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HYPERELLIPTIC INTEGRALS AND SPECIAL
FUNCTIONS FOR THE SPATIAL VARIATIONAL

PROBLEM

Abstract. The study of the properties of special functions plays
an important role in solving many problems in geometric function
theory. We study the properties of hyperelliptic integrals and spe-
cial functions, which definition includes a parameter that depends
on the dimension of the space. The appearance of these functions
is associated with the solution of a specific variational problem of
finding in 𝑛-dimensional Euclidean space a surface that has the
smallest area in a given metric among the hypersurfaces formed
by rotation around the polar axis of a plane curve connecting two
fixed points in the upper half-plane.
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1. Introduction. The study of the properties of special functions
and their application to solving extremal problems of geometric function
theory and, in particular, quasiconformal mappings is the subject of many
works by G. D. Anderson, М.К. Vamanamuthy, M. Vuorinen, T. Sugawa,
X. Zhang, and others (see, for example, [1]– [4]). Dependence on dimen-
sion of the volume of an 𝑛-dimensional ball of unit radius expressed in
terms of the gamma function, and various relationships associated with
this quantity, was studied in [5], [6], [9].

In the work of the authors [8], a solution was obtained to the variational
problem; it arose when studying the change in the modulus of a family
of surfaces that separate the boundary components of a spherical ring
in the 𝑛-dimensional Euclidean space 𝐸𝑛 (𝑛 > 3), upon transition to
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its subfamily consisting of surfaces enveloping the continuum (obstacle)
belonging to the ring.

Let 𝑥“p𝑥1, 𝑥2, . . . 𝑥𝑛q be a point in 𝐸𝑛, 𝑛 > 3, |𝑥|“
a

𝑥21`𝑥
2
2`. . .`𝑥

2
𝑛

be the length of 𝑥. Let us choose the 𝑂𝑥1-axis as the polar axis in the sys-
tem of spherical coordinates in 𝐸𝑛 and define a complex structure on the
two-dimensional plane 𝑂𝑥1𝑥2, identifying it with the complex plane C𝑧.

We consider a family of plane piecewise-smooth curves 𝛾 “ 𝛾𝐿p𝜃, 𝜓q
given by the parametric equation 𝑧p𝜏q “ 𝑒𝜌p𝜏q`𝑖𝜙p𝜏q, 𝜏 P r𝜃, 𝜓s, and con-
necting the points 𝑧0 “ 𝑟𝐿𝑒𝑖𝜃 and 𝑧1 “ 𝑟𝑙𝑒𝑖𝜓 p1 6 𝑙 ă 𝐿q in the closed set

𝐵𝑟 “ t𝑧 : 𝑟 6 |𝑧| 6 𝐿𝑟, arg 𝑧 P r𝜃, 𝜓s , 0 ă 𝜃 ă 𝜓 ă 𝜋, 𝑟 ą 0u.

It is assumed that at the points of differentiability 𝜌1p𝜏q 6 0 and 𝜙1p𝜏q > 0.
The choice of curve representation is due to the convenience for further
analysis.

The variational problem mentioned above is to find, among the surfaces
formed by rotation in 𝐸𝑛 around the polar axis of the curves 𝛾𝐿p𝜃, 𝜓q, the
surface of the smallest area calculated in the metric 𝜌0p𝑥q “ |𝑥|1´𝑛𝜔´1𝑛´1,
where 𝜔𝑛´1 is the surface area of the hypersphere unit. This metric is
extremal for the modulus of the family of surfaces separating the boundary
components of the spherical ring in 𝐸𝑛 [7]. The description of optimal
trajectories of the variational problem and the calculation of the areas of
minimal surfaces leads to a class of special functions, the representation
of which involves hyperelliptic integrals of a standardized forms:

Θ𝑛p𝑎, 𝑏, 𝑐q “

𝑏
ż

𝑎

𝑑𝑥
?
𝑐2 ´ 𝑥2

?
𝑥2p𝑛´2q ´ 1

, 𝐸𝑛p𝑎, 𝑏, 𝑐q “

𝑏
ż

𝑎

?
𝑥2p𝑛´2q ´ 1 𝑑𝑥
?
𝑐2 ´ 𝑥2

,

(1)
where 1 6 𝑎 ă 𝑏 6 𝑐 ă 8 and 𝑛 > 3 is a natural number.

The purpose of this work is to study the general properties of such
hyperelliptic integrals and apply them to study the extremal properties of
the special functions under consideration.

In Section 2, we study the behavior of hyperelliptic integrals (1) de-
pending on the parameters. These results are used in Section 3 to study
the properties of special functions that describe optimal trajectories of
the variational problem. Section 4 is devoted to the study of extremal
properties of special functions related to the area of minimal surfaces
formed by rotation around the polar axis of optimal trajectories. The es-
tablished properties have application to the solution of some variational
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and extremal problems for capacities and modules of spatial condensers.
In Section 5, we present the results of numerical experiments carried out
using PTC Mathcad Prime to construct graphs of special functions and
calculate the values of extremal functions and constants defined in the
statements proven in the work for various values of dimension.

2. General properties of hyperelliptic integrals Θ𝑛 and 𝐸𝑛.
Along with the general representation of functionals (1), we also con-

sider the following particular forms:

Θ𝑛p𝑎, 𝑏q “

𝑏
ż

𝑎

𝑑𝑥
?
𝑏2 ´ 𝑥2

?
𝑥2p𝑛´2q ´ 1

, (2)

Θ𝑛p𝑏q “

𝑏
ż

1

𝑑𝑥
?
𝑏2 ´ 𝑥2

?
𝑥2p𝑛´2q ´ 1

, (3)

𝐸𝑛p𝑎, 𝑏q “

𝑏
ż

𝑎

?
𝑥2p𝑛´2q ´ 1 𝑑𝑥
?
𝑏2 ´ 𝑥2

, (4)

𝐸𝑛p𝑏q “

𝑏
ż

1

?
𝑥2p𝑛´2q ´ 1 𝑑𝑥
?
𝑏2 ´ 𝑥2

. (5)

Note that for 𝑛 “ 3 functionals (2)–(5) are elliptic integrals that can be
reduced to the Legendre normal form.

Lemma 1. 1) Θ𝑛p𝑎, 𝑏, 𝑐q is strictly decreases as a function of 𝑛 and
function of 𝑎 P r1, 𝑏q, is strictly increases as a function of 𝑏 P r1; 𝑐s, and
strictly decreases as a function of 𝑐 P r𝑏,8q for fixed values of other
variables; Θ𝑛p𝑎q strictly decreases.

