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Abstract. In the article, new versions of integral inequalities of
Milne type are derived for (h,m)-convex modified functions of the
second type on fractal sets. Based on a new generalized local frac-
tional weighted integral operator, an identity is established as the
foundation for subsequently obtained inequalities. Throughout our
study, we obtained certain results known in the literature, which
include particular cases of our findings.

Key words: local fractional derivatives, local fractional integrals,

fractal sets, Milne inequality, (h,m)-convex modified functions of
second type, Holder inequality, power mean inequality

2020 Mathematical Subject Classification: Primary 26A33;Secondary
26D10, 47A63

1. Introduction. A function ¢: [p1, p2] — R is said to be convex if
¢(tu+ (1 —7)v) < 7¢(u) + (1 — 7)¢(v) holds for all u,v € [py, p] and
7€ [0,1]. A function ¢ is said to be concave if —¢ is convex.

Convex functions have been widely generalized, including the m-convex
function, r-convex function, h-convex function, (h,m)-convex function,
s-convex function, and many others. Readers interested in exploring these
extensions and generalizations of the classical notion of convexity can refer
to [26].

In literature, various integral inequalities, such as Simpson’s, trape-
zoidal, midpoint, and others, are presented. Numerous studies are dedi-
cated to extending and generalizing these integral inequalities. An exam-
ple includes the derivation of several variations of these inequalities for
different classes of functions, such as differentiable convex, bounded, and
Lipschitz functions, see references [19], [16], [5], [20], [8] and the works
cited therein.
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In the works [27], [22], [9], [10] and the literature cited therein, the
main attention is paid to fractional versions of trapezoid-type inequalities
and midpoint-type inequalities.

Studies [8], [18], [25] and the references therein emphasize the estab-
lishment of Simpson-type inequalities.

Milne-type integral inequalities constitute a class of mathematical in-
equalities associated with integrals. These inequalities are named after
Edward Arthur Milne, a distinguished mathematician recognized for his
contributions to various areas of mathematics.

In general, a Milne-type integral inequality involves the integration of
functions and establishes bounds or inequalities for these integrals based
on specific conditions or assumptions regarding the integrands and the
integration domain. These inequalities are frequently employed in math-
ematical analysis, particularly in integral calculus and related fields.

The classical Milne-type inequality in the literature is represented as
follows ( [13], [14], [28], [15]):

‘PQ — p1 (2925 (p1) — ¢ <¥) + 2¢ (p2)> — f¢(x) dx) <

3
7(p2 — p1)°
S s 0@l

z€[p1,p2]

Numerical integration methods, specifically Milne’s and Simpson’s formu-
las, demonstrate both similarities and distinctive features. Both of these
methods employ a composite quadrature rule to approximate the definite
integral of a function and require the use of a uniformly distributed grid
of sampling points.

As can be seen from Milne’s inequality, the integrand function must
be continuously differentiable up to the fourth order inclusive. Recently
presented studies [13], [14], [28] provide an estimate for Milne’s formula for
a continuously differentiable function using fractional integral operators.

These inequalities are useful for estimating the magnitude of integrals
in terms of other integrals, facilitating the analysis of various mathematical
problems.

Research on and development of local fractional functions within frac-
tal sets, encompassing such aspects as local fractional calculus, function
continuity, and monotonicity, is thoroughly examined in [30].
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Following the above work, the real line number in the fractal set R%
has the following properties:
If 0, 79, and r§ € R?, 0 < § < 1, then:
o 0+ 15 e R’ rird e RO
o 1)1y =1y 1) = (r +12)° = (1 +71)°.
From this, we have the following conclusion.
Given the r$ + 1§ = (11 + 1r3)°, —r9 is such that 7 + (— rl) = 0° (for
example, (1° —29) = 1% + (=2°) = (1 + (=2))° = (—1)°) and, since
79 + (=) = 0°, we have (—1)° = —1°, then 1° — 2° = —1°,
o {4+ (rd+78) = (r) +rd) + 13
o 7015 = 1r3rd = (r119)? = (r911)°.
o (rr3)rg =19 (rgrs).
o 10(ry +13) = (r{ry) + (rirg).

e 70 +0° =047 =7l and r01° = 197 = 79,

Local fractional integral Holder inequality, which was established by
Yang [31] and used, for example, in [17], is as follows: Let ¢, 1 € Cs(I).
Then

)] dt® <
a+1 JW |

<(ﬁ§:51¢@wmﬁigz§;51wuwﬁﬁa

11 _
forp>1,1—)+a—1.

