) is solvable if
and only if the solvability condition∫︁

𝛼(Ω2)

𝜏−1𝑔(𝜏)𝑑𝜏 = 0 (7)

holds.

In other words, the solvability picture for a fixed right-hand side term
depends on the choice of the set Ω2.

2) 𝑁 = 4. This is possible while preserving the boundedness condition
of kernel (7) since 𝜎5

(︀
Ω
)︀
∩ Ω = ∅. Here we rely on T. Carleman’s idea

(see [3]) based on constructing a kernel using those group transforma-
tions that map the initial polygon to congruent polygons having either a
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common edge or a common vertex with the initial polygon. The transfor-
mation 𝜎5 is not one of those transformations. Thus,

𝐾(𝑡, 𝜏) = (𝐾(𝑡, 𝜏)) = (𝜏 − 𝛽/𝛼(𝑡))−1 −
(︀
𝜏 − 𝛽𝑡−1

)︀
. (8)

In what follows, we assume, for the sake of definiteness, that Ω1 = ℓ1,
and Ω2 is the “half” of ℓ2 connecting the points 𝑡2 and 1.

If 𝑁 < 4, then kernel (6) is no longer bounded. It will have point
singularities at the vertices. The point is that for 𝑗 < 4 𝜎𝑗(Ω) ∩ Ω ̸= ∅.
Meanwhile, 𝜎5(Ω) ∩ Ω = ∅.

Lemma 1. The homogeneous equation 𝑇𝜙 = 0 has only the trivial
solution.

Proof. We will rely on the contraction mapping principle in the Banach
space 𝐶(Ω). Let us show that the operator 𝑇 performs a contraction
mapping. Assume that

𝑀 = max |𝜙(𝑡)|, 𝑡 ∈ Ω, (9)

and that this equality is attained for 𝑡 ∈ Ω1 ⇛ 𝛼(𝑡) = 𝛽𝑡. Thus, kernel (8)
can be written as

𝐾(𝑡, 𝜏) =
(︀
𝜏 − 𝑡−1

)︀−1 −
(︀
𝜏 − 𝛽𝑡−1

)︀
= (1− 𝛽)

[︀
(𝑡𝜏 − 1)

(︀
𝜏 − 𝛽𝑡−1

)︀]︀−1
,

and |𝐾| ⩽
√
3. The length of the curve Ω is 𝑑 = 1 + 3−1𝜋. Therefore,√

3𝑑 < 2𝜋 ⇒ 𝜙 ≡ 0.
Assume that equality (9) is attained for 𝑡 ∈ Ω2 ⇒ 𝛼(𝑡) = 𝑡−1. This

means that kernel (8) can be written as

𝐾(𝑡, 𝜏) = (𝜏 − 𝛽𝑡)−1 −
(︀
𝜏 − 𝛽𝑡−1

)︀
= 𝛽

(︀
𝑡−1 − 𝑡

)︀ [︀
(𝜏 − 𝛽𝑡)

(︀
𝜏 − 𝛽𝑡−1

)︀]︀−1
,

i. e., |𝐾| ⩽
√
3 and

√
3𝑑 < 2𝜋 ⇒ 𝜙 ≡ 0. This finishes the proof of the

lemma. □

Corollary. The inhomogeneous Fredholm equation (5) is solvable.

Proof. It is obvious that (5) ⇒ (𝐸𝜙) (𝑧) = 𝑔(𝑧) + 𝐶, 𝑧 ∈ 𝐷. Let us fix
a point 𝑧0 ∈ 𝐷. The equivalence condition for the regularization we have
applied to Equation (1) is

(𝐸𝜙) (𝑧0) = 𝑔(𝑧0).
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For every function 𝑔(𝑧) ̸≡ const, we can find such a constant 𝐶𝑔 that
Equation (1) with the right-hand side term 𝑔(𝑧) + 𝐶𝑔 is solvable. □

Theorem 2. Assume that 𝑁 = 4. In this case, Equation (1) is solvable
if and only if the condition

(𝐸𝜙) (𝑧0) = 𝑔(𝑧0), 𝑧0 ∈ 𝐷, (10)

holds (this condition ensures the equivalence of the regularization). Here
we have 𝜙(𝑡) = 𝑇−1 [𝑔(𝑡)− 𝑔(𝛼(𝑡))].

3. Regularization of the equation. Let us proceed to the regu-
larization of Equation (1) in the general case. Assume that 𝑁 = 4 and
𝐺(𝑡) = {𝐺3(𝛽𝑡), 𝑡 ∈ ℓ1;𝐺2(𝑡

−1), 𝑡 ∈ ℓ2}. Assume also that

1 +𝐺(𝑡) ̸= 0, 𝑡 ∈ Ω. (11)

In this case,

𝐴(𝑧,𝜏) = (𝜏 − 𝑧)−1 +
4∑︁

𝑗=1

𝐺𝑗(𝑡) [𝜏 − 𝜎𝑗(𝑡)]
−1 .