2) For natural 𝑛 > 3 and any values 1 6 𝑎 ă 𝑏 6 𝑐 ă 8, the following
chains of inequalities hold:

Θ𝑛p𝑎, 𝑏, 𝑐q 6 Θ𝑛p1, 𝑏, 𝑐q 6 Θ𝑛p𝑐q 6 Θ𝑛p𝑏q 6 Θ𝑛p𝑎q ă

ă ∆𝑛 :“ lim
𝑎Ñ1

Θ𝑛p𝑎q “
𝜋

2
?
𝑛´ 2

;

Θ𝑛p𝑎, 𝑏, 𝑐q 6 Θ𝑛p𝑎, 𝑏q 6 Θ𝑛p𝑏q 6 Θ𝑛p𝑎q ă ∆𝑛.
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3) lim
𝑏Ñ𝑎

Θ𝑛p𝑎, 𝑏q “ lim
𝑏Ñ8

Θ𝑛p𝑎, 𝑏q “ 0 and max
𝑏Pp𝑎;8q

Θ𝑛p𝑎, 𝑏q “ Θ𝑛p𝑎, 𝑏𝑛p𝑎qq,

where 𝑏𝑛p𝑎q is a solution of equality

𝑏
ż

𝑎

p𝑛´ 2q𝑥2p𝑛´2q𝑑𝑥
?
𝑏2 ´ 𝑥2p𝑥2p𝑛´2q ´ 1q3{2

“
𝑎

?
𝑏2 ´ 𝑎2

?
𝑎2p𝑛´2q ´ 1

, (6)

or equality

Θ𝑛p𝑎, 𝑏q “
𝑎

p𝑛´ 2q
?
𝑏2 ´ 𝑎2

?
𝑎2p𝑛´2q ´ 1

´

𝑏
ż

𝑎

𝑑𝑥
?
𝑏2 ´ 𝑥2r𝑥2p𝑛´2q ´ 1s3{2

. (7)

Proof. Direct calculations show that

BΘ𝑛p𝑎, 𝑏, 𝑐q

B𝑛
ă 0,

BΘ𝑛p𝑎, 𝑏, 𝑐q

B𝑎
ă 0,

BΘ𝑛p𝑎, 𝑏, 𝑐q

B𝑏
ą 0,

BΘ𝑛p𝑎, 𝑏, 𝑐q

B𝑐
ă 0,

BΘ𝑛p𝑎, 𝑏q

B𝑎
ă 0,

whence follows the strict monotonicity of the function Θ𝑛p𝑎, 𝑏, 𝑐q in each of
the variables, as well as the strict monotonicity of the function Θ𝑛p𝑎, 𝑏q in
the variable 𝑎. Hence, Θ𝑛p𝑎, 𝑏, 𝑐q 6 Θ𝑛p1, 𝑏, 𝑐q 6 Θ𝑛p𝑐q and Θ𝑛p𝑎, 𝑏, 𝑐q 6
6 Θ𝑛p𝑎, 𝑏q 6 Θ𝑛p𝑏q.

Setting 𝑥 “ 1` p𝑎´ 1q𝑦, we replace the variable in the integral

Θ𝑛p𝑎q “

𝑎
ż

1

𝑑𝑥
?
𝑎2 ´ 𝑥2

?
𝑥2p𝑛´2q ´ 1

.

After simple transformations, we get

Θ𝑛p𝑎q “

1
ż

0

𝑑𝑦
a

𝑎` 1´ 2𝑦 ´ p𝑎´ 1q𝑦2
b

Σ
2p𝑛´2q
𝑘“1 𝐶𝑘

2p𝑛´2qp𝑎´ 1q𝑘´1𝑦𝑘
. (8)

From this it follows that 𝑑Θ𝑛p𝑎q
𝑑𝑎

ă 0, i.e. Θ𝑛p𝑎q strictly decreases, and

sup
𝑎Pp1;8q

Θ𝑛p𝑎q “ lim
𝑎Ñ1

Θ𝑛p𝑎q “
1

2
?
𝑛´ 2

1
ż

0

𝑑𝑦
?
𝑦
?

1´ 𝑦
“ ∆𝑛 “

𝜋

2
?
𝑛´ 2

.
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Similarly, setting 𝑥 “ 1 ` p𝑏 ´ 1q𝑦, replacing the variable in the integral
Θ𝑛p𝑎, 𝑏q, we find:

Θ𝑛p𝑎, 𝑏q“

1
ż

𝑎´1
𝑏´1

𝑑𝑦
a

𝑏` 1´ 2𝑦 ´ p𝑏´ 1q𝑦2
b

Σ
2p𝑛´2q
𝑘“1 𝐶𝑘

2p𝑛´2qp𝑏´ 1q𝑘´1𝑦𝑘
. (9)

This implies lim𝑏Ñ𝑎 Θ𝑛p𝑎, 𝑏q “ lim𝑏Ñ8 Θ𝑛p𝑎, 𝑏q “ 0.
On the other hand, setting 𝑥 “ 𝑏 sin 𝑡 in the integral Θ𝑛p𝑎, 𝑏q, we find:

Θ𝑛p𝑎, 𝑏q “

𝜋{2
ż

arcsin 𝑎
𝑏

𝑑𝑡
a

p𝑏 sin 𝑡q2p𝑛´2q ´ 1
.

Hence,

BΘ𝑛p𝑎,𝑏q

B𝑏
“

𝑎

𝑏
?
𝑏2 ´ 𝑎2

?
𝑎2p𝑛´2q ´ 1

´

𝜋{2
ż

arcsin 𝑎
𝑏

p𝑛´ 2q𝑏2𝑛´5 sin2p𝑛´2q 𝑡𝑑𝑡

rp𝑏 sin 𝑡q2p𝑛´2q ´ 1s3{2
,

or, after the reverse replace,

BΘ𝑛p𝑎, 𝑏q

B𝑏
“

𝑎

𝑏
?
𝑏2 ´ 𝑎2

?
𝑎2p𝑛´2q´1

´
𝑛´ 2

𝑏

𝑏
ż

𝑎

𝑥2p𝑛´2q𝑑𝑥
?
𝑏2 ´ 𝑥2p𝑥2p𝑛´2q´1q3{2

. (10)

Therefore, the maximum value of Θ𝑛p𝑎, 𝑏q on the interval 𝑏 P p𝑎,8q is
achieved at 𝑏 “ 𝑏𝑛p𝑎q, which is the root of equation (6) or equation (7),
obtained from (6) using simple transformations. l

Lemma 2. 1) 𝐸𝑛p𝑎, 𝑏, 𝑐q is strictly increases as a function of 𝑛, strictly
decreases as a function of 𝑎 P r1, 𝑏q, strictly increases as a function of
𝑏 P r1, 𝑐s, and strictly decreases as a function of 𝑐 P r𝑏,8q; 𝐸𝑛p𝑎, 𝑏q strictly
decreases as a function of 𝑎 P r1, 𝑏q and strictly increases as a function
of 𝑏 P p𝑎,8q for fixed values of other variables; 𝐸𝑛p𝑏q strictly increases.
Moreover, for natural 𝑛 > 3 and any values 1 6 𝑎 ă 𝑏 6 𝑐 ă 8, the
following chains of inequalities hold:

𝐸𝑛p𝑎, 𝑏, 𝑐q 6 𝐸𝑛p𝑎, 𝑏q 6 𝐸𝑛p𝑏q 6 𝐸𝑛p𝑐q ă lim
𝑐Ñ8

𝐸𝑛p𝑐q “ 8;

𝐸𝑛p𝑎, 𝑏, 𝑐q 6 𝐸𝑛p1, 𝑏, 𝑐q 6 𝐸𝑛p𝑐q ă 8.
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2) The following functional equation holds:

B𝐸𝑛p𝑏q

B𝑏
“
𝑛´ 2

𝑏
r𝐸𝑛p𝑏q `Θ𝑛p𝑏qs . (11)

Proof. 1) Direct calculations show that
B𝐸𝑛p𝑎, 𝑏, 𝑐q

B𝑛
ą 0,

B𝐸𝑛p𝑎, 𝑏, 𝑐q

B𝑎
ă 0,

B𝐸𝑛p𝑎, 𝑏, 𝑐q

B𝑏
ą 0,

B𝐸𝑛p𝑎, 𝑏, 𝑐q

B𝑐
ă 0, and

B𝐸𝑛p𝑎, 𝑏q

B𝑎
ă 0. Replacing the

variable in the integral 𝐸𝑛p𝑎, 𝑏q setting 𝑥 “ 𝑏 sin 𝑡, we find:

𝐸𝑛p𝑎, 𝑏q “

𝑏
ż

𝑎

?
𝑥2p𝑛´2q ´ 1𝑑𝑥
?
𝑏2 ´ 𝑥2

“

𝜋{2
ż

arcsin 𝑎
𝑏

b

p𝑏 sin 𝑡q2p𝑛´2q ´ 1𝑑𝑡. (12)

Hence,

B𝐸𝑛p𝑎, 𝑏q

B𝑏
“
𝑎

𝑏

?
𝑎2p𝑛´2q ´ 1
?
𝑏2 ´ 𝑎2

`

𝜋{2
ż

arcsin 𝑎
𝑏

p𝑛´ 2q𝑏2𝑛´5 sin2p𝑛´2q 𝑡𝑑𝑡
a

p𝑏 sin 𝑡q2p𝑛´2q ´ 1
ą 0, (13)

whence follows the strict monotonicity of functions 𝐸𝑛p𝑎, 𝑏, 𝑐q, 𝐸𝑛p𝑎, 𝑏q
and 𝐸𝑛p𝑏q in each of the variables, as well as the chain of inequalities
given in the formulation of the lemma.

2) From (13), it follows that

B𝐸𝑛p𝑏q

B𝑏
“
𝑛´ 2

𝑏

𝜋{2
ż

arcsin 1
𝑏

p𝑏 sin 𝑡q2p𝑛´2q
a

p𝑏 sin 𝑡q2p𝑛´2q ´ 1
𝑑𝑡.

Taking into account the definitions of functions 𝐸𝑛p𝑏q and Θ𝑛p𝑏q, after
simple transformations we obtain (11). l

3. Hyperelliptic integrals in the representation of optimal
trajectories for the variational problem.

In the metric 𝜌0p𝑥q “ |𝑥|1´𝑛𝜔´1𝑛´1, the area 𝐹 p𝛾q of the surface formed
by the rotation in 𝐸𝑛 of the curve 𝛾 “ 𝛾𝐿p𝜃, 𝜓q around the polar axis in
a polar coordinate system, has the form:

𝐹 p𝛾q “
𝜔𝑛´2
𝜔𝑛´1

𝜓
ż

𝜃

sin𝑛´2 𝜙p𝜏q

b

p𝜙1p𝜏qq2 ` p𝜌1p𝜏qq2𝑑𝜏. (14)
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The description of the optimal trajectories, providing the minimum
value of the functional (14) in the considered class of curves (see [8]),
leads to the following functions of the variables 𝜃 and 𝜓:

ℎ0 p𝜃, 𝜓q “

𝜓
ż

𝜃

sin𝑛´2 𝜃𝑑𝑡
a

sin2p𝑛´2q 𝑡´ sin2p𝑛´2q 𝜃
, (15)

if 𝜓 ą 𝜃 and sin𝜓 > sin 𝜃 (𝜓 ă 𝜋
2

or 𝜃 6 𝜋 ´ 𝜓 6 𝜋
2
);

ℎ1 p𝜃, 𝜓q “

𝜓
ż

𝜃

sin𝑛´2 𝜓𝑑𝑡
a

sin2p𝑛´2q 𝑡´ sin2p𝑛´2q 𝜓
, (16)

if 𝜓 ą 𝜃 and sin𝜓 ă sin 𝜃 (𝜋 ´ 𝜓 ă 𝜃 6 𝜋
2

or 𝜃 ą 𝜋
2
);

ℎ p𝜃q “ ℎ0

´

𝜃,
𝜋

2

¯

. (17)

Replacing the variable in the integrals (15)–(17) and assuming

𝑏 “
1

sin 𝜃
, 𝑑 “

1

sin𝜓
“

1

sin p𝜋 ´ 𝜓q
,

we find:
ℎ0 p𝜃, 𝜓q “ Θ𝑛p1, 𝑏 sin𝜓, 𝑏q, if 0 ă 𝜃 ă 𝜓 6 𝜋

{2; (18)

ℎ0 p𝜃, 𝜓q “ Θ𝑛p𝑏q `Θ𝑛p𝑏 sinp𝜋 ´ 𝜓q, 𝑏q :“ Ξ𝑛p𝑏, 𝜋 ´ 𝜓q “ Ξ𝑛p𝑏, 𝜓q, (19)

if 0 ă 𝜃 6 𝜋 ´ 𝜓 ă 𝜋{2;

ℎ1 p𝜃, 𝜓q “ Θ𝑛p1, 𝑑 sinp𝜋 ´ 𝜃q, 𝑑q, if 𝜋{2 6 𝜃 ă 𝜓 ă 𝜋; (20)

ℎ1 p𝜃, 𝜓q “ Θ𝑛p𝑑q `Θ𝑛p𝑑 sin 𝜃, 𝑑q “ Ξ𝑛p𝑑, 𝜃q, if 𝜋 ´ 𝜓 ă 𝜃 ă 𝜋
{2; (21)

ℎ p𝜃q “ Θ𝑛p𝑏q, if 0 ă 𝜃 ă 𝜋
{2. (22)
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Lemma 3. 1) lim
𝑏Ñ1{sin𝜓

Θ𝑛p1, 𝑏 sin𝜓, 𝑏q “ lim
𝑏Ñ8

Θ𝑛p1, 𝑏 sin𝜓, 𝑏q “ 0 and

max
𝑏Pp𝑎,8q

Θ𝑛p1, 𝑏 sin𝜓, 𝑏q “ Θ𝑛p1, 𝑏𝑛p𝜓q sin𝜓, 𝑏𝑛p𝜓qq,

where 𝑏𝑛p𝜓q is a solution of equality

𝑏 sin𝜓
ż

1

𝑏2𝑑𝑥

p𝑏2 ´ 𝑥2q3{2
?
𝑥2p𝑛´2q ´ 1

“
tan𝜓

a

p𝑏 sin𝜓q2p𝑛´2q ´ 1
. (23)

2) Ξ𝑛p𝑏, 𝜓q “ Θ𝑛p𝑏q ` Θ𝑛p𝑏 sin𝜓, 𝑏q strictly decreases in each of the
variables for a fixed value of the other.

Proof. 1) Change of variable in the integral Θ𝑛p1, 𝑏 sin𝜓, 𝑏q, setting
𝑥 “ 1` p𝑏 sin𝜓 ´ 1q𝑦, leads to the following representation:

Θ𝑛p1, 𝑏 sin𝜓, 𝑏q “

“

1
ż

0

a

𝑏 sin𝜓 ´ 1 𝑑𝑦
b

𝑏2´r1`p𝑏 sin𝜓´1q𝑦s2
b

ř2p𝑛´2q
𝑘“1 𝐶𝑘

2p𝑛´2qp𝑏 sin𝜓 ´ 1q𝑘´1𝑦𝑘q
,

whence follow the equalities

lim
𝑏Ñ1{sin𝜓

Θ𝑛p1, 𝑏 sin𝜓, 𝑏q “ lim
𝑏Ñ8

Θ𝑛p1, 𝑏 sin𝜓, 𝑏q “ 0.

Therefore, for any 𝜓 P p0, 𝜋{2q, the maximum value of Θ𝑛p1, 𝑏 sin𝜓, 𝑏q
is reached at the point 𝑏𝑛p𝜓q, which is the solution of the equation

BΘ𝑛p1, 𝑏 sin𝜓, 𝑏qq

B𝑏
“

tg𝜓

𝑏
a

p𝑏 sin𝜓q2p𝑛´2q´1
´

𝑏 sin𝜓
ż

1

𝑏 𝑑𝑥

p𝑏2´𝑥2q3{2
?
𝑥2p𝑛´2q´1

“ 0.

