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Abstract. The study of the properties of special functions plays
an important role in solving many problems in geometric function
theory. We study the properties of hyperelliptic integrals and spe-
cial functions, which definition includes a parameter that depends
on the dimension of the space. The appearance of these functions
is associated with the solution of a specific variational problem of
finding in m-dimensional Euclidean space a surface that has the
smallest area in a given metric among the hypersurfaces formed
by rotation around the polar axis of a plane curve connecting two
fixed points in the upper half-plane.
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1. Introduction. The study of the properties of special functions
and their application to solving extremal problems of geometric function
theory and, in particular, quasiconformal mappings is the subject of many
works by G. D. Anderson, M.K. Vamanamuthy, M. Vuorinen, T. Sugawa,
X. Zhang, and others (see, for example, [1]- [4]). Dependence on dimen-
sion of the volume of an n-dimensional ball of unit radius expressed in
terms of the gamma function, and various relationships associated with
this quantity, was studied in [5], [6], [9].

In the work of the authors [8], a solution was obtained to the variational
problem; it arose when studying the change in the modulus of a family
of surfaces that separate the boundary components of a spherical ring
in the n-dimensional Euclidean space E™ (n > 3), upon transition to
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its subfamily consisting of surfaces enveloping the continuum (obstacle)
belonging to the ring.

Let = (z1,7,...7,) be a point in E", n > 3, |z|=~/23+23+.. . +22
be the length of x. Let us choose the Ox;-axis as the polar axis in the sys-
tem of spherical coordinates in £™ and define a complex structure on the
two-dimensional plane Oxx,, identifying it with the complex plane C,.

We consider a family of plane piecewise-smooth curves v = ~.,(6, 1)
given by the parametric equation z(7) = e/(M*+¥(7) 7+ ¢ [0 4], and con-
necting the points zy = rLe? and z; = rle® (1 <1 < L) in the closed set

B, ={z:r<|z| < Lrjargz e [0,¢4],0 < < <m,r>0}.

It is assumed that at the points of differentiability p'(7) < 0 and ¢/(7) > 0.
The choice of curve representation is due to the convenience for further
analysis.

The variational problem mentioned above is to find, among the surfaces
formed by rotation in E™ around the polar axis of the curves v.,(6, 1), the
surface of the smallest area calculated in the metric po(z) = |z|'"w; ',
where w,,_; is the surface area of the hypersphere unit. This metric is
extremal for the modulus of the family of surfaces separating the boundary
components of the spherical ring in E™ [7]. The description of optimal
trajectories of the variational problem and the calculation of the areas of
minimal surfaces leads to a class of special functions, the representation
of which involves hyperelliptic integrals of a standardized forms:

4/2(71,2) 1d
On(a,b,c) dx =) E,(a,b,c) T w’

\/02 _ $2\/$2 n—2) \/—2
(1)

where 1 < a < b < c <o andn > 3is anatural number.

The purpose of this work is to study the general properties of such
hyperelliptic integrals and apply them to study the extremal properties of
the special functions under consideration.

In Section 2, we study the behavior of hyperelliptic integrals (1) de-
pending on the parameters. These results are used in Section 3 to study
the properties of special functions that describe optimal trajectories of
the variational problem. Section 4 is devoted to the study of extremal
properties of special functions related to the area of minimal surfaces
formed by rotation around the polar axis of optimal trajectories. The es-
tablished properties have application to the solution of some variational
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and extremal problems for capacities and modules of spatial condensers.
In Section 5, we present the results of numerical experiments carried out
using PTC Mathcad Prime to construct graphs of special functions and
calculate the values of extremal functions and constants defined in the
statements proven in the work for various values of dimension.

2. General properties of hyperelliptic integrals ©,, and E,,.
Along with the general representation of functionals (1), we also con-
sider the following particular forms:

dx
\/b2 _ $2\/$2(n72) 1’

(2)

dx

b ==
) \/b2 — 124/ 22(—2) _ 1’
1

(a.b) J\/xﬂl 2) dx’ (1)

—.TQ

A /56'2 n—2) 1dx 5

_ ZL‘Q . ( )

Note that for n = 3 functionals (2)f(5) are elliptic integrals that can be
reduced to the Legendre normal form.

