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LITTLEWOOD–PALEY 𝑔˚𝜆-FUNCTION
CHARACTERIZATIONS OF MUSIELAK–ORLICZ HARDY

SPACES ON SPACES OF HOMOGENEOUS TYPE

Abstract. Let p𝒳 , 𝑑, 𝜇q be a space of homogeneous type, in the
sense of Coifman and Weiss, and 𝜙 : 𝒳 ˆ r0,8q Ñ r0,8q satisfy
that, for almost every 𝑥 P 𝒳 , 𝜙p𝑥, ¨q is an Orlicz function and that
𝜙p¨, 𝑡q is a Muckenhoupt weight uniformly in 𝑡 P r0,8q. In this
article, by using the aperture estimate of Littlewood–Paley auxil-
iary functions on the Musielak–Orlicz space 𝐿𝜙p𝒳 q, we obtain the
Littlewood–Paley 𝑔˚𝜆-function characterization of Musielak–Orlicz
Hardy space 𝐻𝜙p𝒳 q. Particularly, the range of 𝜆 coincides with
the best-known one.
Key words: space of homogeneous type, Musielak–Orlicz Hardy
space, Littlewood–Paley auxiliary function, 𝑔˚𝜆-function
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1. Introduction. It is well known that the real-variable theory of
Hardy-type spaces on R𝑛, including various equivalent characterizations
and the boundedness of singular integral operators, plays a fundamental
role in harmonic analysis and partial differential equations (see, for in-
stance, [26]). Recall that the classical Hardy space 𝐻𝑝pR𝑛q with 𝑝 P p0, 1s
was originally introduced by Stein and Weiss [27]; this initiated the study
of the real-variable theory of 𝐻𝑝pR𝑛q. Particularly, Calderón and Torchin-
sky [4] established Littlewood–Paley function characterizations of 𝐻𝑝pR𝑛q.
Up to now, many new variants of classical Hardy spaces have sprung up
and their real-variable theories have been well developed in order to meet
the increasing demand from harmonic analysis, partial differential equa-
tions, and geometric analysis (see, for instance, [14], [25]).

The bilinear decompositions of the product of Hardy spaces and their
dual spaces play key roles in improving the estimates of many nonlinear
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quantities, such as div-curl products (see, for instance, [31]), weak Jaco-
bians (see, for instance, [18]), and commutators (see, for instance, [20]).
Bonami et al. [3] showed that, for any given 𝑓 P 𝐻1pR𝑛q, there exist two
bounded linear operators 𝑆𝑓 : BMOpR𝑛q Ñ 𝐿1pR𝑛q and 𝑇𝑓 : BMOpR𝑛q Ñ

𝐻Φ
𝑤 pR𝑛q such that, for any 𝑔 P BMOpR𝑛q, 𝑓ˆ𝑔 “ 𝑆𝑓𝑔`𝑇𝑓𝑔, where𝐻Φ

𝑤 pR𝑛q

denotes the weighted Orlicz–Hardy space associated to the weight function
𝑤p𝑥q :“ 1{ logp𝑒` |𝑥|q for any 𝑥 P R𝑛 and to the Orlicz function

Φp𝑡q :“
𝑡

logp𝑒` 𝑡q
, @ 𝑡 P r0,8q.

This result was essentially improved by Bonami et al. in [2], where they
further proved the following bilinear decomposition:

𝐻1
pR𝑛

q ˆ BMOpR𝑛
q Ă 𝐿1

pR𝑛
q `𝐻 log

pR𝑛
q,

where 𝐻 logpR𝑛q denotes the Musielak–Orlicz Hardy space related to the
Musielak–Orlicz function

𝜙p𝑥, 𝑡q :“
𝑡

logp𝑒` 𝑡q ` logp𝑒` |𝑥|q
, @𝑥 P R𝑛, @ 𝑡 P r0,8q.

Bonami et al. in [2] also concluded that 𝐻 logpR𝑛q is the smallest space in
the dual sense. Motivated by these, Ky [21] introduced the Musielak–
Orlicz Hardy space 𝐻𝜙pR𝑛q with 𝜙 being a Musielak–Orlicz function,
which generalizes both the Orlicz–Hardy space of Janson [19] and the
weighted Hardy space of Strömberg and Torchinsky [28], and established
both the atomic and the grand maximal function characterizations of
𝐻𝜙pR𝑛q. Since then, the real-variable theory of Musielak–Orlicz Hardy
spaces has rapidly been developed. Precisely, Hou et al. [15] characterized
𝐻𝜙pR𝑛q by the Lusin-area function and the molecule; Liang et al. [24] fur-
ther established several other real-variable characterizations, respectively,
in terms of various maximal functions and Littlewood–Paley 𝑔-function
and 𝑔˚𝜆-function.

On the other hand, there has been an increasing interest in extend-
ing the above results of Musielak–Orlicz Hardy spaces from the Euclidean
space to more general underlying spaces, such as the anisotropic Euclidean
space; see, for instance, [22], [23]. In particular, Coifman and Weiss [5]
originally introduced the concept of the space 𝒳 of homogeneous type and
the atomic Hardy space 𝐻𝑝,𝑞

cw p𝒳 q with 𝑝 P p0, 1s and 𝑞 P p𝑝,8s X r1,8s,
and proved that 𝐻𝑝,𝑞

cw p𝒳 q is independent of the choice of 𝑞. In the same
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article, they also posed a question: to what extent the geometrical con-
dition of 𝒳 is necessary for the validity of the radial maximal function
characterization of 𝐻1

cwp𝒳 q. Since then, lots of efforts have been made
to establish various real-variable characterizations of the atomic Hardy
spaces on 𝒳 with few geometrical assumptions. However, due to the lack
of Calderón reproducing formulae on 𝒳 , many existing results of both
function spaces and boundedness of operators require some additional ge-
ometrical assumptions on 𝒳 , such as the reverse doubling condition of 𝜇
(see, for instance, [6]).

Recently, He et al. [12] first introduced a kind of approximations of the
identity with exponential decay and then obtained new Calderón repro-
ducing formulae on 𝒳 . Later, He et al. completely answered the afore-
mentioned question of Coifman and Weiss by developing a quite complete
real-variable theory of the Hardy space and its localized version on 𝒳 ,
respectively, in [11] and [13]. Fu et al. [7] further generalized the corre-
sponding results in [11] to Musielak–Orlicz Hardy spaces 𝐻𝜙p𝒳 q. Indeed,
let 𝜂 P p0, 1q, 𝜔 be the upper dimension of 𝒳 , and 𝜙 a growth function,
with uniformly lower type 𝑝 P p0, 1s, satisfying that

𝑝

𝑞p𝜙q
P

´ 𝜔

𝜔 ` 𝜂
, 1
ı

,

where 𝑞p𝜙q is the critical weight index of 𝜙. Fu et al. in [7, Theorem 6.16]
characterized 𝐻𝜙p𝒳 q via the Littlewood–Paley 𝑔˚𝜆-function with

𝜆 P

ˆ

𝜔
”2𝑞p𝜙q

𝑝
` 1

ı

,8

˙

.

In this article, we first establish an aperture estimate of Littlewood–
Paley auxiliary functions on the Musielak–Orlicz space 𝐿𝜙p𝒳 q, and then
obtain the Littlewood–Paley 𝑔˚𝜆-function characterizations of 𝐻𝜙p𝒳 q with
𝜆 P p2𝜔𝑞p𝜙q{𝑝,8q, which improves the corresponding results in [7, Theo-
rem 6.16] via widening the range of 𝜆 into the best-known one.

The organization of the remainder of this article is as follows.
In Section 2, we recall some notation and concepts that are used

throughout this article. More precisely, in Subsection 2.1, we recall the
definition of a space 𝒳 of homogeneous type and state some basic proper-
ties of 𝒳 . In Subsection 2.2, we introduce the concepts of the uniformly
Muckenhoupt condition, the Musielak–Orlicz space 𝐿𝜙p𝒳 q, the spaces of
test functions and distributions, the system of dyadic cubes, and approx-
imations of the identity with exponential decay on 𝒳 . Then, via the
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Lusin-area function 𝑆𝛼 with 𝛼 P p0,8q, we introduce the Musielak–Orlicz
Hardy space 𝐻𝜙p𝒳 q.