Definition 1. Let ¢ € Li[p1,p2]. Then the Riemann-Liouville frac-
tional integrals of order a € C, Re(a) > 0 are defined by (right and left,
respectively):

(x —t)* tp(t)dt, x> py,

Q;H

[yal+¢($) = —)

1

12 g(r) = ——

Fray | (= oman < p

He— s 3



Milne-type integral inequalities. . . 109

Definition 2. A non-differentiable mapping ¢: R — R® is called local
fractional continuous at x = xq, if for any € > 0, there exists 7 > 0,
satisfying

[¢(x) = ¢(x0)] < &°
for |x — xo| < 7. If ¢(x) is local continuous on some interval (py, p2), we
denote ¢(x) € Cs(p1, p2)-

Definition 3. The local fractional derivative of ¢(x), where x € [p1, po]
of order § at x = x is given by

PO iy L0 D(0) — 0lw)

~ dat o (x —xp)°

¢(5) (z0)

Denote ¢ € D°[py, p2], T'(-) is the Euler gamma function.

Definition 4. Let ¢ € D’[py, pa]. The local fractional integral of ¢(z)
of order ¢ is given by

p2
) o ; S
nI0l) = g | olaas”

Here, if py = py, then ,, JS, ¢(x) =0, if p1 < po, then ,, JO d(x) = —paJ3 é(x).
If ,, Jop(z) exists for all z € [py, pa], then we say that ¢(z) belongs to the
class of d-integrable functions in [a, b], i.e., ¢(z) € J2[p1, pa].

The following lemma establishes two fundamental properties for the

operators defined above [30]:

Lemma 1. The following results are true:

(1) If ¢(5) € Cs(p1, p2), then p1 J§2¢(5)($) = ¢(p2) — d(p1)-
(2) (Integration by parts rule) Let u(x),v(x) € D?[py, po] and u® v® e
Cs(p1, p2); then we have

p2

oo (u(@)o® () = u(z)o(z)| = 5 L (@)v(2)).

p1

Based on the previous definition, we present the integral operators that
will be used in our work.

Definition 5. Let ¢ be a local fractional continuous on [py, p2] and let
w(x) € J[p1, p2]. The right and left local fractional weighted integral of
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¢ of order ¢ are given by

P2

w 76 _ 1 (8) pa — A 5
soton) = gy [ 00 (250 ) el

P1

and

P2
w 76 _ 1 (8) A—p1 )
T o(on) = gy [0 (222 ) b’

p1

Let I be a real interval and ¢: [ — R°. If VA e I, ¢()\) = 0°, then ¢ is
said to be non-negative function.

In this work, we will use the following notion of convexity on
I = [0,+0) (which has as its starting point the definition of [1], |7]
and [21]):

Definition 6. Let ¢: I — R° and h: [0,1] — (0,1]. If inequality

¢ (o€ +m(1 = 0)) < h*(0)¢(€) +m’ (1 — h*(0))¢(<) (1)

is fulfilled Y¢,s € I and o € [0,1], where s € (0,1] and m® € [0°,1°], then
the function ¢ is a generalized (h, m)—convex of the first kind on I. Let
us denote this class of functions by Ni}n(l ).

Definition 7. Let ¢: I — R® and h: [0,1] — (0,1]. If inequality

¢ (o€ +m(l — o)) < P (0)(€) + m* (1 — h(0))*é(s) (2)

is fulfilled Y¢,s € I and o € [0,1], where s € (0,1] and m® € [0°,1°], then
the function ¢ is a generalized (h, m)-convex of second type on I. Let us
denote this class of functions by N,ffn(l ).