Lemma 1. 1) O,(a,b,c) is strictly decreases as a function of n and
function of a € [1,b), is strictly increases as a function of b € [1;¢|, and
strictly decreases as a function of ¢ € [b,0) for fixed values of other
variables; ©,,(a) strictly decreases.

2) For natural n > 3 and any values 1 < a < b < ¢ < o0, the following
chains of inequalities hold:

O,(a,b,¢) < O, (1,b,¢) < O,(c) < O, (b) < Op(a) <

<A, :=1limO,(a) = ———:
i Onla) = 5=

On,(a,b,c) < O,(a,b) < O,(0) <O,(a) < A,.
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3) hm@ n(a,b) = hm ©,(a,b) = 0 and max O,(a,b) = ©,(a,b,(a)),

be(a;00)
where bn( )isa solumon of equality

(n—2)2*"dx a
\/W(xQ(n—Q) — 1)3/2 B Vb2 — a2y/a2(=2) — 1’

or equality
b

a dx
Onle0) = (n —2)v/b? — a%Va2(n=2) — 1 _J b2 — 22222 — 1] v

Proof. Direct calculations show that
00, (a,b,c) 00, (a,b,c) 00, (a,b,c)
o O <05
00, (a, b, c) <0, 00, (a,b) <0,
oc oa

> 0,

whence follows the strict monotonicity of the function ©,,(a, b, ¢) in each of
the variables, as well as the strict monotonicity of the function ©,(a, b) in
the variable a. Hence, ©,(a,b,c) < 0,(1,b,¢) < 6,(c) and 6,(a,b,c) <
< Ou(a,b) < 6,(1).

Setting © = 1 + (a — 1)y, we replace the variable in the integral

) dx

a) = .
\/a2 _ $2\/$2(n72) —1
1

After simple transformations, we get

1

On(a) =

(8)

f\/a+1—2y \/Z,C"IQC’;c y(a—1)ktyk

From this it follows that & ( ) <0, ie. ©,(a) strictly decreases, and

1
1 dy s

=A,=—.
24/n — 2

sup O,(a) =1lim 6,
Jup Onle) = mOnte) = 5o |
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Similarly, setting x = 1 + (b — 1)y, replacing the variable in the integral
O,(a,b), we find:

1

0u(ah)= | Ll
Sy VT =3y — (b - D2y /520 7C

2l 2(n—2)

(9)

(b= 1)1yt

This implies limy_,, ©,(a,b) = lim,_,o, ©,(a,b) = 0.
On the other hand, setting = bsint in the integral ©,,(a,b), we find:

/2

J \/bsmt (n—2) _ 1

arcsin &

Hence,
/2
00, (a,b) B a - f (n — 2)b25 sin2=2 ¢4t
ob CbBE — a2Va2D — 1 [(bsint)2(m=2) — 1]°/2 7

ha
arcsin b

or, after the reverse replace,

00, (a,b) a n— J (n=2) o (10
ob b/b2 — a2y/a2n—2) N :v? (@202 1))

Therefore, the maximum value of ©,,(a,b) on the interval b € (a, ) is
achieved at b = b,(a), which is the root of equation (6) or equation (7),
obtained from (6) using simple transformations. []

Lemma 2. 1) E,(a,b,c) is strictly increases as a function of n, strictly
decreases as a function of a € [1,b), strictly increases as a function of
b e [1,c|, and strictly decreases as a function of ¢ € [b, 0); E,(a,b) strictly
decreases as a function of a € [1,b) and strictly increases as a function
of b € (a,0) for fixed values of other variables; E,(b) strictly increases.
Moreover, for natural n > 3 and any values 1 < a < b < ¢ < o, the
following chains of inequalities hold:
E,(a,b,c) < E,(a,b) < E,(b) < E,(c) < lim E,(c) = o0;

c—00

E,(a,b,c) < E,(1,b,¢) < E,(c) < .
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2) The following functional equation holds:

oF, (b n—2
) 121 1)+ 0,0). (1)
ob b
/En s Uy En ) Yy
Proof. 1) Direct calculations show that d g;b ) > 0, d (aaab d <0,
W - 0, M <0, and 2290 Replacing the

oa
variable in the integral E (a,b) setting = = bsint, we find:

4/ 2(n—2) 1d
’ - J \/bsmt n=2) — 1dt. (12)
\/7
arcsin b
Hence,
71-/2
0FE,(a,b) _a a?(n=2) — 1 N f (n — 2)b> % sin®"=2) tdt -0, (13)
ob b Vb —a? ) V/(bsint)2(n=2) — 1

b

whence follows the strict monotonicity of functions E,(a,b,c), E,(a,b)
and E,(b) in each of the variables, as well as the chain of inequalities
given in the formulation of the lemma.