2) It is easy to see that for 𝜓 P p0, 𝜋{2q

BΞ𝑛p𝑏, 𝜓q

B𝜓
“
BΘ𝑛p𝑎, 𝑏q

B𝑎

ˇ

ˇ

ˇ

ˇ

𝑎“𝑏 sin𝜓

𝑏 cos𝜓 “ ´
1

a

p𝑏 sin𝜓q2p𝑛´2q ´ 1
ă 0.

Since BΘ𝑛p𝑏 sin𝜓,𝑏q
B𝑏

“
BΘ𝑛p𝑎,𝑏q
B𝑏

ˇ

ˇ

ˇ

𝑎“𝑏 sin 𝜃
` sin 𝜃 BΘ𝑛p𝑎,𝑏q

B𝑎

ˇ

ˇ

ˇ

𝑎“𝑏 sin 𝜃
, then, taking

into account equality (10) and equality

BΘ𝑛p𝑎, 𝑏q

B𝑎

ˇ

ˇ

ˇ

ˇ

𝑎“𝑏 sin 𝜃

“ ´
1

𝑏 cos 𝜃
a

p𝑏 sin 𝜃q2p𝑛´2q ´ 1
,



92 B. E. Levitskii, A. S. Ignatenko

we find

BΘ𝑛p𝑏 sin𝜓,𝑏q

B𝑏
“ ´

p𝑛´ 2q

𝑏

𝑏
ż

𝑏 sin 𝜃

𝑥2p𝑛´2q𝑑𝑥
?
𝑏2 ´ 𝑥2p𝑥2p𝑛´2q ´ 1q3{2

ă 0.

Because 𝑑Θ𝑛p𝑏q
𝑑𝑏

ă 0 (see lemma 1), we have BΞ𝑛p𝑏,𝜓q
B𝑏

ă 0. Hence, Ξ𝑛p𝑏, 𝜓q
strictly decreases as a function of 𝑏. l

The properties of hyperelliptic integrals formulated in Lemmas 1–3
imply:

Theorem 1. [8] 1) ℎ0p𝜃, 𝜓q is strictly increasing as a function of
𝜃 P p0, 𝜋 ´ 𝜓s for fixed 𝜓 P p𝜋{2, 𝜋q and

max
𝜃Pp0,𝜋´𝜓s

ℎ0p𝜃, 𝜓q “ 2ℎp𝜋 ´ 𝜓q “ 2Θ𝑛

`

1
{sin𝜓

˘

.

2) If 0 ă 𝜃 ă 𝜓 ă 𝜋{2, then lim 𝜃Ñ0` ℎ0p𝜃, 𝜓q “ lim 𝜃Ñ𝜓´0 ℎ0p𝜃, 𝜓q “ 0
and ℎ𝑛p𝜓q “ max 𝜃Pp0,𝜓q ℎ0p𝜃, 𝜓q “ ℎ0p𝜃𝑛, 𝜓q, where 𝜃 “ 𝜃𝑛p𝜓q is a solution
of the equation

𝜓
ż

𝜃

𝑑𝑡

cos2 𝑡
a

sin2p𝑛´2q 𝑡´ sin2p𝑛´2q 𝜃
“

tg𝜓
a

sin2p𝑛´2q 𝜓 ´ sin2p𝑛´2q 𝜃
. (24)

3) ℎ1p𝜃, 𝜓q is strictly decreasing as a function of 𝜃 P r𝜋 ´ 𝜓, 𝜋{2q for
fixed 𝜓 P p𝜋{2, 𝜋q and

max
𝜃Pr𝜋´𝜓,𝜋{2q

ℎ1p𝜃, 𝜓q “ 2ℎp𝜋 ´ 𝜓q “ 2Θ𝑛

`

1
{sin𝜓

˘

,

max
𝜃Pr𝜋{2,𝜓q

ℎ1p𝜃, 𝜓q “ ℎp𝜋 ´ 𝜓q “ Θ𝑛

`

1
{sin𝜓

˘

.

4) ℎp𝜃q is strictly increasing on the interval p0, 𝜋{2q and

sup
𝜃
ℎp𝜃q “ lim

𝜃Ñ𝜋{2

ℎp𝜃q “ ∆𝑛 “
𝜋

2
?
𝑛´ 2

. (25)

4. Extremal properties of special functions for the variational
problem.

Calculating the areas of surfaces formed by rotation of the optimal
trajectories for functional (14) and comparing these areas with the area
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of the p𝑛 ´ 1q-dimensional sphere of unit radius calculated in the same
metric, leads to the need to study the properties of a number of special
functions that can be represented using of hyperelliptic integrals (1). Let
us first consider the functions involved in expressing the areas of surfaces
formed by the rotation of the optimal trajectories for the functional (10):

𝐻p𝜃q “

𝜋{2
ż

𝜃

sin2p𝑛´2q 𝑡𝑑𝑡
a

sin2p𝑛´2q 𝑡´ sin2p𝑛´2q 𝜃
, (26)

𝐻0p𝜃, 𝜓q “

𝜓
ż

𝜃

sin2p𝑛´2q 𝑡𝑑𝑡
a

sin2p𝑛´2q 𝑡´ sin2p𝑛´2q 𝜃
, (27)

if 𝜓 ą 0 and sin𝜓 > sin 𝜃 p0 ă 𝜃 ă 𝜓 6 𝜋
2

or 𝜃 6 𝜋 ´ 𝜓 6 𝜋
2
q;

𝐻1p𝜃, 𝜓q “

𝜓
ż

𝜃

sin2p𝑛´2q 𝑡𝑑𝑡
a

sin2p𝑛´2q 𝑡´ sin2p𝑛´2q 𝜓
, (28)

if 𝜓 ą 0 and sin𝜓 ă sin 𝜃 p𝜋 ´ 𝜓 ă 𝜃 6 𝜋
2

or 𝜋
2
6 𝜃 ă 𝜓 ă 𝜋q.

Replacing the variable in the integrals (26)–(28) and assuming

𝑏 “
1

sin 𝜃
, 𝑑 “

1

sin𝜓
“

1

sinp𝜋 ´ 𝜓q
,

we find:

𝐻p𝜃q “
1

𝑏𝑛´2

𝑏
ż

1

𝑥2p𝑛´2q𝑑𝑥
?
𝑏2 ´ 𝑥2

?
𝑥2p𝑛´2q ´ 1

“
1

𝑏𝑛´2
r𝐸𝑛p𝑏q `Θ𝑛p𝑏qs . (29)

If 0 ă 𝜃 ă 𝜓 6 𝜋
2
, then

𝐻0p𝜃, 𝜓q “
1

𝑏𝑛´2
r𝐸𝑛p1, 𝑏 sin𝜓, 𝑏q `Θ𝑛p1, 𝑏 sin𝜓, 𝑏qs . (30)

If 0 ă 𝜃 6 𝜋 ´ 𝜓 ă 𝜋
2
, then

𝐻0p𝜃, 𝜓q “
1

𝑏𝑛´2
rE𝑛p𝑏, 𝜋 ´ 𝜓q ` Ξ𝑛p𝑏, 𝜋 ´ 𝜓qs , (31)
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where