In Section 3, we first recall the concepts of Littlewood–Paley 𝑔˚𝜆-function
and auxiliary function 𝑆p𝑎q𝛼 . Then, by an argument similar to that used in
the proof of [11, Lemma 5.11], we establish an aperture estimate of 𝑆p𝑎q𝛼 on
𝐿𝜙p𝒳 q (see Lemma 5 below). Finally, from Lemma 5 and the fact that 𝑔˚𝜆
and 𝑆

p𝑎q
𝛼 are pointwisely comparable, we further obtain the Littlewood–

Paley 𝑔˚𝜆-function characterizations of 𝐻𝜙p𝒳 q with the best known range
𝜆 P p2𝜔𝑞p𝜙q{𝑝,8q.

At the end of this section, we make some conventions on notation. Let
N :“ t1, 2, . . .u and Z` :“ N Y t0u. We denote by 𝐶 a positive constant
which is independent of the main parameters, but may vary from line
to line. We use 𝐶p𝛼,... q to denote a positive constant depending on the
indicated parameters 𝛼, . . . . The symbol 𝑓 À 𝑔 means 𝑓 6 𝐶𝑔 and, if
𝑓 À 𝑔 À 𝑓 , then we write 𝑓 „ 𝑔. If 𝑓 6 𝐶𝑔 and 𝑔 “ ℎ or 𝑔 6 ℎ, we then
write 𝑓 À 𝑔 „ ℎ or 𝑓 À 𝑔 À ℎ, rather than 𝑓 À 𝑔 “ ℎ or 𝑓 À 𝑔 6 ℎ.
If 𝐸 is a subset of 𝒳 , we denote by 1𝐸 its characteristic function and by
𝐸A the set 𝒳 z𝐸. For any 𝛼 P R, we denote by t𝛼u the biggest integer not
greater than 𝛼. For any index 𝑞 P r1,8s, we denote by 𝑞1 its conjugate
index, namely, 1{𝑞 ` 1{𝑞1 “ 1. For any 𝑥, 𝑥0, P 𝒳 and 𝑟, 𝜗 P p0,8q, let
𝑉𝑟p𝑥q :“ 𝜇p𝐵p𝑥, 𝑟qq,

𝑉 p𝑥, 𝑦q :“

#

𝜇p𝐵p𝑥, 𝑑p𝑥, 𝑦qqq, if 𝑥 ‰ 𝑦,

0, if 𝑥 “ 𝑦,

and

𝑃𝜗p𝑥0, 𝑥; 𝑟q :“
1

𝑉𝑟p𝑥0q ` 𝑉 p𝑥0, 𝑥q

„

𝑟

𝑟 ` 𝑑p𝑥0, 𝑥q

𝜗

. (1)

2. Preliminaries. In this section, we recall some basic concepts about
the space 𝒳 of homogeneous type and Musielak–Orlicz Hardy spaces.

2.1. Spaces of Homogeneous Type. In this subsection, we re-
call the concept of spaces of homogeneous type and some related basic
estimates.

Definition 1. A quasi-metric space p𝒳 , 𝑑q is a non-empty set 𝒳 equipped
with a quasi-metric 𝑑, namely, a non-negative function defined on 𝒳 ˆ𝒳
such that for any 𝑥, 𝑦, 𝑧 P 𝒳 :

(i) 𝑑p𝑥, 𝑦q “ 0 if and only if 𝑥 “ 𝑦;
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(ii) 𝑑p𝑥, 𝑦q “ 𝑑p𝑦, 𝑥q;
(iii) there exists a constant 𝐴0 P r1,8q, independent of 𝑥, 𝑦, and 𝑧, such

that

𝑑p𝑥, 𝑧q 6 𝐴0r𝑑p𝑥, 𝑦q ` 𝑑p𝑦, 𝑧qs. (2)

The ball 𝐵 of 𝒳 , centered at 𝑥0 P 𝒳 with radius 𝑟 P p0,8q, is defined
by setting

𝐵 :“ 𝐵p𝑥0, 𝑟q :“ t𝑥 P 𝒳 : 𝑑p𝑥, 𝑥0q ă 𝑟u .

For any ball 𝐵 and any 𝜏 P p0,8q, we denote 𝐵p𝑥0, 𝜏𝑟q by 𝜏𝐵 if
𝐵 :“ 𝐵p𝑥0, 𝑟q for some 𝑥0 P 𝒳 and 𝑟 P p0,8q.

Definition 2. Let p𝒳 , 𝑑q be a quasi-metric space and 𝜇 a non-negative
measure on 𝒳 . The triple p𝒳 , 𝑑, 𝜇q is called a space of homogeneous type
if 𝜇 satisfies the following doubling condition: there exists a constant
𝐶p𝜇q P r1,8q, such that for any ball 𝐵 Ă 𝒳 :

𝜇p2𝐵q 6 𝐶p𝜇q𝜇p𝐵q.

The above doubling condition implies that for any ball 𝐵Ă𝒳 and any
𝜆 P r1,8q,

𝜇p𝜆𝐵q 6 𝐶p𝜇q𝜆
𝜔𝜇p𝐵q, (3)

where 𝜔 :“ log2𝐶p𝜇q is called the upper dimension of 𝒳 .
Throughout this article, according to [5, pp. 587–588], we always make

the following assumptions on p𝒳 , 𝑑, 𝜇q:

(i) for any 𝑥 P 𝒳 , the balls t𝐵p𝑥, 𝑟qu𝑟Pp0,8q form a basis of open neigh-
borhoods of 𝑥;

(ii) 𝜇 is Borel regular, which means that all open sets are 𝜇-measurable
and every set 𝐴Ă𝒳 is contained in a Borel set 𝐸, such that
𝜇p𝐴q “ 𝜇p𝐸q;

(iii) for any 𝑥 P 𝒳 and 𝑟 P p0,8q, 𝜇p𝐵p𝑥, 𝑟qq P p0,8q;
(iv) diam𝒳 :“ sup

𝑥, 𝑦P𝒳
𝑑p𝑥, 𝑦q “ 8, and p𝒳 , 𝑑, 𝜇q is non-atomic, which

means 𝜇pt𝑥uq “ 0 for any 𝑥 P 𝒳 .

Notice that diam𝒳 “ 8 implies that 𝜇p𝒳 q “ 8 (see, for instance, [1,
p. 284]). From this, it follows that, under the above assumptions, 𝜇p𝒳 q “
8 if and only if diam𝒳 “ 8.



Musielak–Orlicz Hardy spaces 105

The following basic estimates are from [9, Lemma 2.1], which can be
proved by using (3).

Lemma 1. Let 𝑥, 𝑦 P 𝒳 and 𝑟 P p0,8q. Then 𝑉 p𝑥, 𝑦q „ 𝑉 p𝑦, 𝑥q and

𝑉𝑟p𝑥q ` 𝑉𝑟p𝑦q ` 𝑉 p𝑥, 𝑦q „ 𝑉𝑟p𝑥q ` 𝑉 p𝑥, 𝑦q „

„ 𝑉𝑟p𝑦q ` 𝑉 p𝑥, 𝑦q „ 𝜇p𝐵p𝑥, 𝑟 ` 𝑑p𝑥, 𝑦qqq.

Moreover, if 𝑑p𝑥, 𝑦q 6 𝑟, then 𝑉𝑟p𝑥q „ 𝑉𝑟p𝑦q. Here the positive equivalence
constants are independent of 𝑥, 𝑦, and 𝑟.

2.2. Musielak–Orlicz Hardy Spaces. Throughout this article, we
always let p𝒳 , 𝑑, 𝜇q be a space of homogeneous type. In this subsection, we
recall the concept of Musielak–Orlicz Hardy spaces and state some known
results.

A function Φ: r0,8q Ñ r0,8q is called an Orlicz function if it is non-
decreasing, Φp0q “ 0, Φp𝑡q ą 0 for any 𝑡 P p0,8q, and lim𝑡Ñ8 Φp𝑡q “ 8.

Now, we recall the concept of uniformly upper and lower types, which
was introduced in [16, p. 1924].

Definition 3. For a given function 𝜙 : 𝒳 ˆ r0,8q Ñ r0,8q, such that,
for almost every 𝑥 P 𝒳 , 𝜙p𝑥, ¨q is an Orlicz function, 𝜙 is said to be of
uniformly upper (resp., lower) type 𝑝 for some 𝑝 P p0,8q if there exists a
positive constant 𝐶p𝑝q, depending on 𝑝, such that, for almost every 𝑥 P 𝒳 ,
𝑠 P r1,8q (resp., 𝑠 P r0, 1s), and 𝑡 P r0,8q,

𝜙p𝑥, 𝑠𝑡q 6 𝐶p𝑝q𝑠
𝑝𝜙p𝑥, 𝑡q.

