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ON STRONG SUMMABILITY OF THE FOURIER SERIES
VIA DEFERRED RIESZ MEAN

Abstract. The strong summability technique has attracted a re-
markably large number of researchers for better convergence analy-
sis of infinite series as well as Fourier series in the study of summa-
bility theory. The of strong summability method was introduced
by Fekete (Math. Es Termesz Ertesito, 34 (1916), 759-786). In this
paper, we introduce the notions of strong deferred Cesaro, deferred
Norlund, and deferred Riesz summability methods. We then con-
sider our proposed strong deferred Riesz summability mean to es-
tablish and prove a new theorem for the summability of the Fourier
series of an arbitrary periodic function. Moreover, for the effective-
ness of our study, we present some concluding remarks demonstrat-
ing that some earlier published results are recovered from our main
non-trivial Theorem.
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1. Introduction. Let (a,) and (b,) be sequences of non-negative
integers with

a, <b, (neN) and lim b, = o0,
n—0o0

and let > u, be an infinite series with the sequence of partial sums (s,,).
We define the deferred Cesaro mean of order « of (s,,) as

a—1
bn r=an-+1

1 >
DC? = D s BT
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where

and it is denoted by (DC, «).
The series ) u,, is said to be (DC, a)- summable to ¢ if

lim DC® = ¢.

n—o0

Moreover, it is said to be strongly (DC,«)- summable with index ¢ (or
(DC, a, q)- summable (a > 0,q > 0)) to £ if

bn
>, DO =t = o(b,) (n— ).

r=an+1
Suppose that (p,) is a sequence of non-negative numbers with

bn

Po= > p (Poy=p1=0) (po#0) (1)

r=an+1

We now consider the deferred Norlund (DN, p,) mean of the sequence
(sn) generated by the sequence of coefficients (p,,) as

b
1 n
tn = F Z Pb,—rSr- (2>

" or=ap+1

The given series > u,, is said to be strongly (DN, p,)- summable with
index ¢ (or [DN,py,q] (¢ > 0)-summable) to ¢ if

b
1 - /
|P ‘ Z |p7“| : ‘tr - g’q = 0(1)7 (3)
"l or=a,+1
where
1 & 1 &
= > sV, = o D5 WPy (VPbor = Doyer = Poyr-1)-
" or=an+1 " r=an+1
Note that if we take
bn

Pg = Z E&ilrpr

r=an+1
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instead of p,,, then the (DN, p,)-summability with index ¢ can further be
extended to [DN,p%,q] (a = 1,q = 1)-summability.
Also, note that if we take

Po,—r = Ea_l

in (2), then (¢,) mean reduces to the Cesaro mean of order a of the
sequence (S,).

Next, we define the deferred weighted (DN, p,) mean of the sequence
(sn) generated by the sequence of coefficients (p,,) as

1 &
Tn = 5 rPr- 4
Pn 7"=a2+1 o ( )

The given series ] u, is said to be strongly (DN, p,)-summable with
index ¢ (or [DN, p,,q], (¢ > 0)-summable) to ¢ if

1 ,
|P | z ‘pr‘ ’ ’Tr - E’q = 0(1>7 (5>
P or=an+1

where

1 & 1 &

T.=% Do Vo =— > wp, (Vpr=pr—po).

" or=an+1 Dn r=an+1

Again if, we take
bn
vi= Y, Ex'p
r=an+1

in place of p,, then the (DN, p,)-summability with index ¢ can also be
extended to [DN,p%, q] (o« = 1,q = 1)-summability. Subsequently, if we
take

a—1
D, = By,

in (2), then (7,) mean reduces to the Cesaro mean of order a of the
sequence (S,).
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2. Preliminaries and Known Results. Let s,(g) be the partial sum
of the Fourier series of an arbitrary periodic function g of period 2L, such

that
]{/’ n
Sn(g) = ag + Z (ak cos %x + by, sin —x) Z
k=1 k=0
where
L
_ 1J ()t
ag = 2], g )
L
1 [ k
a =7 Jg(t) cos —dt (ke N)
L
and
( k
by = % fg(t) sin %tdt (k € N).
L

Again, under the Dirichlet kernel, the partial sum takes the form

1

salg) = 1 [ 9+ 2)Du AN

where
sin |:(n+1L/2))\7r]

sin ™ -
2L
is the Dirichlet kernel.

We use the following notations throughout the paper:

D,(\) = A=t—q)

6= 0(w) = 5 Lo +2) + 9 —2) = 25]: & = o/l = 1 /B

. by sin [(m+1L/2)as7r]

bo) = [l M) = g D) p—t o

Sin (2L
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bn, bn
Y, pecos(ra); Blx)= Y pysin(ra);

r=an+1 r=an+1

m+1/2)x7r

- f s1n 7 ] ) "

sin 2L)

, 1) . (m+1/2)zw
n- Y5 lfgb@z)sm[ el AP

:OPT Ll/r sm(2L)
L (m+1/2)zm
po (1 F =]y
e mZ—O LJQ&I sin (57) s

5
lo(t) =t+1; l1(t) = log(t+ 1);
lo(t) = loglog(t + 1),... and so on, for t > 0;

and 7 = [1/t], the largest integer less than or equal to 1/t.