E𝑛p𝑏, 𝜋 ´ 𝜓q “ 𝐸𝑛p𝑏q ` 𝐸𝑛p𝑏 sinp𝜋 ´ 𝜓q, 𝑏q “ E𝑛p𝑏, 𝜓q. (32)

If 0 ă 𝜋 ´ 𝜓 6 𝜃 6 𝜋
2
, then

𝐻1p𝜃, 𝜓q “
1

𝑑𝑛´2
rE𝑛p𝑑, 𝜃q ` Ξ𝑛p𝑑, 𝜃qs . (33)

If 𝜋
2
6 𝜃 ă 𝜓 ă 𝜋, then

𝐻1p𝜃, 𝜓q “
1

𝑑𝑛´2
rE𝑛p1, 𝑑 sinp𝜋 ´ 𝜃q, 𝑑q `Θ𝑛p1, 𝑑 sinp𝜋 ´ 𝜃q, 𝑑qs . (34)

Lemma 4. E𝑛p𝑏, 𝜓q is strictly decreasing as a function of 𝜓 P p0, 𝜋{2q,
strictly increasing as a function of 𝑏, and we have a functional equation

BE𝑛p𝑏, 𝜓q
B𝑏

“
𝑛´ 2

𝑏
rE𝑛p𝑏, 𝜓q ` Ξ𝑛p𝑏, 𝜓qs . (35)

Proof. It is easy to see that BE𝑛p𝑏,𝜓q
B𝜓

ă 0 at 𝜓 P p0, 𝜋{2q. By virtue of (32),

we have BE𝑛p𝑏,𝜓q
B𝑏

“
B𝐸𝑛p𝑏q
B𝑏

`

´

sin𝜓 B𝐸𝑛p𝑎,𝑏q
B𝑎

`
B𝐸𝑛p𝑎,𝑏q
B𝑏

¯
ˇ

ˇ

ˇ

𝑎“𝑏 sin𝜓
.

Carrying out the necessary calculations and transformations, we find

B𝐸𝑛p𝑎, 𝑏q

B𝑎

ˇ

ˇ

ˇ

ˇ

𝑎“𝑏 sin𝜓

“ ´

a

p𝑏 sin𝜓q2p𝑛´2q ´ 1

𝑏 cos𝜓

and (see (13))

B𝐸𝑛p𝑎, 𝑏q

B𝑏
|𝑎“𝑏 sin𝜓 “

“
tg𝜓

𝑏

b

p𝑏 sin𝜓q2p𝑛´2q ´ 1`
𝑛´ 2

𝑏

𝑏
ż

𝑏 sin𝜓

𝑥2p𝑛´2q𝑑𝑥
?
𝑏2 ´ 𝑥2

?
𝑥2p𝑛´2q ´ 1

.

Because

𝑛´ 2

𝑏

𝑏
ż

𝑏 sin𝜓

𝑥2p𝑛´2q𝑑𝑥
?
𝑏2 ´ 𝑥2

?
𝑥2p𝑛´2q ´ 1

“
𝑛´ 2

𝑏
r𝐸𝑛p𝑏 sin𝜓, 𝑏q `Θ𝑛p𝑏 sin𝜓, 𝑏qs ,
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taking into account (11), (19), and (32), we get (35), whence it follows
that BE𝑛p𝑏,𝜓q

B𝑏
ą 0. l

Theorem 2. 1)𝐻p𝜃q,𝐻0p𝜃q “ 2𝐻p𝜃q´
𝜋´𝜃
ş

0

sin𝑛´2 𝑡 𝑑𝑡 and𝐻1p𝜃q “ 𝐻p𝜃q´

´
𝜋´𝜃
ş

0

sin𝑛´2 𝑡𝑑𝑡 are strictly increasing on the interval 𝜃 P p0, 𝜋{2q and

sup
𝜃Pp0,𝜋{2q

𝐻p𝜃q “ ∆𝑛, inf
𝜃Pp0,𝜋{2q

𝐻p𝜃q “
𝜔𝑛´1
2𝜔𝑛´2

;

sup
𝜃Pp0,𝜋{2q

𝐻0p𝜃q “ 2∆𝑛 ´
𝜔𝑛´1
2𝜔𝑛´2

“ ∆0
𝑛, inf

𝜃Pp0,𝜋{2q
𝐻0p𝜃q “ 0; (36)

sup
𝜃Pp0,𝜋{2q

𝐻1p𝜃q “ ∆𝑛 ´
𝜔𝑛´1
2𝜔𝑛´2

“ ∆1
𝑛, inf

𝜃Pp0,𝜋{2q
𝐻1p𝜃q “ ´

𝜔𝑛´1
2𝜔𝑛´2

.

2) ∆0
𝑛 ą ∆1

𝑛 ą 0 for 𝑛 > 3, lim𝑛Ñ8 ∆0
𝑛 “ 0, and there are inequalities:

$

’

’

’

&

’

’

’

%

`?
𝜋 ´

?
2

2

˘

c

𝜋

𝑛´ 2
6 ∆0

𝑛 6
?
𝜋
´

?
𝜋

?
𝑛´ 2

´
1

a

2p𝑛´ 1q

¯

,

?
𝜋 ´

?
2

2

c

𝜋

𝑛´ 2
6 ∆1

𝑛 6

c

𝜋

2

´

?
𝜋

a

2p𝑛´ 2q
´

1
?
𝑛´ 1

¯

.

(37)

3) The equation

𝐻p𝜃q “

𝜋´𝜃
ż

0

sin𝑛´2 𝑡𝑑𝑡 (38)

has a unique solution 𝜃 “ 𝜒p𝑛q P p0, 𝜋{2q.

Proof. 1) Because

𝐻p𝜃q “

𝜋{2
ż

𝜃

a

sin2p𝑛´2q 𝑡´ sin2p𝑛´2q 𝜃𝑑𝑡` ℎp𝜃q sin𝑛´2 𝜃, (39)

𝑑

𝑑𝜃

𝜋{2
ż

𝜃

a

sin2p𝑛´2q 𝑡´ sin2p𝑛´2q 𝜃𝑑𝑡 “ ´

𝜋{2
ż

𝜃

p𝑛´ 2q sin2𝑛´5 𝜃𝑑𝑡
a

sin2p𝑛´2q 𝑡´ sin2p𝑛´2q 𝜃
,

then B𝐻p𝜃q
B𝜃

“ sin𝑛´2 𝜃 Bℎp𝜃q
B𝜃

ą 0, since, according to Theorem 1, Bℎp𝜃q
B𝜃

ą 0.
Hence, 𝐻p𝜃q, 𝐻0p𝜃q, and 𝐻1p𝜃q strictly increase on the interval p0, 𝜋{2q.
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From here, due to (25) and (39), taking into account the equality
𝜋{2
ş

0

sin𝑛´2 𝑡𝑑𝑡 “ 𝜔𝑛´1

2𝜔𝑛´2
, we arrive at (36).

2) Inequalities (37) is a consequence of inequality
c

2𝜋

𝑛´ 1
6
𝜔𝑛´1
𝜔𝑛´2

6

c

2𝜋

𝑛´ 2
,

which was established by K.H. Borgward [6] (see also [9]). It follows that
∆𝜈
𝑛 ą 0 and lim𝑛Ñ8 ∆𝜈

𝑛 “ 0, 𝜈 “ 0, 1.
3) Since𝐻1p𝜃q strictly increases on the interval p0, 𝜋{2q and takes values

of different signs, equation (38) has a unique solution 𝜃 “ 𝜒p𝑛q. l

For 𝜈 “ 0, 1 we set:

H𝜈p𝜃, 𝜓q “ 𝐻𝜈p𝜃, 𝜓q ´

𝜓
ż

0

sin𝑛´2 𝑡𝑑𝑡.