Next, we recall the concept of the uniformly Muckenhoupt condition
from [16, Definition 2.6].

Definition 4. A function 𝜙 : 𝒳 ˆ r0,8q Ñ r0,8q is said to satisfy
the uniformly Muckenhoupt condition for some 𝑞 P r1,8q, denoted by
𝜙 P A𝑞p𝒳 q, if, when 𝑞 P p1,8q,

r𝜙sA𝑞p𝒳 q :“ sup
𝑡Pp0,8q

sup
𝐵Ă𝒳

1

r𝜇p𝐵qs𝑞

ż

𝐵

𝜙p𝑥, 𝑡q𝑑𝜇p𝑥q
!

ż

𝐵

r𝜙p𝑦, 𝑡qs´
1

p𝑞´1q𝑑𝜇p𝑦q
)𝑞´1

ă8,

or

r𝜙sA1p𝒳 q :“ sup
𝑡Pp0,8q

sup
𝐵Ă𝒳

1

𝜇p𝐵q

ż

𝐵

𝜙p𝑥, 𝑡q 𝑑𝜇p𝑥q
`

ess sup 𝑦P𝐵r𝜙p𝑦, 𝑡qs
´1
˘

ă 8,
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where the first suprema are taken over all 𝑡 P p0,8q and the second ones
over all balls 𝐵Ă𝒳 .

Throughout this article, let

A8p𝒳 q :“
ď

𝑞Pr1,8q

A𝑞p𝒳 q.

For any 𝜙 P A8p𝒳 q, 𝜇-measurable set 𝐸Ă𝒳 , and 𝑡 P r0,8q, let

𝜙p𝐸, 𝑡q :“

ż

𝐸

𝜙p𝑥, 𝑡q 𝑑𝜇p𝑥q.

For any given 𝑝 P p0,8q, a function 𝑓 is said to be locally 𝑝-integrable if,
for any 𝑥 P 𝒳 , there exists an 𝑟 P p0,8q, such that

ż

𝐵p𝑥,𝑟q

|𝑓p𝑦q|𝑝 𝑑𝜇p𝑦q ă 8.

Denote by 𝐿𝑝locp𝒳 q the set of all the locally 𝑝-integrable functions on 𝒳 .
In what follows, we always let ℳ denote the Hardy–Littlewood maximal
operator defined by setting, for any 𝑓 P 𝐿1

locp𝒳 q and 𝑥 P 𝒳 ,

ℳp𝑓qp𝑥q :“ sup
𝐵Q𝑥

1

𝜇p𝐵q

ż

𝐵

|𝑓p𝑦q| 𝑑𝜇p𝑦q, (4)

where the supremum is taken over all balls 𝐵 of 𝒳 containing 𝑥.
Now, we state some basic properties of A𝑞p𝒳 q with 𝑞 P r1,8q, which

are just parts of [7, Lemma 2.6] (see also [30, Lemma 1.1.3] for the corre-
sponding Euclidean case).

Lemma 2. The following conclusions hold true:

(i) A1p𝒳 qĂA𝑝p𝒳 qĂA𝑞p𝒳 q for any 𝑝, 𝑞 satisfying 1 6 𝑝 6 𝑞 ă 8.

(ii) If 𝜙 P A𝑞p𝒳 q with 𝑞 P r1,8q, then there exists a positive constant 𝐶,
such that, for any ball 𝐵Ă𝒳 , 𝜇-measurable set 𝐸Ă𝐵, and 𝑡 P p0,8q,

𝜙p𝐵, 𝑡q

𝜙p𝐸, 𝑡q
6 𝐶

„

𝜇p𝐵q

𝜇p𝐸q

𝑞

.
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(iii) If 𝑞 P p1,8q and 𝜙 P A𝑞p𝒳 q, then there exists a positive constant 𝐶,
such that, for any 𝑓 P 𝐿1

loc p𝒳 q and 𝑡 P r0,8q,
ż

𝒳

rℳp𝑓qp𝑥qs𝑞𝜙p𝑥, 𝑡q 𝑑𝜇p𝑥q 6 𝐶

ż

𝒳

|𝑓p𝑥q|𝑞𝜙p𝑥, 𝑡q 𝑑𝜇p𝑥q,

where ℳ is the same as in (4).

The critical weight index 𝑞p𝜙q of 𝜙 P A8p𝒳 q is defined by setting

𝑞p𝜙q :“ inf t𝑞 P r1,8q : 𝜙 P A𝑞p𝒳 qu . (5)

The following concept of growth functions was first introduced in [16,
Definition 2.7].

Definition 5. A function 𝜙 : 𝒳 ˆ r0,8q Ñ r0,8q is called a growth
function if the following conditions are satisfied:

(i) 𝜙 is a Musielak–Orlicz function, namely,

piq1 the function 𝜙p𝑥, ¨q : r0,8q Ñ r0,8q is an Orlicz function for
almost every 𝑥 P 𝒳 ;

piq2 the function 𝜙p¨, 𝑡q is 𝜇-measurable for any 𝑡 P r0,8q.

(ii) 𝜙 P A8p𝒳 q.
(iii) 𝜙 is of uniformly lower type 𝑝 for some 𝑝 P p0, 1s and of uniformly

upper type 1.

Next, we recall the definition of Musielak–Orlicz spaces, which was
first introduced in [16, Definition 2.8].

Definition 6. Let 𝜙 be a growth function in Definition 5. The Musielak–
Orlicz space 𝐿𝜙p𝒳 q is defined to be the set of all the 𝜇-measurable func-
tions 𝑓 , such that

ż

𝒳

𝜙p𝑥, |𝑓p𝑥q|q 𝑑𝜇p𝑥q ă 8,

equipped with the Luxemburg (also called the Luxemburg–Nakano)
(quasi-)norm

}𝑓}𝐿𝜙p𝒳 q :“ inf
!

𝜆 P p0,8q :

ż

𝒳

𝜙
´

𝑥,
|𝑓p𝑥q|

𝜆

¯

𝑑𝜇p𝑥q 6 1
)

.



108 X. Yan

Now, we recall some basic properties of 𝐿𝜙p𝒳 q, which were first given
in [7, Lemma 2.8] (see also [30, Lemmas 1.1.6 and 1.1.10] for the corre-
sponding Euclidean case).

Lemma 3. Let 𝜙 be a growth function in Definition 5. Then the fol-
lowing conclusions hold true.

(i) 𝜙 is uniformly 𝜎-quasi-subadditive on 𝒳ˆr0,8q, namely, there exists
a positive constant 𝐶, such that, for any p𝑥, 𝑡𝑗q P 𝒳 ˆ r0,8q with
𝑗 P N,

𝜙
´

𝑥,
ÿ

𝑗PN

𝑡𝑗

¯

6 𝐶
ÿ

𝑗PN

𝜙p𝑥, 𝑡𝑗q.

(ii) For any 𝑓 P 𝐿𝜙p𝒳 qzt0u,
ż

𝒳

𝜙
´

𝑥,
|𝑓p𝑥q|

}𝑓}𝐿𝜙p𝒳 q

¯

𝑑𝜇p𝑥q “ 1.

(iii) For any p𝑥, 𝑡q P 𝒳 ˆ r0,8q,

r𝜙p𝑥, 𝑡q :“

𝑡
ż

0

𝜙p𝑥, 𝑠q

𝑠
𝑑𝑠

is a growth function and equivalent to 𝜙, namely, there exists a
positive constant 𝐶, such that, for any p𝑥, 𝑡q P 𝒳 ˆ r0,8q,

1

𝐶
𝜙p𝑥, 𝑡q 6 r𝜙p𝑥, 𝑡q 6 𝐶𝜙p𝑥, 𝑡q.

Moreover, for almost every 𝑥 P 𝒳 , r𝜙p𝑥, ¨q is continuous and strictly
increasing.

Next, we introduce the Musielak–Orlicz Hardy spaces via the Lusin-
area functions. To this end, we first recall the concept of spaces of test
functions on 𝒳 , which was originally introduced by Han et al. [9, Definition
2.2] (see also [10, Definition 2.8]).