2) From (13), it follows that

0E,(b) n— - bsmt 2(n-2) ”
6b \/ bsint)? —1

arcsm T

Taking into account the definitions of functions E,(b) and 6,,(b), after
simple transformations we obtain (11). ]

3. Hyperelliptic integrals in the representation of optimal
trajectories for the Variational problem.

In the metric po(z) = |z[*™"w, |, the area F(v) of the surface formed
by the rotation in E™ of the curve v = v.(6,1) around the polar axis in
a polar coordinate system, has the form:

Wn—2

P
Fy) = j 2 oW (@) + ((r)dr. (14)

Wn—1
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The description of the optimal trajectories, providing the minimum
value of the functional (14) in the considered class of curves (see [8]),
leads to the following functions of the variables 6 and :

P
sin™ 2 fdt
hO (97 1/}) = f ) (15>
" \/sinQ(”_2) t —sin2(2 g
if 1 > 6 and sinv > sinf (p < Jor 0 <7 -9 < §);
I i an—2 1/}dt
sin
hl (87 ¢> = J N — - — ) (16>
\/sm2(" Dt —sin?"2 g
0
if 1 > 0 and sinv < sinf (7 —¢ <0 < 5 or 0 > 7);
h(6) = ho (9, g) (17)
Replacing the variable in the integrals (15)—(17) and assuming
1 1 1
b= d = =
sinf’ siny  sin (7 — )’
we find:
ho (0,¢) = ©,(1,bsing, b), if 0 <0 < <7/ (18)

ho (0,7) = 6,(b) + ©,(bsin(r — ), b) :=Z,(b,m — ) = Z,(b,¢), (19)

1f0<9<77'—w<7r/2,

hy (6,%) = O,(1, dsin(m — 6),d), if /s <0 < <7 (20)

hi (0,0) = ©,(d) + O,(dsinb, d) = Z,(d,0), if 7 —b <0 <T/y; (21)

h(0)=0,(b), if0<0<7/). (22)



Hyperelliptic integrals and special functions ... 91

Lemma 3. 1) \ lim ©,(1,bsin,b) = blim 0,(1,bsinv,b) = 0 and
1 — 00

e /sinzp

max 0, (1,bsin, b) = 0,,(1,b,(¥) sinv, b, (V)),

be(a,00)
where b, (1) is a solution of equality

bsiny

| A - 23
(02 — 22)°/20/2200=2) — 1 \/(bsing)2-2) — 1’

1

2) E,(b,1) = ©,(b) + ©,(bsint, b) strictly decreases in each of the
variables for a fixed value of the other.

Proof. 1) Change of variable in the integral ©,(1,bsin,b), setting
x =1+ (bsiny — 1)y, leads to the following representation:

O,(1,bsiney,b) =
_j Vbsing— 1dy
- . \/b2—[1+(b sin¢—1)y]2\/2i<j;2> Ck o (bsing — 1)b—Tyh)
whence follow the equalities

lim ©,(1,bsinvy,b) = blim O,(1,bsiney,b) = 0.
—0

b_’l/sin P

Therefore, for any ¢ € (0,7 /3), the maximum value of ©,,(1,bsin, b)
is reached at the point b, (1)), which is the solution of the equation
bsiny
00,,(1,bsin, b)) tg B J bdx
=3

- 8/2n/22(n—2) _]

b b/ (bsin))2n=2) —1

2) It is easy to see that for ¢ € (0,7/5)

0=n(b, 00, (a,b 1
(b, ) = (a,5) bcosy) = — : < 0.
aw da a=bsin \/(b Slnw)Q(n_Q) -1
Since ae"(b;;w’b) = ‘96”6(5’[’) s + sin 6 é’@,é—ga,b) oy then, taking
into account equality (10) and equality
00, (a,b) B 1
oa |, _psing bcos 04/ (bsin 0)2(n—2) — 1
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we find

00, (bsiny,b)  (n— 2 f 22 =2)dy
ob N /B2 — 22(22(n=2) — 1)*/2

bsin O

< 0.