Reasoning in the same manner as in Section 2, we infer that

(𝑇𝜙) (𝑡) ≡ 2−1 (1 +𝐺(𝑡))𝜙(𝑡)+
1

2𝜋𝑖

∫︁
Ω

𝐾(𝑡,𝜏)𝜙(𝜏)𝑑𝜏 = 𝐺(𝑡)𝑔(𝑡)−𝑔[𝛼(𝑡)].

(12)
Moreover,

𝐾(𝑡, 𝜏) = 𝐺(𝑡)𝐴(𝑡, 𝜏)− 𝐴 [𝛼(𝑡), 𝜏 ] . (13)

Let us find the conditions on the coefficients that ensure that kernel (12)
is bounded. For the sake of brevity, we write only the terms of 𝐾(𝑡, 𝜏)
that can approach infinity for a given 𝑡.

1) If 𝑡 ∈ Ω1, then we have

𝐾(𝑡, 𝜏) =

= [𝐺3(𝛽𝑡)𝐺1(𝑡)− 1] (𝜏 − 𝛽𝑡)−1 + [𝐺3(𝑡)𝐺3(𝛽𝑡)−𝐺1(𝛽𝑡)] (𝜏 − 𝛽2𝑡)−1+

+ [𝐺4(𝑡)𝐺3(𝛽𝑡)−𝐺1(𝛽𝑡)]
(︀
𝜏 − 𝛽2𝑡−1

)︀
+ . . .

Let us analyze the nature of the singularities of the kernel, assuming firstly
that 𝜏, 𝑡 → 0 + 0. Consider the triangle with vertices 0, 𝜏, 𝛽𝑡 or 𝛽2𝑡. It
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is obvious that |𝜏 − 𝛽𝑘𝑡| > |𝑡|, 𝑘 = 1, 2. Assume now that 𝜏, 𝑡 → 𝑡2 − 0.
In this case, the relation |𝜏 − 𝛽2𝑡−1| > |𝑡 − 𝑡2| holds, since points 𝜏 and
𝛽2𝑡−1 are on the ray arg 𝑡 = −3−1𝜋 on opposite sides with respect to the
point 𝑡2. The same inequality is valid when 𝑡 → 𝑡2 − 0 and 𝜏 → 𝑡2 + 0,
which follows from the obvious inequality | exp(𝑖𝛾)−ℎ| > ℎ−1 as 𝛾 → 0+0
and ℎ→ 1 + 0.

2) If 𝑡 ∈ Ω2, then

𝐾(𝑡, 𝜏) =
[︀
𝐺2(𝑡)𝐺2(𝑡

−1)− 1
]︀ (︀
𝜏 − 𝑡−1

)︀−1
+

+
[︀
𝐺4(𝑡)𝐺2(𝑡

−1)−𝐺3(𝑡
−1)

]︀ (︀
𝜏 − 𝛽2𝑡−1

)︀−1
+ . . . .

If 𝜏, 𝑡→ 1− 0, then |𝜏 − 𝑡−1| > |𝑡− 1|, since 𝜏 = exp(𝑖𝛾), 𝑡 = exp(𝑖𝜇),
and 𝛾, 𝜇 → 0 − 0. Unfortunately, the inequality |𝜏 − 𝛽2𝑡−1| > |𝑡 − 𝑡2| is
not valid when 𝜏 → 𝑡2− 0 and 𝑡→ 𝑡2+0. However, the other inequalities
we have obtained make it possible to formulate the following result.

Theorem 3. Assume that (11) holds and, moreover, 𝐺3(0)𝐺1(0) = 1,
𝐺2

3(0) = 𝐺1(0), 𝐺4(𝑡2)𝐺3(𝑡3) = 𝐺1(𝑡3), 𝐺2
2(1) = 1, and 𝐺4(𝑡)𝐺2(𝑡

−1) =
= 𝐺3(𝑡

−1), 𝑡 ∈ Ω2. Then kernel (13) is bounded, which means that (12)
is a Fredholm equation.

The following is an example of a set of coefficients that satisfy all the
conditions of Theorem 3: 𝐺1(𝑧) = 𝐺2(𝑧) = 𝐺3(𝑧) = 𝑧2− 𝑧+1, 𝐺4(𝑧) = 1.