Definition 7. Let 𝑥0 P 𝒳 , 𝑟 P p0,8q, 𝜚 P p0, 1s, and 𝜗 P p0,8q. A
function 𝑓 on 𝒳 is called a test function of type p𝑥0, 𝑟, 𝜚, 𝜗q, denoted by
𝑓 P 𝒢p𝑥0, 𝑟, 𝜚, 𝜗q, if there exists a positive constant 𝐶, such that
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(T1) for any 𝑥 P 𝒳 ,
|𝑓p𝑥q| 6 𝐶𝑃𝜗p𝑥0, 𝑥; 𝑟q, (6)

here and thereafter, 𝑃𝜗 is the same as in (1);
(T2) for any 𝑥, 𝑦 P 𝒳 satisfying 𝑑p𝑥, 𝑦q 6 r𝑟`𝑑p𝑥0, 𝑥qs{p2𝐴0q with 𝐴0 the

same as in (2),

|𝑓p𝑥q ´ 𝑓p𝑦q| 6 𝐶
” 𝑑p𝑥, 𝑦q

𝑟 ` 𝑑p𝑥0, 𝑥q

ı𝜚

𝑃𝜗p𝑥0, 𝑥; 𝑟q. (7)

Moreover, for any 𝑓 P 𝒢p𝑥0, 𝑟, 𝜚, 𝜗q, define

}𝑓}𝒢p𝑥0, 𝑟, 𝜚, 𝜗q :“ inf t𝐶 : 𝐶 satisfies (6) and (7)u .

The subspace 𝒢p𝑥0, 𝑟, 𝜚, 𝜗q is defined by setting

𝒢p𝑥0, 𝑟, 𝜚, 𝜗q :“
!

𝑓 P 𝒢p𝑥0, 𝑟, 𝜚, 𝜗q :
ż

𝒳

𝑓p𝑥q 𝑑𝜇p𝑥q “ 0
)

equipped with the norm } ¨ }𝒢p𝑥0,𝑟,𝜚,𝜗q :“ } ¨ }𝒢p𝑥0,𝑟,𝜚,𝜗q.

Fix an 𝑥0 P 𝒳 . Denote 𝒢p𝑥0, 1, 𝜚, 𝜗q simply by 𝒢p𝜚, 𝜗q. Obviously,
𝒢p𝜚, 𝜗q is a Banach space. Note that, for any fixed 𝑥 P 𝒳 and 𝑟 P p0,8q,
𝒢p𝑥, 𝑟, 𝜚, 𝜗q “ 𝒢p𝜚, 𝜗q with equivalent norms, but the positive equivalence
constants may depend on 𝑥 and 𝑟.

Fix 𝜖 P p0, 1s and 𝜚, 𝜗 P p0, 𝜖s. Let 𝒢𝜖0p𝜚, 𝜗q be the completion of
the the set 𝒢p𝜖, 𝜖q in 𝒢p𝜚, 𝜗q. Furthermore, the norm of 𝒢𝜖0p𝜚, 𝜗q is de-
fined by setting } ¨ }𝒢𝜖

0p𝜚,𝜗q
:“ } ¨ }𝒢p𝜚,𝜗q. The space 𝒢𝜖0p𝜚, 𝜗q is called the

space of test functions. The dual space p𝒢𝜖0p𝜚, 𝜗qq1 is defined to be the
set of all continuous linear functionals from 𝒢𝜖0p𝜚, 𝜗q to C, equipped with
the weak-˚ topology. The space p𝒢𝜖0p𝜚, 𝜗qq1 is called the space of distribu-
tions.

The following system of dyadic cubes of p𝒳 , 𝑑, 𝜇q was established by
Hytönen and Kairema in [17, Theorem 2.2].

Lemma 4. Suppose that constants 0 ă 𝑐0 6 𝐶0 ă 8 and 𝛿 P p0, 1q
satisfy 12𝐴3

0𝐶0𝛿 6 𝑐0 with 𝐴0 the same as in (2). Assume that a set of
points t𝑧𝑘𝛼 : 𝑘 P Z, 𝛼 P 𝒜𝑘u Ă 𝒳 with 𝒜𝑘, for any 𝑘 P Z, being a set of
indices, has the following properties: for any 𝑘 P Z,

𝑑
`

𝑧𝑘𝛼, 𝑧
𝑘
𝛽

˘

> 𝑐0𝛿
𝑘 if 𝛼 ‰ 𝛽, and min

𝛼P𝒜𝑘

𝑑
`

𝑥, 𝑧𝑘𝛼
˘

ă 𝐶0𝛿
𝑘 for any 𝑥 P 𝒳 .

Then there exists a family of sets t𝑄𝑘
𝛼 : 𝑘 P Z, 𝛼 P 𝒜𝑘u, satisfying
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(i) for any 𝑘 P Z,
Ť

𝛼P𝒜𝑘
𝑄𝑘
𝛼 “ 𝒳 and t𝑄𝑘

𝛼 : 𝛼 P 𝒜𝑘u is disjoint;
(ii) if 𝑘, 𝑙 P Z and 𝑘 6 𝑙 then, for any 𝛼 P 𝒜𝑘 and 𝛽 P 𝒜𝑙, either 𝑄𝑙

𝛽 Ă 𝑄𝑘
𝛼

or 𝑄𝑙
𝛽 X𝑄

𝑘
𝛼 “ H;

(iii) for any 𝑘PZ and 𝛼 P𝒜𝑘, 𝐵p𝑧𝑘𝛼, p3𝐴2
0q
´1𝑐0𝛿

𝑘q Ă 𝑄𝑘
𝛼Ă𝐵p𝑧

𝑘
𝛼, 2𝐴0𝐶0𝛿

𝑘q.

Throughout this article, for any 𝑘 P Z, define

𝒢𝑘 :“ 𝒜𝑘`1z𝒜𝑘 and 𝒴𝑘 :“
 

𝑧𝑘`1𝛼

(

𝛼P𝒢𝑘
“:

 

𝑦𝑘𝛼
(

𝛼P𝒢𝑘
,

and, for any 𝑥 P 𝒳 , define

𝑑
`

𝑥,𝒴𝑘
˘

:“ inf
𝑦P𝒴𝑘

𝑑p𝑥, 𝑦q.

Now, recall the concept of approximations of the identity with expo-
nential decay introduced in [12, Definition 2.7].

Definition 8. Let 𝛿 be the same as in Lemma 4. A sequence t𝑄𝑘u𝑘PZ
of bounded linear integral operators on 𝐿2p𝒳 q is called an approximation
of the identity with exponential decay (for short, exp-ATI) if there exist
constants 𝐶,𝜈 P p0,8q, 𝑎 P p0, 1s, and 𝜂 P p0, 1q, such that, for any 𝑘 P Z,
the kernel of the operator 𝑄𝑘, a function on 𝒳 ˆ𝒳 , which is still denoted
by 𝑄𝑘, has the following properties:

(i) (the identity condition)
ř

𝑘PZ𝑄𝑘 “ 𝐼 in 𝐿2p𝒳 q, where 𝐼 denotes the
identity operator on 𝐿2p𝒳 q;

(ii) (the size condition) for any 𝑥, 𝑦 P 𝒳 ,

|𝑄𝑘p𝑥, 𝑦q| 6 𝐶𝐸𝑘p𝑥, 𝑦q,

here and thereafter,

𝐸𝑘p𝑥, 𝑦q :“
1

a

𝑉𝛿𝑘p𝑥q𝑉𝛿𝑘p𝑦q
exp

!

´ 𝜈
”𝑑p𝑥, 𝑦q

𝛿𝑘

ı𝑎)

ˆ

ˆ exp
!