Because dedLb(b) < 0 (see lemma 1), we have =289 < . Hence, =, (b, 1)

b
strictly decreases as a function of b. []
The properties of hyperelliptic integrals formulated in Lemmas 1-3
imply:
Theorem 1. [8] 1) ho(6,%) is strictly increasing as a function of
0 € (0, — ] for fixed 1) € (" /9, ) and

g2 ho(0,) = 2h(1 — ) = 20, (* fuiny) -

2) Ifo<0< w < ﬂ'/g, then hmgao+ ho(e,w) = hmgawfo ho(e,w) =0
and h,, (1) = maxge(,y) ho(0,1) = ho(6,,1), where 6 = 6,,(¢) is a solution
of the equation

(24)

U
f dt tg ¥
0 cos? tv/sin2™2) ¢ — sin22) ¢ \/sm2(” 2 op —sin2m2 g

3) hy(0,) is strictly decreasing as a function of 6 € [m — ,™/5) for
fixed ¢ € (" /9, 7) and

hi(6,9) = 2h(m — ¥) = 20, (Msnw)
B 1(6,4) (m— 1) (*fsinw)

Wy M O0) = R =) = On (i)

4) h() is strictly increasing on the interval (0,7 /5) and

suph(f) = lim h(0) = A, = —— (25)
0

0—7/2 24/n — 2

4. Extremal properties of special functions for the variational
problem.

Calculating the areas of surfaces formed by rotation of the optimal
trajectories for functional (14) and comparing these areas with the area
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of the (n — 1)-dimensional sphere of unit radius calculated in the same
metric, leads to the need to study the properties of a number of special
functions that can be represented using of hyperelliptic integrals (1). Let
us first consider the functions involved in expressing the areas of surfaces
formed by the rotation of the optimal trajectories for the functional (10):

/o

(n=2) ¢t
f sin” , (26)
\/sm — sin?"=2 ¢

(27)
\/sm2(” ¢ —gin22 ¢
if ¢ > 0 and siny > 81n6(0<9<1p Zorf<m—1 < %)
n 2
sin? tdt (28)

if > 0 and siny) <sinf (m —p <O < For <0<y <m).
Replacing the variable in the mtegrals (26)—(28) and assuming
1 1 1
b= d= =
sinf§’ siny  sin(m — )’
we find:
dx 1

[En(b) +©n(b)]. (29)

\/52 _ xQ\/xQ n—2) _ 1 bn72

If0<60 <1y <7, then

Ho(0,9) = — [Ea(1,bsing,b) + ©,(1,bsing, )] (30)

bn72
If0<6<m—1 <3, then

_ [En(b7 ™= 77Z)) + En<b7 ™= 1/})] ) (31>
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where
E,(b,m — ) = E,(b) + E,(bsin(m — 1), b) = E, (b, ). (32)

If0<m—19 <0< 7, then

If £ <0<y <m, then

Hy (0, ) — # [E,.(1, dsin(r — 6),d) + ©,(1,dsin(x — 8),d)].  (34)

Lemma 4. E, (b)) is strictly decreasing as a function of 1 € (0,7/5),
strictly increasing as a function of b, and we have a functional equation

) - n—2

( =
= [Ealb¥) +Za(b¥)]. (35)

Proof. It is easy to see that a]E"(b Y < 0atee (0,7/2). By virtue of (32),

OEn (b)) _ OEn(b) 0En(ab) | 0En(a,b)
we have =5 = == + (smw s+ 5, )absmw.