Theorem 3. 1) 𝐻0p𝜃, 𝜓q and H0p𝜃, 𝜓q are strictly increasing as func-
tions of 𝜃 P p0, 𝜋 ´ 𝜓s for fixed 𝜓 P p𝜋{2, 𝜋 ´ 𝜃s, H0p𝜃, 𝜓q takes positive
values, and

max
𝜃Pp0,𝜋´𝜓s

H0p𝜃, 𝜓q “ 𝐻0p𝜋 ´ 𝜓q.

2) H0p𝜃, 𝜓q is strictly increasing as a function of 𝜓 P p𝜃, 𝜋´ 𝜃s for fixed
𝜃 P p0,𝜋{2q, max𝜓Pp𝜃,𝜋´𝜃sH0p𝜃, 𝜓q “ 𝐻0p𝜃q, and for any 𝜃 P p0, 𝜋{2q, there
exists a unique solution 𝜓 “ 𝜓0

𝑛p𝜃q of the equation

𝐻0p𝜃, 𝜓q “

𝜓
ż

0

sin𝑛´2 𝑡 𝑑𝑡. (40)

3) H0p𝜃, 𝜓q is strictly increasing as a function of 𝜃 near the point 𝜃 “ 0
for fixed 𝜓 P p𝜃, 𝜋{2s, lim𝜃Ñ0H0p𝜃, 𝜓q “ 0 and

max
𝜃Pp0,𝜓s

H0p𝜃, 𝜓q “ H0p𝜃𝑛, 𝜓q ą 0,

where 𝜃𝑛 “ 𝜃𝑛p𝜓q is a solution of equation (24). In addition, on the
interval p𝜃𝑛p𝜓q, 𝜓q there exists a solution 𝜃 “ 𝜃0𝑛p𝜓q of equation (40).

Proof. 1) Let 0 ă 𝜃 6 𝜋 ´ 𝜓 ă 𝜋
2
. By virtue of equality (31), we have
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B𝐻0p𝜃, 𝜓q

B𝑏
“ ´

p𝑛´ 2q

𝑏𝑛´1

”

E𝑛p𝑏, 𝜋 ´ 𝜓q ` Ξ𝑛p𝑏, 𝜋 ´ 𝜓q
ı

`

`
1

𝑏𝑛´2

”

BE𝑛p𝑏, 𝜋 ´ 𝜓q
B𝑏

`
BΞ𝑛p𝑏, 𝜋 ´ 𝜓q

B𝑏

ı

,

where 𝑏 “ 1
sin 𝜃

. Taking Lemma 4 and relation (35) into account, we find

B𝐻0p𝜃, 𝜓q

B𝑏
“

1

𝑏𝑛´2
BΞ𝑛p𝑏, 𝜋 ´ 𝜓q

B𝑏
ă 0.

Hence,
B𝐻0p𝜃, 𝜓q

B𝜃
“ ´

cos 𝜃

sin𝑛 𝜃

BΞ𝑛p𝑏,𝜋 ´ 𝜓q

B𝑏
ą 0,

that is, 𝐻0p𝜃, 𝜓q and H0p𝜃, 𝜓q are strictly increasing as functions of
𝜃 P p0, 𝜋 ´ 𝜓s for fixed 𝜓 P

`

𝜋
2
, 𝜋 ´ 𝜃

‰

.
Since

inf
𝜃Pp0,𝜋´𝜓s

H0p𝜃, 𝜓q “ lim
𝜃Ñ0`

H0p𝜃, 𝜓q “ 0

and by Theorem 2,

max
𝜃Pp0,𝜋´𝜓s

H0p𝜃, 𝜓q “ H0p𝜋 ´ 𝜓, 𝜓q “ 𝐻0p𝜋 ´ 𝜓q ą 0,

then the function 𝐻0p𝜃, 𝜓q takes positive values for any 𝜃 P p0, 𝜋 ´ 𝜓s.
2) Since

BH0p𝜃, 𝜓q

B𝜓
“ sin𝑛´2 𝜓

´ sin𝑛´2 𝜓
a

sin2p𝑛´2q 𝜓 ´ sin2p𝑛´2q 𝜃
´ 1

¯

ą 0,

for 𝜓 P p𝜃, 𝜋 ´ 𝜃s, then H0p𝜃, 𝜓q is strictly increasing as a function of
𝜓 P p𝜃, 𝜋 ´ 𝜃s for fixed 𝜃 P p0, 𝜋{2q and

max
𝜓Pp𝜃,𝜋´𝜃s

H0p𝜃, 𝜓q “ 𝐻0p𝜃q.

Because

inf
𝜓Pp𝜃,𝜋´𝜃s

H0p𝜃, 𝜓q “ lim
𝜓Ñ𝜃`0

H0p𝜃, 𝜓q “ ´

𝜃
ż

0

sin𝑛´2 𝑡𝑑𝑡 ă 0,

and by Theorem 2,

max
𝜓Pp𝜃,𝜋´𝜃s

H0p𝜃, 𝜓q “ H0p𝜃, 𝜋 ´ 𝜃q “ 𝐻0p𝜃q ą 0,
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then, for any 𝜃 P p0, 𝜋{2q, there exists a unique solution 𝜓 “ 𝜓0
𝑛p𝜃q of

equation (40).
3) Let 0 ă 𝜃 ă 𝜓 6 𝜋

2
. It is easy to see that

BH0p𝜃, 𝜓q

B𝜃
“
B𝐻0p𝜃, 𝜓q

B𝜃
“ sin𝑛´2 𝜃

Bℎ0p𝜃, 𝜓q

B𝜃
.

Therefore, the monotonicity intervals of H0p𝜃, 𝜓q and ℎ0p𝜃, 𝜓q as functions
of the variable 𝜃 for a fixed value of 𝜓 coincide. By virtue of Theorem 1
(property 2), this implies that

max
𝜃Pp0,𝜓s

H0p𝜃, 𝜓q “ H0p𝜃𝑛p𝜓q,𝜓q,

where 𝜃𝑛p𝜓q is a solution of the equation (24).
As H0p𝜃, 𝜓q increases near the point 𝜃 “ 0 and lim𝜃Ñ0H0p𝜃, 𝜓q “ 0,

H0p𝜃𝑛p𝜓q, 𝜓q ą 0. From the definition of H0p𝜃, 𝜓q, equality (30), and the
properties of the hyperelliptic integrals 𝐸𝑛p1, 𝑏 sin𝜓, 𝑏q and Θ𝑛p1, 𝑏 sin𝜓, 𝑏q
(see Lemma 3), it follows that

lim
𝜃Ñ𝜓

H0p𝜃, 𝜓q “ ´

𝜋´𝜓
ż

0

sin𝑛´2 𝑡𝑑𝑡 ă 0.

Therefore, on the interval p𝜃𝑛p𝜓q, 𝜓q there exists a solution 𝜃 “ 𝜃0𝑛p𝜓q
of equation (40). l

Theorem 4. 1) H1p𝜃, 𝜓q is strictly decreasing as a function of
𝜃 P r𝜋 ´ 𝜓, 𝜓q for fixed 𝜓 P r𝜋{2, 𝜋q. There are equalities:

max
𝜃Pr𝜋´𝜓,𝜓q

H1p𝜃, 𝜓q “ 𝐻0p𝜋 ´ 𝜓q; H1p
𝜋
{2, 𝜓q “ 𝐻1p𝜋 ´ 𝜓q;

inf
𝜃Pr𝜋´𝜓,𝜓q

H1p𝜃, 𝜓q “ lim
𝜃Ñ𝜓´0

H1p𝜃, 𝜓q “ ´

𝜓
ż

0

sin𝑛´2 𝑡𝑑𝑡 ă 0.