´ 𝜈
”maxt𝑑p𝑥,𝒴𝑘q, 𝑑p𝑦,𝒴𝑘qu

𝛿𝑘

ı𝑎)

;

(iii) (the regularity condition) for any 𝑥, 𝑥1, 𝑦 P 𝒳 with 𝑑p𝑥, 𝑥1q 6 𝛿𝑘,

|𝑄𝑘p𝑥, 𝑦q ´𝑄𝑘p𝑥
1, 𝑦q|`|𝑄𝑘p𝑦, 𝑥q ´𝑄𝑘p𝑦, 𝑥

1
q| 6

6 𝐶
”𝑑p𝑥, 𝑥1q

𝛿𝑘

ı𝜂

𝐸𝑘p𝑥, 𝑦q;
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(iv) (the second difference regularity condition) for any 𝑥, 𝑥1, 𝑦, 𝑦1 P 𝒳
with 𝑑p𝑥, 𝑥1q 6 𝛿𝑘 and 𝑑p𝑦, 𝑦1q 6 𝛿𝑘,

|r𝑄𝑘p𝑥, 𝑦q ´𝑄𝑘p𝑥
1, 𝑦qs ´ r𝑄𝑘p𝑥, 𝑦

1
q ´𝑄𝑘p𝑥

1, 𝑦1qs| 6

6 𝐶
”𝑑p𝑥, 𝑥1q

𝛿𝑘

ı𝜂”𝑑p𝑦, 𝑦1q

𝛿𝑘

ı𝜂

𝐸𝑘p𝑥, 𝑦q;

(v) (the cancellation condition) for any 𝑥, 𝑦 P 𝒳 ,
ż

𝒳

𝑄𝑘p𝑥, 𝑦
1
q 𝑑𝜇p𝑦1q “ 0 “

ż

𝒳

𝑄𝑘p𝑥
1, 𝑦q 𝑑𝜇p𝑥1q.

Next, we recall the concept of the Lusin-area function (see, for instance,
[11, Section 5]).

Definition 9. Let 𝛿 and 𝜂 be the same, respectively, as in Lemma 4
and Definition 8, and let 𝜚, 𝜗 P p0, 𝜂q. Assume that 𝑓 P p𝒢𝜂0 p𝜚, 𝜗qq1 and
t𝑄𝑘u𝑘PZ is an exp-ATI. For any 𝛼 P p0,8q, the Lusin-area function 𝑆𝛼p𝑓q
of 𝑓 with aperture 𝛼 is defined by setting, for any 𝑥 P 𝒳 ,

𝑆𝛼p𝑓qp𝑥q :“

"

ÿ

𝑘PZ

ż

𝐵p𝑥,𝛼𝛿𝑘q

|𝑄𝑘𝑓p𝑦q|
2 𝑑𝜇p𝑦q

𝑉𝛼𝛿𝑘p𝑥q

*
1
2

,

here and thereafter, for any 𝑦 P 𝒳 ,

𝑄𝑘𝑓p𝑦q :“

ż

𝒳

𝑄𝑘p𝑦, 𝑥q𝑓p𝑥q 𝑑𝜇p𝑥q.

When 𝛼 :“ 1, we simply write 𝑆 :“ 𝑆1.

Now, we recall the concept of Musielak–Orlicz Hardy spaces, which
was first introduced in [7, Definition 6.2].

Definition 10. Let 𝜂 be the same as in Definition 8 and 𝜙 a growth
function in Definition 5 with uniformly lower type 𝑝 P p0, 1s satisfying

𝑝

𝑞p𝜙q
ą

𝜔

𝜔 ` 𝜂
,

and let

𝜚, 𝜗 P
´

𝜔
”𝑞p𝜙q

𝑝
´ 1

ı

, 𝜂
¯

,
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where 𝑞p𝜙q and 𝜔 are the same, respectively, as in (5) and (3). The
Musielak–Orlicz Hardy space 𝐻𝜙p𝒳 q is defined by setting

𝐻𝜙
p𝒳 q :“

!

𝑓 P
´

𝒢𝜂0 p𝜚,𝜗q
¯1

: }𝒮p𝑓q}𝐿𝜙p𝒳 q ă 8
)

and, moreover, for any 𝑓 P 𝐻𝜙p𝒳 q, let

}𝑓}𝐻𝜙p𝒳 q :“ }𝒮p𝑓q}𝐿𝜙p𝒳 q.

Remark 1.

piq As was proved in [7, Theorem 6.3], the space 𝐻𝜙p𝒳 q in Definition 10
is independent of the choices of exp-ATIs in 𝑆p𝑓q.

piiq Combining [29, Remark 3.17(iii)], [7, Theorems 5.4 and 6.15], and [7,
Proposition 6.12], we conclude that the space𝐻𝜙p𝒳 q in Definition 10
is independent of the choices of p𝒢𝜂0 p𝜚,𝜗qq1 whenever

𝜚, 𝜗 P p𝜔r𝑞p𝜙q{𝑝´ 1s, 𝜂q .

3. Littlewood–Paley 𝑔˚𝜆-Function Characterizations of 𝐻𝜙p𝒳 q.
In this section, we establish Littlewood–Paley 𝑔˚𝜆-function characteriza-
tions of 𝐻𝜙p𝒳 q, which improves the corresponding results in [7, Theorem
6.16] by widening the range of the parameter 𝜆 into the best-known one.
To this end, we first recall the concept of Littlewood–Paley 𝑔˚𝜆-function
(see, for instance, [11, Section 5]).

Definition 11. Let 𝛿 and 𝜂 be the same, respectively, as in Lemma 4
and Definition 8, and let 𝜚, 𝜗 P p0, 𝜂q. Assume that 𝑓 P p𝒢𝜂0 p𝜚, 𝜗qq1 and
t𝑄𝑘u𝑘PZ is an exp-ATI. The Littlewood–Paley 𝑔˚𝜆-function 𝑔˚𝜆p𝑓q of 𝑓 , with
any given 𝜆 P p0,8q, is defined by setting, for any 𝑥 P 𝒳 ,

𝑔˚𝜆p𝑓qp𝑥q :“
!

ÿ

𝑘PZ

ż

𝒳

|𝑄𝑘𝑓p𝑦q|
2
” 𝛿𝑘

𝛿𝑘 ` 𝑑p𝑥,𝑦q

ı𝜆 𝑑𝜇p𝑦q

𝑉𝛿𝑘p𝑥q ` 𝑉𝛿𝑘p𝑦q

)
1
2
.

The following theorem is the main result of this section.

Theorem 1. Let 𝜂 be the same as in Definition 8 and 𝜙 a growth
function in Definition 5 with uniformly lower type 𝑝 P p0, 1s satisfying

𝑝

𝑞p𝜙q
ą

𝜔

𝜔 ` 𝜂
,
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and let

𝜚, 𝜗 P
´

𝜔
”𝑞p𝜙q

𝑝
´ 1

ı

, 𝜂
¯

,

where 𝑞p𝜙q and 𝜔 are the same, respectively, as in (5) and (3). Further,
assume that

𝜆 P
´2𝜔𝑞p𝜙q

𝑝
,8

¯

.

Then 𝑓 P 𝐻𝜙p𝒳 q if and only if 𝑓 P p𝒢𝜂0 p𝜚, 𝜗qq1 and 𝑔˚𝜆p𝑓q P 𝐿
𝜙p𝒳 q. More-

over, there exists a constant 𝐶 P r1,8q, such that, for any 𝑓 P 𝐻𝜙p𝒳 q,

𝐶´1 }𝑔˚𝜆p𝑓q}𝐿𝜙p𝒳 q 6 }𝑓}𝐻𝜙p𝒳 q 6 𝐶 }𝑔˚𝜆p𝑓q}𝐿𝜙p𝒳 q .

To prove Theorem 1, we need more preparations. Let 𝛿 and 𝜂 be the
same as in Theorem 1. For any 𝜚, 𝜗 P p0, 𝜂q, 𝛼 P p0,8q, and 𝑓 P p𝒢𝜂0 p𝜚, 𝜗qq1,
recall that the Littlewood–Paley auxiliary function 𝑆p𝑎q𝛼 of 𝑓 with aperture
𝛼 is defined by setting, for any 𝑥 P 𝒳 ,

𝑆p𝑎q𝛼 p𝑓qp𝑥q :“

"

ÿ

𝑘PZ

ż

𝐵p𝑥,𝛼𝛿𝑘q

|𝑄𝑘𝑓p𝑦q|
2 𝑑𝜇p𝑦q

𝑉𝛿𝑘p𝑦q

*
1
2

. (8)

Particularly, when 𝛼 “ 1, by Lemma 1, we conclude that, for any
𝑓 P p𝒢𝜂0 p𝜚, 𝜗qq1 and 𝑥 P 𝒳 ,

𝑆
p𝑎q
1 p𝑓qp𝑥q „ 𝑆p𝑓qp𝑥q, (9)

where the implicit positive constant is independent of both 𝑓 and 𝑥.
The following conclusion, which shows an aperture estimate of 𝑆p𝑎q𝛼 p𝑓q

on 𝐿𝜙p𝒳 q, plays a key role in the proof of Theorem 1.