Carrying out the necessary calculations and transformations, we find

0En(a,b) /(bsin )22 —1
aa a=bsiny a bCOS”Lﬁ
and (see (13))
0E,(a,b)
T|a:bsinw =
tg ¥ . - 2) Iy
= — b 2(n—2) _ '
b \/( Sin ¢) J \/bQ = xQ\/ﬁ =
bsin ¢
Because
b
n—2 JIQ(n_z)dI‘ n—2
— = E, (bsi ,b @n b ,b ’
b f VB2 — 224/22(n=2) ] b [E,(bsin, b) + ©,(bsin, b)]

bsin
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taking into account (11), (19), and (32), we get (35), whence it follows
that 2% > 0, 7

T—0

Theorem 2. 1) H(f), Hy(f) = 2H(0)— § sin" *tdt and H,(0) = H(0)—

m—0
— { sin"?tdt are strictly increasing on the interval 6 € (0,™/5) and

Wn—1
sup H(0)=A4,, inf H(# :
0e(0,7/2) ®) 6e(0,7/2) (6) = Qon_o’
Wn—1 0 .
sup Hy(0) = 2A, — =A,, inf Hy0) =0; 36
oup o(0) S seind Ho(0) (36)
sup Hi(0) = Ay — 2L AL inf H(0) = — 2oL
0(0,7 /2) 2wn— 0(0,7 /2) 2o

2) AY > Al >0 forn > 3, lim,,_,, A2 = 0, and there are inequalities:

) [T Vi1
(\F ) \\F<\/n_2 \/Qn_l) (37)

fﬂf\ﬁ A’I’\\[ \/Qn—2 \/n—1>

3) The equation

w—0

f n"" 2 tdt (38)

has a unique solution 6 = x(n) € (0,7 /5).

Proof. 1) Because

/o

= f Vsin2m= ¢ — in2"=2 gdt + h(6) sin" 24, (39)
¥ 2n—>5
i J \/sin2("’2) t — sin?( 2 gdt = ) sin Odt ’
0 \/sm n= 2)t sin2("=2) g
then 2@ _ gipn-292h0) 0, since, according to Theorem 1, o) .

a6 a
Hence, H(0), Hy(0), and H;(0) strictly increase on the interval (0,7 /).
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From here, due to (25) and (39), taking into account the equality
71-/2
§ sin"?tdt = ;=L we arrive at (36).
0 Wn—2

2) Inequalities (37) is a consequence of inequality

27 Wn—1 27
< < )
n—1 " wp_o n—2

which was established by K.H. Borgward [6] (see also [9]). It follows that
A? >0 and lim,,,, AY =0, v =0, 1.

3) Since H;(0) strictly increases on the interval (0,™/2) and takes values
of different signs, equation (38) has a unique solution 6§ = x(n). [J

For v = 0,1 we set:

»
H, (60, v) — H,(0, ) — J sin™2 {dt.
0

Theorem 3. 1) Hy(6,v) and Hy(0,1) are strictly increasing as func-
tions of 0 € (0,7 — 9| for fixed 1p € (" /o, m — 0], Ho(0,1)) takes positive
values, and

max Hy(0,v) = Ho(m — ).
ponax o(0,%) = Ho(m — )

2) Hy(0, ) is strictly increasing as a function of 1 € (0, m — 6] for fixed
€ (0,7/2), maxyeg,r—o Ho(0,) = Ho(), and for any 0 € (0,7/5), there
ex1sts a unique solution 1 = 12 () of the equation

P
Hy(0,v) = J sin" "%t dt. (40)

0

3) Ho(0, ) is strictly increasing as a function of 6 near the point § = 0
for fixed 1) € (6,7 /5], limy_,o Ho(0,1) = 0 and

Ggé(ja,ip(] HO(ea w> = HO(ena ¢) > 07

where 0,, = 0,(¢) is a solution of equation (24). In addition, on the
interval (6,,(1), 1)) there exists a solution 6 = 0°(¢)) of equation (40).