2) H1p𝜃, 𝜓q is strictly decreasing as a function of 𝜓 P r𝜋{2, 𝜋q for fixed
𝜃 P r𝜋 ´ 𝜓, 𝜋{2s. There exists a unique solution 𝜓 “ 𝜓1

𝑛p𝜃q of equation

𝐻1p𝜃, 𝜓q “

𝜓
ż

0

sin𝑛´2 𝑡𝑑𝑡 (41)
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and, besides, 𝜓1
𝑛p
𝜋{2q “ 𝜋 ´ 𝜒p𝑛q, where 𝜒p𝑛q is a unique solution of the

equation (38). In addition, for any 𝜓 P p𝜋´𝜒p𝑛q, 𝜋q there exists a unique
solution 𝜃 “ 𝜃1𝑛p𝜓q of the equation (41).

3) H1p𝜃, 𝜓q takes negative value near the ends of the interval 𝜓 P p𝜃, 𝜋q
for any fixed 𝜃 P p𝜋{2, 𝜓q and

max
𝜓Pp𝜃,𝜋q

H1p𝜃, 𝜓q “ H1p𝜃, 𝜓𝑛p𝜃qq,

where 𝜓 “ 𝜓𝑛p𝜃q is a solution of the equation

𝜓
ż

𝜃

𝑑𝑡

cos2 𝑡
a

sin2p𝑛´2q 𝑡´ sin2p𝑛´2q 𝜓
“

“
1

sin𝑛´3 𝜓 cos𝜓
´

tg 𝜃
a

sin2p𝑛´2q 𝜃 ´ sin2p𝑛´2q 𝜓
. (42)

There exists a solution 𝜃 “ 𝜃p𝑛q of the equation

H1p𝜃, 𝜓𝑛p𝜃qq “ 0 (43)

and for 𝜃 P p𝜋{2, 𝜃p𝑛qq there exists two solutions 𝜓 “ 𝜓𝑛p𝜃q P p𝜃, 𝜓𝑛p𝜃qq

and 𝜓𝑛p𝜃q P p𝜓𝑛p𝜃q, 𝜋q of the equation (41).

Proof. The statement 1) follows from the fact that

BH1p𝜃, 𝜓q

B𝜃
“ ´

sin2p𝑛´2q 𝜃
a

sin2p𝑛´2q 𝜃 ´ sin2p𝑛´2q 𝜓
ă 0

for 𝜃 P r𝜋 ´ 𝜓, 𝜓q and fixed 𝜓 P r𝜋{2, 𝜋q. It means that H1p𝜃, 𝜓q is strictly
decreasing as a function of 𝜃.

2) As

𝐻1p𝜃, 𝜓q “

𝜓
ż

𝜃

b

sin2p𝑛´2q 𝑡´ sin2p𝑛´2q 𝜓𝑑𝑡` sin𝑛´2 𝜓ℎ1p𝜃, 𝜓q,

B𝐻1p𝜃,𝜓q
B𝜓

“ sin𝑛´2 𝜓 Bℎ1p𝜃,𝜓q
B𝜓

. By virtue of (20) and Lemma 3 (property 2),

Bℎ1p𝜃, 𝜓q

B𝜓
“
BΞ𝑛p𝑑, 𝜃q

B𝜓
“
BΞ𝑛p𝑑, 𝜃q

B𝑑

cosp𝜋 ´ 𝜓q

sin2p𝜋 ´ 𝜓q
ă 0.
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It follows that

BH1p𝜃, 𝜓q

B𝜓
“ sin𝑛´2 𝜓

´

Bℎ1p𝜃, 𝜓q

B𝜓
´ 1

¯

ă 0.

It means that H1p𝜃, 𝜋 ´ 𝜓q is strictly decreasing as a function of 𝜓 for
fixed 𝜃 P r𝜋 ´ 𝜓, 𝜋{2s. Therefore, by virtue of Theorem 3,

max
𝜓Pr𝜋´𝜃,𝜋q

H1p𝜃, 𝜓q “ H1p𝜃, 𝜋 ´ 𝜃q “ 𝐻0p𝜃q ą 0,

inf
𝜓Pr𝜋´𝜃,𝜋q

H1p𝜃, 𝜓q “ lim
𝜓Ñ𝜋

H1p𝜃, 𝜓q “ ´

𝜃
ż

0

sin𝑛´2 𝑡𝑑𝑡 ă 0.

It follows that there exists a unique solution 𝜓 “ 𝜓1
𝑛p𝜃q of the equa-

tion (41). Since 𝐻1p
𝜋{2, 𝜓q “ 𝐻p𝜋 ´ 𝜓q, 𝜋 ´ 𝜓1

𝑛p
𝜋{2q “ 𝜒p𝑛q.

By Theorem 2, 𝐻0p𝜋´𝜓q and 𝐻1p𝜋´𝜓q are strictly decreasing on the
interval 𝜓 P p𝜋{2, 𝜋q. Therefore,

inf
𝜃Pr𝜋´𝜓,𝜋{2q

H1p𝜃, 𝜓q “ 𝐻1p𝜋 ´ 𝜓q ă 0,

max
𝜃Pr𝜋´𝜓,𝜋{2q

H1p𝜃, 𝜓q “ 𝐻0p𝜋 ´ 𝜓q ą 0

for 𝜓 P p𝜋 ´ 𝜒p𝑛q, 𝜋q.
Consequently, for any 𝜓 P p𝜋 ´ 𝜒p𝑛q, 𝜋q there exists a unique solution

𝜃 “ 𝜃1𝑛p𝜓q of equation (41).
3) Let 𝜃 P p𝜋{2,𝜓q. In this case,

H1p𝜃, 𝜓q “ 𝐻0p𝜋 ´ 𝜓, 𝜋 ´ 𝜃q ´

𝜓
ż

0

sin𝑛´2 𝑡𝑑𝑡.

Therefore,

lim
𝜓Ñ𝜃

H1p𝜃, 𝜓q “ lim
𝜓Ñ𝜋

H1p𝜃, 𝜓q “ ´

𝜃
ż

0

sin𝑛´2 𝑡𝑑𝑡 ă 0.

As 𝐻0p𝜋 ´ 𝜓, 𝜋 ´ 𝜃q “

“

𝜋´𝜃
ż

𝜋´𝜓

b

sin2p𝑛´2q 𝑡´ sin2p𝑛´2q 𝜓𝑑𝑡` sin𝑛´2p𝜋 ´ 𝜓qℎ0p𝜋 ´ 𝜓, 𝜋 ´ 𝜃q, then
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BH1p𝜃, 𝜓q

B𝜓
“ sin𝑛´2 𝜓

´

Bℎ0p𝜋 ´ 𝜓, 𝜋 ´ 𝜃q

B𝜓
´ 1

¯

.