Lemma 5. Let 𝑞 P p1,8q and 𝜙 P A𝑞p𝒳 q with uniformly lower type
𝑝 P p0, 1s. If 𝛼 P r1,8q, then there exists a positive constant 𝐶, such that

ż

𝒳

𝜙
`

𝑥, 𝑆p𝑎q𝛼 p𝑓qp𝑥q
˘

𝑑𝜇p𝑥q 6 𝐶𝛼𝜔𝑞
ż

𝒳

𝜙
´

𝑥, 𝑆
p𝑎q
1 p𝑓qp𝑥q

¯

𝑑𝜇p𝑥q, (10)

where 𝜔 is the same as in (3).

Proof. For any non-negative function 𝑔 and any 𝑥 P 𝒳 , define

Ăℳp𝑔qp𝑥q :“ sup
𝑘PZ

sup
𝑑p𝑥,𝑦qă𝛼𝛿𝑘

1

𝑉𝛿𝑘p𝑦q

ż

𝐵p𝑦,𝛿𝑘q

𝑔p𝑧q 𝑑𝜇p𝑧q,
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where 𝛿 is the same as in Lemma 4. Moreover, for any 𝑡 P p0,8q and
𝑓 P p𝒢𝜂0 p𝜚, 𝜗qq1 with 𝜂 being the same as in Definition 8 and 𝜚, 𝜗 P p0, 𝜂q,
define

𝐸𝑡 :“
!

𝑥 P 𝒳 : 𝑆
p𝑎q
1 p𝑓qp𝑥q ą 𝑡

)

and r𝐸𝑡 :“

"

𝑥 P 𝒳 : Ăℳp1𝐸𝑡qp𝑥q ą
1

2

*

.

On the one hand, by [11, p. 2252], we conclude that, for any non-
negative function 𝑔 and any 𝑥 P 𝒳 ,

Ăℳp𝑔qp𝑥q À 𝛼𝜔ℳp𝑔qp𝑥q

with ℳ as in (4), which, combined with Lemma 2(iii), further implies
that, for any 𝑡 P p0,8q,

𝜙
´

r𝐸𝑡, 𝑡
¯

“ 𝜙

ˆ"

𝑥 P 𝒳 : Ăℳp1𝐸𝑡qp𝑥q ą
1

2

*

, 𝑡

˙

6

6 𝜙

ˆ"

𝑥 P 𝒳 : 𝐶𝛼𝜔ℳp1𝐸𝑡qp𝑥q ą
1

2

*

, 𝑡

˙

6

6 𝐶𝛼𝜔𝑞
ż

𝒳

rℳp1𝐸𝑡qp𝑥qs
𝑞 𝜙p𝑥, 𝑡q 𝑑𝜇p𝑥q 6 𝐶𝛼𝜔𝑞𝜙 p𝐸𝑡, 𝑡q ,

(11)

where 𝐶 is a positive constant independent of both 𝛼 and 𝑡.
On the other hand, fix 𝑡 P p0,8q and, for any 𝑦P𝒳 , let

𝜌p𝑦q :“ inf
𝑥P r𝐸A𝑡

𝑑p𝑥, 𝑦q.

Obviously, for any 𝑘 P Z and 𝑥, 𝑦 P 𝒳 , 𝑥 P r𝐸A𝑡 X 𝐵p𝑦, 𝛼𝛿𝑘q implies that
𝜌p𝑦q ă 𝛼𝛿𝑘. Moreover, by an argument similar to that used in [11, p. 2253],
we conclude that, for any 𝑘 P Z and any 𝑦 P 𝒳 satisfying 𝜌p𝑦q ă 𝛼𝛿𝑘,

𝜇
`

𝐸A𝑡 X𝐵p𝑦, 𝛿
𝑘
q
˘

>
1

2
𝜇
`

𝐵p𝑦, 𝛿𝑘q
˘

.

From these, (8), Tonelli theorem, (3), and Lemma 2(ii), we deduce that,
for any 𝑡 P p0,8q,

ż

r𝐸A𝑡

“

𝑆p𝑎q𝛼 p𝑓qp𝑥q
‰2
𝜙p𝑥, 𝑡q 𝑑𝜇p𝑥q “
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“

ż

r𝐸A𝑡

ÿ

𝑘PZ

ż

𝐵p𝑥,𝛼𝛿𝑘q

|𝑄𝑘𝑓p𝑦q|
2 𝑑𝜇p𝑦q

𝑉𝛿𝑘p𝑦q
𝜙p𝑥, 𝑡q 𝑑𝜇p𝑥q 6

6
ÿ

𝑘PZ

ż

𝜌p𝑦qă𝛼𝛿𝑘

|𝑄𝑘𝑓p𝑦q|
2 𝜙

´

r𝐸A𝑡 X𝐵p𝑦, 𝛼𝛿
𝑘
q, 𝑡

¯ 𝑑𝜇p𝑦q

𝑉𝛿𝑘p𝑦q
6

6
ÿ

𝑘PZ

ż

𝜌p𝑦qă𝛼𝛿𝑘

|𝑄𝑘𝑓p𝑦q|
2 𝜙

`

𝐵p𝑦, 𝛼𝛿𝑘q, 𝑡
˘ 𝑑𝜇p𝑦q

𝑉𝛿𝑘p𝑦q
À

À 𝛼𝜔𝑞
ÿ

𝑘PZ

ż

𝜌p𝑦qă𝛼𝛿𝑘

|𝑄𝑘𝑓p𝑦q|
2 𝜙

`

𝐵p𝑦, 𝛿𝑘q, 𝑡
˘ 𝑑𝜇p𝑦q

𝑉𝛿𝑘p𝑦q
À

À 𝛼𝜔𝑞
ÿ

𝑘PZ

ż

𝒳

|𝑄𝑘𝑓p𝑦q|
2 𝜙

`

𝐸A𝑡 X𝐵p𝑦, 𝛿
𝑘
q, 𝑡

˘ 𝑑𝜇p𝑦q

𝑉𝛿𝑘p𝑦q
„

„ 𝛼𝜔𝑞
ÿ

𝑘PZ

ż

𝐸A𝑡

ż

𝐵p𝑥,𝛿𝑘q

|𝑄𝑘𝑓p𝑦q|
2 𝑑𝜇p𝑦q

𝑉𝛿𝑘p𝑦q
𝜙p𝑥,𝑡q 𝑑𝜇p𝑥q „

„ 𝛼𝜔𝑞
ż

𝐸A𝑡

”

𝑆
p𝑎q
1 p𝑓qp𝑥q

ı2

𝜙p𝑥,𝑡q 𝑑𝜇p𝑥q.

This, together with Tonelli theorem and the fact that 𝜙 is of uniformly
upper type 1, further implies that, for any 𝑡 P p0,8q,

𝜙
´

r𝐸A𝑡 X
 

𝑥 P 𝒳 : 𝑆p𝑎q𝛼 p𝑓qp𝑥q ą 𝑡
(

, 𝑡
¯

“

“

ż

r𝐸A𝑡Xt𝑥P𝒳 : 𝑆
p𝑎q
𝛼 p𝑓qp𝑥qą𝑡u

𝜙p𝑥,𝑡q 𝑑𝜇p𝑥q 6

6
ż

r𝐸A𝑡Xt𝑥P𝒳 : 𝑆
p𝑎q
𝛼 p𝑓qp𝑥qą𝑡u

«

𝑆
p𝑎q
𝛼 p𝑓qp𝑥q

𝑡

ff2

𝜙p𝑥, 𝑡q 𝑑𝜇p𝑥q 6

6 𝑡´2
ż

r𝐸A𝑡

“

𝑆p𝑎q𝛼 p𝑓qp𝑥q
‰2
𝜙p𝑥, 𝑡q 𝑑𝜇p𝑥q À

À 𝛼𝜔𝑞𝑡´2
ż

𝐸A𝑡

”

𝑆
p𝑎q
1 p𝑓qp𝑥q

ı2

𝜙p𝑥, 𝑡q 𝑑𝜇p𝑥q „
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„ 𝛼𝜔𝑞𝑡´2
ż

𝒳

”