Proof. 1) Let 0 < 0 < 7 — 1 < §. By virtue of equality (31), we have
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OHy(6,¢) _ _M[En(b, T —1)+ Z, (b, — w>]+

ob bt
1 [0E,(b,m —v) 0=,(b,m — 1)
] e e
where b = —-. Taking Lemma 4 and relation (35) into account, we find
aHO(9777Z}) _ 1 aEn(bv T — ¢) <0
ob b2 ob '
Hence,

0Hy(0,) cos 0=, (b,m — )
00 sin"g  ab
that is, Hy(0,v) and Hy(,v) are strictly increasing as functions of
0 € (0,7 — 1] for fixed ¢ € (%, 7 — 0.

bR
Since

> 0,

inf Ho(e,w) = ahm H()(e,’w) =0

0e(0,m—] —0+

and by Theorem 2,

ee%gg}fw] H()(qup) = HO(W - ¢7 w) = HO(ﬂ- - ¢) > 07

then the function Hy(0, ) takes positive values for any 6 € (0,7 — 9].
2) Since

(?Ho (97 w)
oY

for ¢ € (0,7 — 6], then Hy(0,v) is strictly increasing as a function of
e (0,7 — 0] for fixed 6 € (0,7 /5) and

sin™ 2 ¢

\/sin2(”’2) Y —sin?2) ¢

— sin" ¢< . 1) =0,

Ho (6, ) = Ho(6).
popax o(6, ) 0(0)

Because

0

. IERT _ . n—2

¢e(101}7f_9] Hy(0,7) = ¢1—1>{0r}r0 Ho(6,) Jsm tdt <0,
0

and by Theorem 2,

Hy (6, 4) = Ho(0, 7 — §) = Hy(6) > 0,
wef(leliﬁe] o(0,v) o(0, ™ —0) o(0)
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then, for any 6 € (0,™/;), there exists a unique solution ¢ = 2(6) of
equation (40).
3) Let 0 < 0 <4 < §. It is easy to see that

aHO<97 1/}> _ aHO(07 w) _ Sinn—Z eah()(e? 1/})
00 00 o0

Therefore, the monotonicity intervals of Hy (6, ) and ho(6, 1) as functions
of the variable 6 for a fixed value of ¢ coincide. By virtue of Theorem 1
(property 2), this implies that

max HO(Q,Q/J) = H0<9n<w>7w)7

0e(0,¢]

where 6,,(1) is a solution of the equation (24).

As Hy(0,v) increases near the point § = 0 and limy_,o Hy(0,v) = 0,
Ho(0,,(10), %) > 0. From the definition of Hy(0, 1)), equality (30), and the
properties of the hyperelliptic integrals E, (1, bsin,b) and ©,,(1, bsin ), b)
(see Lemma 3), it follows that

T
(}irrqlﬁ Ho(0,v) = — f sin” 2 tdt < 0.
0

Therefore, on the interval (6, (1),) there exists a solution 6 = 6°(v))
of equation (40). [J

Theorem 4. 1) Hy(0,%) is strictly decreasing as a function of
0 € [m — 1, ) for fixed ¢ € [* /o, 7). There are equalities:

max M, (0,v) = Ho(m —1); Hi("/2,9) = Hi(m —);

06[7‘(‘—1}),1}})
L
inf Hy(0,¢) = lim H,(6,¢) = — [ sin" 2tdt < 0.
L 1(0,9) = lim HL (6, ) Jsm <

0

2) Hy(0,1)) is strictly decreasing as a function of 1) € [™ /o, 7) for fixed
0 € [m —1,™/5]. There exists a unique solution 1) = 1} () of equation

P
Hi(6,¢) = Jsin"‘2 tdt (41)
0
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and, besides, ¥} (™/y) = m — x(n), where x(n) is a unique solution of the
equation (38). In addition, for any v € (m — x(n), m) there exists a unique
solution 6 = 0} () of the equation (41).

3) H;(0,) takes negative value near the ends of the interval 1) € (0, 7)
for any fixed 6 € (" /5,1) and

peton) Hi(0,4) = Hi(0, ¢n(0)),

where 1) = ¢, (0) is a solution of the equation

P

J dt B
y cos? t4/sin?("2) ¢ — sin2"2) )

1 tg 6
Sp— - g (42)
sin" " costy 4/sin22 9 — sin2("2 ¢

There exists a solution § = 0(n) of the equation
Hy (0, ¢,(0)) = 0 (43)
and for 0 € (/5,0(n)) there exists two solutions ¢ = P,,(0) € (0,9,(0))
and 1), (0) € (1, (0),7) of the equation (41).
Proof. The statement 1) follows from the fact that
oH(0,¢) sin?"=2) ¢
o0 - \/sin2("_2) 0 — sin®("=2) )

for 0 € [1 — 1, 4¢) and fixed ¥ € [T/, m). It means that H;(6,) is strictly
decreasing as a function of 6.