Remark 1. If we replace the condition that all the coefficients in the
problem and the right-hand side term are holomorphic in the closure of
𝐷 (this is the class of functions 𝐴[𝐷]) with a weaker condition, namely
that these functions are holomorphic in 𝐷 and satisfy a Hölder condition
on the boundary 𝜕𝐷 (the class 𝐴(𝐷)), then kernel (13) has weak pole
singularities at the nodes of Ω.

4. Applications to interpolation problems. Let us proceed now
to the main task of this paper: the application of functional equation (1)
to interpolation problems for e. f. e. t. We restrict ourselves to the simplest
case of this equation, namely when 𝑁 = 5 and ∀𝑗 𝐺𝑗(𝑧) ≡ 1. We assume,
for the sake of definiteness, that Ω1 = ℓ1 and Ω2 is a “half” of the arc ℓ2
(𝑡 ∈ Ω2 ⇛ Im 𝑡 < 0). The conjugate indicator diagram of the e. f. e. t.
𝐹 (𝑧), which is Borel-associated with the Cauchy-type integral (2), is a
“half” of 𝐷, namely the circular sector 𝐵1 with vertices 0, 𝑡2, 1.
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Assume that 𝑧0 ∈ 𝐷 and Im 𝑧0 > 0. Consider the power series

𝑔(𝑧) = 𝑐0 +
∞∑︁
𝑘=1

𝑐𝑘 (𝑧 − 𝑧0)
𝑘

𝑘!
, (14)

whose radius of convergence 𝑅 > max (|𝑧0|, |𝑧0 − 𝑡2|). Fix the constant 𝑐0
in (14) in such a manner that the solvability condition (7) holds.

Assume that 𝑧 ∈ 𝐷 and 𝑧 ̸∈ 𝐵1. Since all six points 𝜎𝑗(𝑧), 𝑗 = 0, 5,
are outside 𝐵1, we can rewrite Equation (1) as

5∑︁
𝑗=0

∫︁
arg 𝑡=𝜃𝑗

𝐹 (𝑡) exp (−𝜎𝑗(𝑧)𝑡) 𝑑𝑡 = 𝑔(𝑧), 𝑧 ∈ 𝐷 ∖𝐵1, (15)

where 𝜃0 = 3𝜋/2, 𝜃1 = 𝜃3 = 𝜋, 𝜃2 = 0, 𝜃4 = 5𝜋/6, and 𝜃5 = 7𝜋/6. By
equating the Taylor coefficients of the first and second members in (15) at
point 𝑧0, we obtain

5∑︁
𝑗=0

∫︁
arg 𝑡=𝜃𝑗

𝐹 (𝑡)
𝜕𝑘

𝜕𝑧𝑘
[exp (−𝜎𝑗(𝑧)𝑡)]

⃒⃒⃒⃒
𝑧=𝑧0

𝑑𝑡 = 𝑐𝑘, 𝑘 = 1,∞. (16)

Theorem 4. Interpolation problem (16) is solvable in the class of
e. f. e. t. 𝐹 (𝑧) Borel-associated with the lower function 𝑓(𝑡) ∈ 𝐵.

Since the solution of Equation (1) is found explicitly in this case, we
have

𝐹 (𝑧) =

∫︁
Ω

[𝑔(𝛼(𝜏))− 𝑔(𝜏)] exp(𝑧𝜏)𝑑𝜏.

As we have already noted, the choice of Ω allows for a certain degree of
arbitrariness. This makes it possible to find entire functions with distinct
conjugate indicator diagrams and, therefore, with distinct indicators.

Let us consider an example. Assume that Ω =
⋃︀
𝑑𝑘, 𝑘 = 1, 4, where

𝑑1 is the line segment with endpoints 0 and 2−1𝑡2, 𝑑2 is the part of the
arc ℓ2 with endpoints 𝑡4 = exp(−𝜋𝑖/12) and 1, 𝑑3 is the part of the arc ℓ2
with endpoints 𝑡5 = exp(𝜋𝑖/12) and 𝑡3, and, finally, 𝑑4 is the line segment
with endpoints 𝑡3 and 2−1𝑡3. In this case, 𝐵1 is a curvilinear hexagon with
sides 𝑑1, 𝑑2, 𝑑3, ℓ3, 𝑑5, and 𝑑6, where 𝑑5 is the line segment with endpoints
2−1𝑡2 and 𝑡4, and 𝑑6 is the line segment with endpoints 1 and 𝑡5. The set
𝐷∖𝐵1 splits into two connected components. One of them is a curvilinear
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triangle with vertices 2−1𝑡2, 𝑡2, and 𝑡4; the other one is the circular segment
cut off from 𝐷 by the chord 𝑑5.
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