Therefore, max𝜓Pp𝜃,𝜋qH1p𝜃, 𝜓q “ H1p𝜃, 𝜓𝑛p𝜃qq, where 𝜓 “ 𝜓𝑛p𝜃q is a
solution of equation Bℎ0p𝜋´𝜓,𝜋´𝜃q

B𝜓
“ 1. Using representation (18) and re-

peating the calculations performed in the proof of Lemma 1, this equation
can be represented in explicit form (42). Because

max
𝜃Pr𝜋{2,𝜓q

H1p𝜃, 𝜓q “ H1p
𝜋
{2, 𝜓q “ 𝐻1p𝜋 ´ 𝜓q

and by Theorem 2

sup
𝜓Pp𝜋{2,𝜋q

𝐻1p𝜋 ´ 𝜓q “ ∆1
𝑛 ą 0;

then H1p𝜃, 𝜓q ą 0 for values 𝜃 and 𝜓 close to 𝜋{2 and H1p𝜃, 𝜓𝑛p𝜃qq ą 0 for
𝜃 close to 𝜋{2. Therefore, there exist a solution 𝜃 “ 𝜃p𝑛q of equation (43)
and for 𝜃 P p𝜋{2, 𝜃p𝑛qq there exists two solutions 𝜓 “ 𝜓𝑛p𝜃q P p𝜃, 𝜓𝑛p𝜃qq

and 𝜓𝑛p𝜃q P p𝜓𝑛p𝜃q, 𝜋q of the equation (41). l

5. Results of numerical experiments.
Let us present the results of numerical experiments on constructing

plots of the functions under study.
Figures 1 and 2 present the results of numerical experiments on con-

structing plots of the functions Θ3p𝑎, 𝑏q and Θ5p𝑎, 𝑏q for specific values
𝑎 P

´

2?
3
, 2?

2
, 2
¯

.

Figure 1: The plots of Θ3p𝑎, 𝑏q Figure 2: The plots of Θ5p𝑎, 𝑏q

Figures 3 and 4 present the results of numerical experiments on con-
structing plots of the functions ℎ0p𝜃, 𝜓q for specific values 𝜓 P p𝜋{12, 𝜋{6,𝜋{4,
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𝜋{3,
5𝜋{12q, when 𝑛 “ 3 (see Figure 3) and 𝑛 “ 5 (see Figure 4). These

plots suggest that 𝜃𝑛p𝜓q is a unique solution to the equation (23) for every
𝜓 P p0, 𝜋{2q.

Figure 3: The plots of
ℎ0p𝜃, 𝜓q, 𝑛 “ 3

Figure 4: The plots of
ℎ0p𝜃, 𝜓q, 𝑛 “ 5

Figures 5 and 6 present results of numerical experiments on construct-
ing plots of the functions H0p𝜃, 𝜓q for specific values 𝜓 P p 𝜋

12
, 𝜋
6
, 𝜋
4
, 𝜋
3
, 5𝜋
12
q,

when 𝑛 “ 3 (see Figure 5) and 𝑛 “ 5 (see Figure 6).

Figure 5: The plots of
H0p𝜃, 𝜓q, 𝑛 “ 3

Figure 6: The plots of
H0p𝜃, 𝜓q, 𝑛 “ 5

These plots suggest that 𝜃0𝑛p𝜓q is a unique solution to the equation (39)
for every 𝜓 P p0,𝜋{2q.

Figures 7 and 8 present results of numerical experiments on construct-
ing plots of the functions H1p𝜃, 𝜓q for specific values 𝜃 P p𝜃p𝑛q´𝜋{200, 𝜃p𝑛q,
𝜃p𝑛q ` 𝜋{200q, when 𝑛 “ 3, 𝜃p3q « 1.6435 (see Figure 7) and for
𝑛 “ 5, 𝜃p5q « 1.5946 (see Figure 8).
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Figure 7: The plots of
H1p𝜃,𝜓q, 𝑛 “ 3

Figure 8: The plots of
H1p𝜃,𝜓q, 𝑛 “ 5

Let us present the results of numerical experiments on studying the
dependence on the dimension 𝑛 P p3, 4, 5, 7q of the constants defined in
Lemma 1 and Theorem 1 (Table 1), as well as the values of extremal func-
tions 𝜃𝑛, 𝜃0𝑛, 𝜃1𝑛 (Table 2), functions 𝜓0

𝑛, 𝜓
1
𝑛 (Table 3), function 𝜓𝑛 (Table 4),

and functions 𝜓𝑛p𝜃q and 𝜓𝑛p𝜃q (Table 5) in specific points.

Table 1: The values of certain constants.
𝑛 ∆𝑛 ∆0

𝑛 ∆1
𝑛 𝜒p𝑛q 𝜃p𝑛q

3 1.571 2.142 0.571 1.073 1.6425
4 1.111 1.436 0.325 1.272 1.6057
5 0.907 1.147 0.240 1.347 1.5946
7 0.702 0.872 0.169 1.411 1.5862

Table 2: The values of extremal functions 𝜃𝑛, 𝜃0𝑛, 𝜃1𝑛.

𝑛 𝜃𝑛
`

𝜋
3

˘

𝜃𝑛
`

𝜋
4

˘

𝜃0𝑛
`

𝜋
3

˘

𝜃0𝑛
`

𝜋
4

˘

𝜃1𝑛
`

𝜋 ´ 2𝜒p𝑛q
3

˘

𝜃1𝑛
`

𝜋 ´ 𝜒p𝑛q
2

˘

3 0.628 0.452 0.914 0.667 1.237 1.001
4 0.691 0.503 0.893 0.652 1.184 0.915
5 0.733 0.538 0.892 0.653 1.153 0.870
7 0.786 0.582 0.901 0.663 1.115 0.824

It is of interest to obtain explicit estimates of the extremal functions
and extremal values defined in the work, depending on the dimension.

The authors would like to thank the anonymous reviewer for the at-
tention to the work and comments that allowed us to correct shortcomings
and improve the manuscript.
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Table 3: The values of extremal functions 𝜓0
𝑛 and 𝜓1

𝑛.

𝑛 𝜓0
𝑛

`

𝜋
4

˘

𝜓0
𝑛

`

𝜋
3

˘

𝜓0
𝑛

`

𝜋
2
´ 0.1

˘

𝜓1
𝑛

`

𝜋
4

˘

𝜓1
𝑛

`

𝜋
3

˘

𝜓1
𝑛

`

𝜋
2
´ 0.1

˘

3 0.914 1.176 1.512 2.749 2.572 2.204
4 0.9332 1.199 1.521 2.601 2.404 2.020
5 0.9333 1.202 1.524 2.533 2.330 1.947
7 0.922 1.196 1.526 2.467 2.256 1.880

Table 4: The values of extremal functions 𝜓𝑛.

𝑛 𝜓𝑛
`

𝜋
2
` 0.1

˘

𝜓𝑛
`

𝜋
4
`

𝜃p𝑛q
2

˘

𝜓𝑛
`

𝜃p𝑛q
˘

𝜓𝑛
`

2𝜋
3

˘

𝜓𝑛 p𝜋 ´ 0.1q

3 1.868 1.753 1.825 2.294 3.057
4 1.827 1.680 1.722 2.235 3.052
5 1.805 1.652 1.684 2.205 3.050
7 1.780 1.628 1.652 2.173 3.047

Table 5: The values of extremal functions 𝜓𝑛p𝜃q and 𝜓𝑛p𝜃q.

𝑛 𝜓𝑛
`

𝜋
2
` 0.01

˘

𝜓𝑛
`

𝜋
4
`

𝜃p𝑛q
2

˘

𝜓𝑛
`

𝜋
2
` 0.01

˘

𝜓𝑛
`

𝜋
4
`

𝜃p𝑛q
2

˘

3 1.868 1.753 1.825 2.294
4 1.827 1.680 1.722 2.235
5 1.805 1.652 1.684 2.205
7 1.780 1.628 1.652 2.173
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