2) As

<0

Y
H.(0,7) = f\/sin2(”2) t — sin2("=2) hdt + sin" 2 Phy(0,1)),
0

a}11 (9,¢)

B = sin" 2 w%i’w). By virtue of (20) and Lemma 3 (property 2),

oh1(0,) _ 0=,(d, 0) _ 0=,(d, 0) cos(m — 1)

o0 o0 od  sni(m—u) "
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It follows that

OHL(0,%) . .o, (Ohi(0,7)
T = sin 2¢<T

It means that H; (0,7 — ¢) is strictly decreasing as a function of ¢ for
fixed 0 € [m — ), /5]. Therefore, by virtue of Theorem 3,

—1)<O.

max H;(0,v¢) =Hy(0, 7 —0) = Hy(0) > 0,
Ye[r—0,m)

6

inf H;(0,¢) = lim H,(0,v) = — | sin® 2 tdt < 0.

gt H (0, ) = Jim Ha (6, 4) f
0

It follows that there exists a unique solution ¢ = !(0) of the equa-
tion (41). Since Hy("/2,9) = H(m — ), 7 — L (7 /2) = x(n).

By Theorem 2, Hyo(m — 1) and H;(m —1)) are strictly decreasing on the
interval ¢ € (7 /5, ). Therefore,

inf H;(0,v) = Hi(w— 1) <0,
sl JHL(0,9) = Ha(m — o)

H, (0, = H, — >0
B 1(6,9) oflm — 1)

for ¢ € (m — x(n), 7).

Consequently, for any ¢ € (m — x(n), ) there exists a unique solution
0 = 61 (¢) of equation (41).

3) Let 6 € ("/5,1). In this case,

»
H, (0,) — Holr — ), 7 — 0) — J sin™2 ¢t
0

Therefore,

0
zlpime H, (0,v¢) = Ilpim H,(6,¢) = — fsian tdt < 0.
0

As Ho(m —p,m—0) =
T—0

= J \/sinQ(”_Z) t — sin? =2 yhdt + sin" (7 — Y)ho(m — ¢, ™ — 6), then
Tt
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OH, (6, 1)) Oho(m =, —8) 1)
o o '

Therefore, maxye(g,r Hi(0,v) = Hi(0,4¢,(0)), where ¢ = 1,(0) is a
Oho(m—1,m—0)
)

— sin" 2 (

solution of equation = 1. Using representation (18) and re-
peating the calculations performed in the proof of Lemma 1, this equation
can be represented in explicit form (42). Because

eer[r%:icw H,(0,v) = Hy("/2,¢) = Hi(m — )

and by Theorem 2

sup Hy(m —1) = Al > 0;
Pe(/2,m)

then H; (0, 4) > 0 for values 6 and v close to ™/ and H, (6, ,(0)) > 0 for
6 close to ™ /5. Therefore, there exist a solution 6§ = 0(n) of equation (43)
and for 6 € (7/5,0(n)) there exists two solutions 1 = 1,,(0) € (6,1,(0))
and 1,,(0) € (1, (), ) of the equation (41). [J

5. Results of numerical experiments.

Let us present the results of numerical experiments on constructing
plots of the functions under study.

Figures 1 and 2 present the results of numerical experiments on con-
structing plots of the functions O3(a,b) and O;(a,b) for specific values

2 2
a e <7§,7§,2)

2
, o (E.b)
8, (ﬁ.b) :
—? Bs (\?_ﬁb)
() 05 (2,5)
05 (2.0)
|
Figure 1: The plots of ©3(a,b) Figure 2: The plots of ©5(a,b)

Figures 3 and 4 present the results of numerical experiments on con-
structing plots of the functions hy(6, 1) for specific values ¢ € (" /12,7 /¢," /4,
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/3,97 /12), when n = 3 (see Figure 3) and n = 5 (see Figure 4). These
plots suggest that 6,,(¢) is a unique solution to the equation (23) for every

e (0,7/s).

e )

E E

e e

o) 9 o)

) )
Figure 3: The plots of Figure 4: The plots of
h0<97w)7n:3 h0<97w)7n:5

Figures 5 and 6 present results of numerical experiments on construct-
T T T 5T

ing plots of the functions Hy(6,v) for specific values ¥ € ({5, 5, 5, 5, 55);
when n = 3 (see Figure 5) and n = 5 (see Figure 6).