𝑆
p𝑎q
1 p𝑓qp𝑥q1t𝑦P𝒳 : 𝑆

p𝑎q
1 p𝑓qp𝑦q6𝑡u

p𝑥q
ı2

𝜙p𝑥, 𝑡q 𝑑𝜇p𝑥q „

„ 𝛼𝜔𝑞𝑡´2
ż

𝒳

𝑆
p𝑎q
1 p𝑓qp𝑥q1

t𝑦P𝒳 : 𝑆
p𝑎q
1 p𝑓qp𝑦q6𝑡u

p𝑥q
ż

0

𝑠𝜙p𝑥, 𝑡q 𝑑𝑠 𝑑𝜇p𝑥q „

„ 𝛼𝜔𝑞𝑡´2
8
ż

0

ż

t𝑥P𝒳 : 𝑆
p𝑎q
1 p𝑓qp𝑥q1

t𝑦P𝒳 : 𝑆
p𝑎q
1 p𝑓qp𝑦q6𝑡u

p𝑥qą𝑠u

𝑠𝜙p𝑥, 𝑡q 𝑑𝜇p𝑥q 𝑑𝑠 „

„ 𝛼𝜔𝑞𝑡´2
𝑡
ż

0

ż

t𝑥P𝒳 : 𝑆
p𝑎q
1 p𝑓qp𝑥q1

t𝑦P𝒳 : 𝑆
p𝑎q
1 p𝑓qp𝑦q6𝑡u

p𝑥qą𝑠u

𝑠𝜙p𝑥, 𝑡q 𝑑𝜇p𝑥q 𝑑𝑠 À

À 𝛼𝜔𝑞𝑡´2
𝑡
ż

0

ż

t𝑥P𝒳 : 𝑆
p𝑎q
1 p𝑓qp𝑥q1

t𝑦P𝒳 : 𝑆
p𝑎q
1 p𝑓qp𝑦q6𝑡u

p𝑥qą𝑠u

𝑠 ¨
𝑡

𝑠
¨ 𝜙p𝑥, 𝑠q 𝑑𝜇p𝑥q 𝑑𝑠 „

„ 𝛼𝜔𝑞𝑡´1
𝑡
ż

0

𝜙
´!

𝑥 P 𝒳 : 𝑆
p𝑎q
1 p𝑓qp𝑥q1t𝑦P𝒳 : 𝑆

p𝑎q
1 p𝑓qp𝑦q6𝑡u

p𝑥q ą 𝑠
)

, 𝑠
¯

𝑑𝑠 À

À 𝛼𝜔𝑞𝑡´1
𝑡
ż

0

𝜙
´!

𝑥 P 𝒳 : 𝑆
p𝑎q
1 p𝑓qp𝑥q ą 𝑠

)

, 𝑠
¯

𝑑𝑠. (12)

Combining (11) and (12), we find that, for any 𝑡 P p0,8q,

𝜙
` 

𝑥 P 𝒳 : 𝑆p𝑎q𝛼 p𝑓qp𝑥q ą 𝑡
(

, 𝑡
˘

6

6 𝜙
´

r𝐸𝑡, 𝑡
¯

` 𝜙
´

r𝐸A𝑡 X
 

𝑥 P 𝒳 : 𝑆p𝑎q𝛼 p𝑓qp𝑥q ą 𝑡
(

, 𝑡
¯

À

À 𝛼𝜔𝑞
„

𝜙 p𝐸𝑡, 𝑡q ` 𝑡
´1

𝑡
ż

0

𝜙
´!

𝑥 P 𝒳 : 𝑆
p𝑎q
1 p𝑓qp𝑥q ą 𝑠

)

, 𝑠
¯

𝑑𝑠



. (13)

Moreover, from Lemma 3(iii) and Tonelli theorem, we deduce that, for
any 𝛼 P p0,8q,

ż

𝒳

𝜙
`

𝑥, 𝑆p𝑎q𝛼 p𝑓qp𝑥q
˘

𝑑𝜇p𝑥q „

ż

𝒳

𝑆
p𝑎q
𝛼 p𝑓qp𝑥q
ż

0

𝜙p𝑥, 𝑡q

𝑡
𝑑𝑡 𝑑𝜇p𝑥q „
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„

8
ż

0

𝑡´1
ż

t𝑦P𝒳 : 𝑆
p𝑎q
𝛼 p𝑓qp𝑦qą𝑡u

𝜙p𝑥, 𝑡q𝑑𝜇p𝑥q 𝑑𝑡 „

„

8
ż

0

𝑡´1𝜙
` 

𝑥 P 𝒳 : 𝑆p𝑎q𝛼 p𝑓qp𝑥q ą 𝑡
(

, 𝑡
˘

𝑑𝑡,

which, together with (13) and Tonelli theorem, further implies that
ż

𝒳

𝜙
`

𝑥, 𝑆p𝑎q𝛼 p𝑓qp𝑥q
˘

𝑑𝜇p𝑥q „

„

8
ż

0

𝑡´1𝜙
` 

𝑥 P 𝒳 : 𝑆p𝑎q𝛼 p𝑓qp𝑥q ą 𝑡
(

, 𝑡
˘

𝑑𝑡 À

À 𝛼𝜔𝑞
„

8
ż

0

𝑡´1𝜙 p𝐸𝑡, 𝑡q 𝑑𝑡`

8
ż

0

𝑡´2
𝑡
ż

0

𝜙
´!

𝑥 P 𝒳 : 𝑆
p𝑎q
1 p𝑓qp𝑥q ą 𝑠

)

, 𝑠
¯

𝑑𝑠𝑑𝑡



„

„ 𝛼𝜔𝑞
„

8
ż

0

𝑡´1𝜙 p𝐸𝑡, 𝑡q 𝑑𝑡`

8
ż

0

8
ż

𝑠

𝑡´2𝜙
´!

𝑥 P 𝒳 : 𝑆
p𝑎q
1 p𝑓qp𝑥q ą 𝑠

)

, 𝑠
¯

𝑑𝑡𝑑𝑠



„

„ 𝛼𝜔𝑞
„

8
ż

0

𝑡´1𝜙 p𝐸𝑡, 𝑡q 𝑑𝑡`

8
ż

0

𝑠´1𝜙 p𝐸𝑠, 𝑠q 𝑑𝑠



„

„ 𝛼𝜔𝑞
8
ż

0

𝑡´1𝜙
´!

𝑥 P 𝒳 : 𝑆
p𝑎q
1 p𝑓qp𝑥q ą 𝑡

)

, 𝑡
¯

𝑑𝑡 „

„ 𝛼𝜔𝑞
ż

𝒳

𝜙
´

𝑥, 𝑆
p𝑎q
1 p𝑓qp𝑥q

¯

𝑑𝜇p𝑥q.

This finishes the proof of (10) and, hence, of Lemma 5. l

Now, we prove Theorem 1.

Proof of Theorem 1. We first prove the sufficiency. Let 𝑓 P p𝒢𝜂0 p𝜚,𝜗qq1
and 𝑔˚𝜆p𝑓q P 𝐿

𝜙p𝒳 q. By Definition 11, Lemma 1, and Definition 9, we
conclude that, for any 𝑥 P 𝒳 ,

𝑔˚𝜆p𝑓qp𝑥q >

"

ÿ

𝑘PZ

ż

𝐵p𝑥,𝛿𝑘q

|𝑄𝑘𝑓p𝑦q|
2

„

𝛿𝑘

𝛿𝑘 ` 𝑑p𝑥, 𝑦q

𝜆
𝑑𝜇p𝑦q

𝑉𝛿𝑘p𝑥q ` 𝑉𝛿𝑘p𝑦q

*1{2

„
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„

"

ÿ

𝑘PZ

ż

𝐵p𝑥,𝛿𝑘q

|𝑄𝑘𝑓p𝑦q|
2 𝑑𝜇p𝑦q

𝑉𝛿𝑘p𝑥q

*1{2

„ 𝑆p𝑓qp𝑥q,

which, combined with Definition 10, further implies that

}𝑓}𝐻𝜙p𝒳 q “ }𝑆p𝑓q}𝐿𝜙p𝒳 q À }𝑔
˚
𝜆p𝑓q}𝐿𝜙p𝒳 q .