Based on a finding of Hardy and Littlewood [8] about the summa-
bility of Fourier series, Fekete [7] investigated and introduced the notion
of strong summability method. Subsequently, a few researchers have im-
posed the idea of strong summability techniques in their research works.
Additionally, matrix summability (also known as matrix transformation) is
crucial for understanding summability theory because it generalizes many
summability techniques, including Cesaro summability, Norlund summa-
bility, Riesz summability, and so on. Moreover, the notion of statistical
convergence via various summability means has recently attracted the
wide-spread attention of many researchers due mainly to the fact that it
is more powerful than the classical versions of the convergence. In this con-
text, attention of the interested researchers are drawn towards the recent
published works [1]- [6], [12]- [16], [20]- [24], |26], and [27].

Besides, in the year 1996 Mittal and Kumar [19] established certain
results based on the strong Norlund summability means and, later on, Mit-
tal (see details below, [18]) demonstrated a result on the strong Norlund
summability of the Fourier series. Recently, Jena et al. (see details be-
low, [10]) established a result on the strong Riesz summability of the
Fourier series of a 27 periodic function.
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Theorem 1. [18] If

O(z) = o ° (x —0), (6)

jn:r:ll lm(1/7)

e}

then the series Z u(x) is [N, pg), 2]-summable to the sum ¢, for x = t,
k=0

provided that

pnzll_[lm(n)] , m=0,1,2,..., (7)

m=0
holds.
Theorem 2. [10] If

t

D(t) =0< — ) (t—0), (8)
[Tz ln(1/2)

0
then the series Z u,(t) is strongly [N, Y, 2]-summable to the sum s (the

n=0

same sum), for t x, provided that

pnzlﬁlm(n)] . k=0,1,2,..., (9)

holds.

From the literatures cited above, it is clear that a few works are carried
out based on the strong summability of the Fourier series of 27w periodic
functions. However, no such result has been developed for the strong
summability of the Fourier series of arbitrary periodic functions. Moti-
vated essentially by the above mentioned investigations and developments,
we have first introduced the notion of strong deferred Cesaro, deferred
Norlund, and deferred Riesz summability methods. We then considered
our proposed strong Riesz summability mean to establish and prove a
new theorem for summability of the Fourier series of an arbitrary peri-
odic function. Moreover, in the last section we present some concluding
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remarks in which some earlier published results are recovered from our
main non-trivial Theorem.

3. Axillary Lemmas. We need to prove the following lemmas for the
proof of our main Theorem 3.

Lemma 1. Let (a,) and (b,) be sequences of non-negative integers and
if
O(z) =o(x), x—0, (10)
then |
Zy =0(1) and Zy=o(l) as —— 0.
r

Proof. By using Riemann-Lebesgue lemma and the regularity condi-
1
tion [10], Zs = o(1) as — — 0.
r
Since (a,) and (b,) are sequences of non-negative integers and

_ 1
DN,.(z) = O(r) is uniform in [0, —], so, by (10), we have
r

1/r

7, = 0| [ 160)| DN, w)ldz] = Otr)@(1/r) -

=O0(r)o(1/r) =o(1) as — —0.

The proof is completed. []

Lemma 2. Let {p,} be a non-negative and non-increasing sequence,
and let (a,) and (b,) be sequences of non-negative integers. If condition
(10) of Lemma 1 holds, then

0 0
I, = L;ﬂ Jgf)(w)a(m)dw + L;r f ¢(x)B(x) cot(mx/2L)dx + o(1). (11)
1/r 1/r

Proof. Since p, = p,11, & = O(1), we have

é - - . (m+1/2)xm

: f¢<>[2+ ] e,

- — [ o6 Py
L . h sin (57)

m=0 m=T1
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1

e [ 2| 5 e (2

1/ m=1+1

é
- 2 [ sy o () o 5o
19

= .,2:271 + 1.272. (12)

Thus, for proving the validity of (11), it suffices to show I 5 = o(1) as
r — 0.
For

%, pusin ()~ o(2)

m=1+1

and p,, = pm41, we have

5
1 x) (m+1/2)zn
— dy —
Zs,2 LPrfsm ) [ Z pmsm< 7 )] x

1/r m=7+1

5
1 [ ¢(x)
=0 <LPT f = pde>.