: o) o)
x’\ﬁ\\ Sy ]H]n(a,%] B S ]H]n(a,%]
) e
Hofo.5 3 Hoo.5
s . o)
Figure 5: The plots of Figure 6: The plots of
H0(0,¢),n=3 H0(0,¢),n=5

These plots suggest that 69 (1) is a unique solution to the equation (39)
for every ¥ € (0,7 /5).

Figures 7 and 8 present results of numerical experiments on construct-
ing plots of the functions H; (6, 1)) for specific values 6 € (0(n) —" /500, 0(n),
O(n) + ™/a00), when n = 3,0(3) ~ 1.6435 (see Figure 7) and for
n =>5,0(5) ~ 1.5946 (see Figure 8).
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‘ H.[ﬂ(n)—;ﬁ&] - Hl[s[n)—z%,ﬂ:]
H,(0(n),%) . s Ho(o(n). )
H‘H.[ﬂ(n)-ﬂ—;m,w] ]]E[f[n)+2—z“,qi]_
Figure T: The plots of Figure &: The plots of
Hl(Q,@Z)),n =3 Hl(Q,@/J),n =5

Let us present the results of numerical experiments on studying the
dependence on the dimension n € (3,4,5,7) of the constants defined in
Lemma 1 and Theorem 1 (Table 1), as well as the values of extremal func-
tions 6,,,60%, 0} (Table 2), functions 1%, ¥} (Table 3), function v, (Table 4),

ny¥nir¥n

and functions v, (6) and v,,(#) (Table 5) in specific points.

Table 1: The values of certain constants.
A, | AL | AL | x(n) | O(n)
1.571 | 2.142 | 0.571 | 1.073 | 1.6425
1.111 | 1.436 | 0.325 | 1.272 | 1.6057
0.907 | 1.147 | 0.240 | 1.347 | 1.5946
0.702 | 0.872 | 0.169 | 1.411 | 1.5862

N O | o S

Table 2: The values of extremal functions 6,,,6°,6}.

n |02 (5) [ 02 (5) [ O0(5) | 05 (5) [ Oh(m — 257 [ On(m —*5%)
31 0.628 | 0.452 | 0.914 | 0.667 1.237 1.001
4| 0.691 | 0.503 | 0.893 | 0.652 1.184 0.915
5| 0.733 | 0.538 | 0.892 | 0.653 1.153 0.870
71 0.786 | 0.582 | 0.901 | 0.663 1.115 0.824

It is of interest to obtain explicit estimates of the extremal functions
and extremal values defined in the work, depending on the dimension.

The authors would like to thank the anonymous reviewer for the at-
tention to the work and comments that allowed us to correct shortcomings
and improve the manuscript.
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Table 3: The values of extremal functions ¢/2 and v} .

n | (5) [ Uh(5) [ ¢n(53-01) | (5) |4 (5) [ ¥ (5-01)

31 0914 1.176 1.512 2.749 | 2.572 2.204

4109332 | 1.199 1.521 2.601 2.404 2.020

51 0.9333 | 1.202 1.524 2.533 | 2.330 1.947

71 0.922 1.196 1.526 2.467 | 2.256 1.880

Table 4: The values of extremal functions 1),,.

n | ¢ (5 +01) [ va(§+ %) [ a(6(n) | du (5) | ¥n(r—0.1)

3 1.868 1.753 1.825 2.294 3.057

4 1.827 1.680 1.722 2.235 3.052

5 1.805 1.652 1.684 2.205 3.050

7 1.780 1.628 1.652 2.173 3.047
Table 5: The values of extremal functions ¢, () and in(e)

n| 0, (5+000) [0, (5+%2) [ B, (5+000) | B, (5+%)

3 1.590 1.648 2.051 1.997

4 1.595 1.616 1.846 1.825

5 1.599 1.605 1.768 1.761

7 1.605 1.595 1.697 1.707
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