This shows 𝑓 P 𝐻𝜙p𝒳 q and, hence, finishes the proof of the sufficiency.
Next, we prove the necessity. By Definition 11 and (8), we find that,

for any 𝑓 P 𝐻𝜙p𝒳 q and 𝑥 P 𝒳 ,

r𝑔˚𝜆p𝑓qp𝑥qs
2
“

”

ÿ

𝑘PZ

ż

𝐵p𝑥,𝛿𝑘q

`

8
ÿ

𝑗“0

ÿ

𝑘PZ

ż

𝐵p𝑥,2𝑗`1𝛿𝑘qz𝐵p𝑥,2𝑗𝛿𝑘q

ı

|𝑄𝑘𝑓p𝑦q|
2
ˆ

ˆ

” 𝛿𝑘

𝛿𝑘 ` 𝑑p𝑥,𝑦q

ı𝜆 𝑑𝜇p𝑦q

𝑉𝛿𝑘p𝑥q ` 𝑉𝛿𝑘p𝑦q
À

À
ÿ

𝑘PZ

ż

𝐵p𝑥,𝛿𝑘q

|𝑄𝑘𝑓p𝑦q|
2 𝑑𝜇p𝑦q

𝑉𝛿𝑘p𝑦q
`

`

8
ÿ

𝑗“0

2´p𝑗`1q𝜆
ÿ

𝑘PZ

ż

𝐵p𝑥,2𝑗`1𝛿𝑘q

|𝑄𝑘𝑓p𝑦q|
2 𝑑𝜇p𝑦q

𝑉𝛿𝑘p𝑦q
„

„

”

𝑆
p𝑎q
1 p𝑓qp𝑥q

ı2

`

8
ÿ

𝑗“1

2´𝑗𝜆
”

𝑆
p𝑎q

2𝑗
p𝑓qp𝑥q

ı2

„

„

8
ÿ

𝑗“0

2´𝑗𝜆
”

𝑆
p𝑎q

2𝑗
p𝑓qp𝑥q

ı2

,

which further implies that

𝑔˚𝜆p𝑓qp𝑥q À

" 8
ÿ

𝑗“0

2´𝑗𝜆
”

𝑆
p𝑎q

2𝑗
p𝑓qp𝑥q

ı2
*

1
2

À

8
ÿ

𝑗“0

2´
𝑗𝜆
2 𝑆

p𝑎q

2𝑗
p𝑓qp𝑥q. (14)

Moreover, from 𝜆 ą 2𝜔𝑞p𝜙q
𝑝

, (5), and Lemma 2(i), it follows that there
exists a 𝑞 ą 𝑞p𝜙q, such that 𝜆 ą 2𝜔𝑞

𝑝
and 𝜙 P A𝑞p𝒳 q. By this, (14), the

facts that 𝜙p𝑥, ¨q is non-decreasing for almost every 𝑥 P 𝒳 and 𝜙 is of
uniformly lower type 𝑝, Lemma 3(i), and Lemma 5, we conclude that, for
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any 𝑓 P 𝐻𝜙p𝒳 q,
ż

𝒳

𝜙
´

𝑥, 𝑔˚𝜆p𝑓qp𝑥q
¯

𝑑𝜇p𝑥q À

ż

𝒳

𝜙
´

𝑥,
8
ÿ

𝑗“0

2´
𝑗𝜆
2 𝑆

p𝑎q

2𝑗
p𝑓qp𝑥q

¯

𝑑𝜇p𝑥q À

À

8
ÿ

𝑗“0

ż

𝒳

𝜙
´

𝑥, 2´
𝑗𝜆
2 𝑆

p𝑎q

2𝑗
p𝑓qp𝑥q

¯

𝑑𝜇p𝑥q À

À

8
ÿ

𝑗“0

2´
𝑗𝜆𝑝
2 ¨ 2𝑗𝜔𝑞

ż

𝒳

𝜙
´

𝑥, 𝑆
p𝑎q
1 p𝑓qp𝑥q

¯

𝑑𝜇p𝑥q „

„

ż

𝒳

𝜙
´

𝑥, 𝑆
p𝑎q
1 p𝑓qp𝑥q

¯

𝑑𝜇p𝑥q,

which, together with (9), Lemma 3(ii), the positive homogeneity of both
𝑔˚𝜆 and 𝑆

p𝑎q
1 , and the fact that 𝜙 is of uniformly upper type 1, further

implies that
ż

𝒳

𝜙
´

𝑥,
𝑔˚𝜆p𝑓qp𝑥q

}𝑓}𝐻𝜙p𝒳 q

¯

𝑑𝜇p𝑥q “

ż

𝒳

𝜙
´

𝑥, 𝑔˚𝜆

´ 𝑓

}𝑓}𝐻𝜙p𝒳 q

¯

p𝑥q
¯

À

À

ż

𝒳

𝜙
´

𝑥, 𝑆
p𝑎q
1

´ 𝑓

}𝑓}𝐻𝜙p𝒳 q

¯

p𝑥q
¯

𝑑𝜇p𝑥q „

„

ż

𝒳

𝜙
´

𝑥,
𝑆p𝑓qp𝑥q

}𝑆p𝑓q}𝐿𝜙p𝒳 q

¯

𝑑𝜇p𝑥q „ 1.

Thus, there exists a positive constant 𝐶, such that, for any 𝑓 P 𝐻𝜙p𝒳 q,

}𝑔˚𝜆p𝑓q}𝐿𝜙p𝒳 q 6 𝐶}𝑓}𝐻𝜙p𝒳 q.

This finishes the proof of the necessity and, hence, of Theorem 1. ˝

Remark 2. Let 𝜔 and 𝜂 be the same, respectively, as in (3) and Defi-
nition 8.

(i) Assume that 𝑝 P p𝜔{p𝜔 ` 𝜂q, 1s and

𝜙p𝑥, 𝑡q :“ 𝑡𝑝, @𝑥 P 𝒳 , @ 𝑡 P r0,8q.

Then 𝐻𝜙p𝒳 q is just the classical Hardy space 𝐻𝑝p𝒳 q. In this case,
Theorem 1 shows the Littlewood–Paley 𝑔˚𝜆-function characterization
of 𝐻𝑝p𝒳 q with the best known range 𝜆 P p2𝜔{𝑝,8q, which coincides
with [11, Theorem 5.12].
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(ii) Recall that Fu et al. established the Littlewood–Paley 𝑔˚𝜆-function
characterization of 𝐻𝜙p𝒳 q with 𝜆 P p𝜔r2𝑞p𝜙q

𝑝
` 1s,8q in [7, Theorem

6.16]. Thus, Theorem 1 improves the conclusion of [7, Theorem 6.16]
by widening the range of 𝜆 into 𝜆 P p2𝜔𝑞p𝜙q

𝑝
,8q.
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[28] Strömberg J.-O., Torchinsky A. Weighted Hardy Spaces. Lecture Notes in
Mathematics 1381, Springer-Verlag, Berlin, 1989.
DOI: https://doi.org/10.1007/BFb0091154

[29] Yan X., He Z., Yang D., Yuan W. Hardy spaces associated with ball quasi-
Banach function spaces on spaces of homogeneous type: Characterizations
of maximal functions, decompositions, and dual spaces. Math. Nachr., 2023,
vol. 296, no. 7, pp. 3056 – 3116.
DOI: https://doi.org/10.1002/mana.202100432

https://doi.org/10.1215/S0012-7094-80-04755-9
https://doi.org/10.1090/S0002-9947-2012-05727-8
https://doi.org/10.1007/s00020-013-2111-z
https://doi.org/10.11650/tjm.19.2015.4692
https://doi.org/10.1155/2014/306214
https://doi.org/10.1016/j.jmaa.2012.05.049
https://doi.org/10.1016/j.jfa.2012.01.004
https://doi.org/10.1515/9781400883929
https://doi.org/10.1007/BF02546524
https://doi.org/10.1007/BFb0091154
https://doi.org/10.1002/mana.202100432


Musielak–Orlicz Hardy spaces 123

[30] Yang D., Liang Y., Ky L. D. Real-Variable Theory of Musielak–Orlicz
Hardy Spaces. Lecture Notes in Mathematics 2182, Springer-Verlag, Cham,
2017. DOI: https://doi.org/10.1007/978-3-319-54361-1

[31] Yang D., Yuan W., Zhang Y. Bilinear decomposition and divergence-curl
estimates on products related to local Hardy spaces and their dual spaces.
J. Funct. Anal., 2021, vol. 280, no. 2, Paper No. 108796, 74 pp.
DOI: https://doi.org/10.1016/j.jfa.2020.108796

Received April 24, 2023.
In revised form, October 10, 2023.
Accepted November 03, 2023.
Published online December 02, 2023.

Institute of Contemporary Mathematics,
School of Mathematics and Statistics,
Henan University
Kaifeng 475004, The People’s Republic of China
E-mail: xianjieyan@henu.edu.cn

https://doi.org/10.1007/978-3-319-54361-1
https://doi.org/10.1016/j.jfa.2020.108796