1/r

Now, using (7) and (10) and applying integration by parts, we have

LiDT ( lq)(x)gl/x)];_f@(x) (%xﬁﬁl_lllm(l/x)dx)] -

1/r

) O[L; <{ (") }/ " J = Hjim) <1/:c>>]_
- O[L;r ( [ = (Hm zlm<1/w>)dx>]'

1/r

22’2 - O

Furthermore, k being fixed, we can write

P, =l (r) =1(r).
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Clearly, we have

.’Z:Q’Q = O(&«) + O(].)"‘
6

é
vo(ot) (| s | e e )

1/r

1)
:0(1”0( l1(r>)f(xn’f l(i/x)) 1(1/95)0l9€+

1/,(, m=1"m

‘o 1 1 ’ B
[(r) l_[fn=1lm(1/x) 1r -

= o(1) + o(\/1(r)//1(r)) + o(1/1(r)) = o(1) as r— 0. (13)

This completes the proof of Lemma 2. []

4. Main Theorem. In this section, we wish to consider our strong
deferred Riesz summability mean to prove a new theorem for summability
of the Fourier series of an arbitrary periodic function, as follows:

Theorem 3. Let (a,) and (b,) be a sequences of non-negative integers;
if
T

O(x) = 0( — ) (x — 0), (14)
[Ty bn(1/2)

m=1

0 _
then the series > un () is strongly [DN, p, 2]-summable to ¢ for = = t,
=0

n

provided that
" 1
Pn = [H lm(n)] (ke {0} UN) (15)
m=0
holds.

5. Proof of the Main Theorem. Following Zygmund (see details, 28],
p. 50), we have:
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. f Pl S Y
- p p —
m=0 P,« sin ( .0)
1/r ) L sin [( +1L/2)p7r]
f‘i'f"i_f ¢(p) sm( ) dp:
m=0 0 1/r 1) 2L

= Il + IQ + Ig (say). (16)

In order to establish the theorem, it is enough to prove

0|3

2 T, (z) — (> = o(n) (n — o). (17)
Using the results of Lemma 1 and Lemma 2, equation (16) leads to

T, () — 4] =

(0)B(p)2cot (57 ) dp +0(1) =

LP, 2L

1/r 1/r

||/\

2cot(2L>dp+0()( <n). (18)

LP

1/n 1/n

Moreover, a(p) = O(P,) = B(p); so, using monotonicity of [I(1/p)]™!, we

have:
- 0(5% | \¢<p>|P<1/p>)dp -

1/n

:o(fm) f 6()[1(1/p)dp =

1/n

o5 | oraterde

1/n
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+O<%) [fo( Hk“p (1/p))p1_[m ‘jp (1/p)] B

m=1

6
:0(%) +O<l(r>{nk 1 )}3/2) Jdpzo(l) aS%HO.

m=1'm\T 1/n

Similarly,

LD, f ¢(p)B(p)2 cot <%> dp| = o(1) as % 50

glz{ (f¢ dp+f¢<p>ﬁ<p>2cot(%)dp>}x
r=0 1/n

1/n

5 1/2
(s oo (g a)}] " -

1/n 1/n

— [j1 + Jo + Js + Ju]* + 0o(n)2. (19)

Thus, to complete the proof, we need to verify that ji, j2, j3, and j, indi-
vidually tend to 0 as n — 0.
Let

56
J1= % f f d(p)al(p)p(v)a(v) {Z %} dpdv.

1/n1/n r=0

As we have

1 ) 5 .
|¢(@)|1(1/z)dz = [@(p)I(1/p)]1), + | Plp)—=5 dp =

1/n 1
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:0< pl(1/p) ) +f< 1 )( i )
[T bn(1/p) ) 1m0 N T Ty B (1/p) [T i Ln(1/p)
0

:O( pl(1/p) )+< 1 )Jdp:
T n(1/0) ) 10 T (o) T (1)),

So, for a(p) = O(P;) and using (6), we get:

)

f |¢(v)|a(v)‘2 cot <%> ‘dv = j‘ ’¢(U>ia(v)dv —
I/n 1/n
2], - o ()

)

_ l@(v)%}jm +1/fn CD(U)% (vH’:n_llzmu/v)) do =

5
:0( 1(1/v) > .
[T (1)) 4

m=1

d

0 1 dv = o(1) ,
+ (( Hk+1 (1/v)>< ]_[ml (1/v)>)1/£ (n >

this implies

=15 | [ eoatemswecr(37) {2 Pif}dpdv <

1/n1/n
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< %Z%( [ eatan [ lotlatw e (%)\m) -

1/n 1/n

) )
—o(1) f 6(p) a(p)dp f 6(0)la(w) [cot (52 )] dv = o1) (+ —0).

n
1/n 1/n

In the similar way, we can obtain:
. , 1
js=o0(1) and j,=o0(1)as — —0.
n

Hence, the proof of the theorem is completed.

6. Concluding Remarks and Discussion. In this final section of our
investigation, we offer a number of additional remarks and observations
regarding our findings that we have proved here.

Remark 1. Let (a,) and (b,) be sequences of non-negative integers and

0
satisfy the condition (6) of Theorem 1; then the series Y, u,(x) is strongly

n=0

[DN,pT(}), 2|-summable to ¢, for x = t, provided that

Pn = []‘[ zm(m] (ke {0} UN) (20)

holds.

Remark 2. If (a,) = 0 and (b,) = n in Theorem 3, then, under the
o0

conditions (14) and (15), Z un(t) is strongly [N,p,(ll), 2]-summable to (.

n=0

Remark 3. If the condition (14) of Theorem 3 and the condition (1.8)
©¢]
of [17] are satisfied, then the series Y u,(z) is [DC, 1, 2]-summable to the

n=0

sum { at x = t.
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