Remark 1. Interested readers can easily verify that from Definition 7
we have many of the notions of convexity reported in the literature. For
example, putting

e h(z) =2,s=1,m=1, and § = 1, we see that ¢ is a convex function
on [0, +0) [12], [26];

o h(z)

e h(z) =z, m =1, and § = 1, then we obtain the s—convex function on
_|_

[0, +20) [11];

=z2,8=1,and § = 1, we have the m-convexity [29];



Milne-type integral inequalities . . . 111

e s =1 andh(z) = z, then we get the Definition of generalized m— convex
functions [21];

e m =s =1 and h(z) = z: we have the generalized convex function [24];
e m =1 and h(z) = z: we have the generalized s—convex function [23];

e h(z) = z we obtain the concept of generalized (s, m)-convex functions
on a fractal space [1].

It is obvious that, under the consideration 6 = 1, other known defini-
tions of convexity can be reproduced.

In this work, we obtain new variants of the classical Milne Inequality
for generalized (h, m)-convex modified functions the second type, via local
integral operators of the Definition 5.

2. Main Results. As the first result, we obtain an equality that will
serve as the basis for subsequent results.

Lemma 2. Let¢: [0,00) — Rand ¢ € D[py, ps], and w(z) € ,, JS[p1, pa]-
If 9 e Li[p1, p2] with p; > 0, then we have

(220 oo (2222) o) - >

P2 — P1 K+ 2 K+ 2
—ole (S5 (]
() PO [y (")
L g <p1+(ﬂ+1)pz>] _
K+ 2

2p1trp
< K+2 > +
1

_ (5)</~@+1—)\ L+ A )_ (5)<1+)\ K+ 1—A )] 5
Jw()\)[gb K+ 2 p1+/€+2p2 ¢ /@+2p1+ K+ 2 p2) |4A"
0

Proof. Let us denote

1

(5)<n+1—/\ I+ A )_ (5)<1+)\ K+1—A )] 5 _
Jw(/\)[¢ g it )= T it o ) |dA
0

=1 — L.
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Integrating by parts fractionally in I;, we have:

kel-XA 14
I = Jw(A)gb@( L+ p2>d)\5 -

K+ 2 K+ 2
0
(/{+2>5 qb</<+1— 1+ A >‘
= /w —
P /{—1—2 p1+ p2
K+ 2 k+1—=X\ 1+ A
+ )dA5=
<p2 p1>f ( K+ 2 P I<J+2p2
2\ 2 1
“ () Tomo() - w02
P2 — P1 K+ 2 K+ 2
1
K4+2\9 k+1—=A 1+ A
- @)\ ( + )dA@
<p2—p1> Jw (N¢ et 9 P1 K+2P2

Making a change of variables in this last integral and taking into ac-

- +2 +1)p1 + :
count that Pa— AL _ EAL P2 _ (x )1 pz) we obtain:
K+ 2 K+ 2 K+ 2

K+1—MX 1+ A

T TRy T
+1 2
if)\z(),thenzz( )p1+p2 ifA=1, thenz—m;
K+ 2 K+ 2
)= m+2z_(m+1)p1+p2 dA5=<K+2>6dz5
P2 — M P2 — M 7 P2 — M ’
w® () = w(&)( K2 L (k + 1)py +,02> _
P2 — pP1 P2 = pP1
_ w((;)((l-{ +2)z—(k+ 1)y —p2> _
P2 — P1
(k+1)p1—p (r+1)p1t+p
_Uﬁwi:_giii):w@< = )
- p2=p1 kp1+2p2 _ (k+l)p1+ps )°
K+2 K+2 K+2

©) K+1-—X 1+ A ) 5 _
Jw ()\)¢< K+ 2 p1+l€+2p2 dA
0
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kp1+2p2
s (k+1)p1+p2
§ _ \kTl)piTpe
_ K+ 2 w(é) < K+2 ¢(Z)d2’6 _
P2 — pP1 kp1+2p2  (k+1)p1+p2
(k+1)p1+p2 K+2 K+2

K+2

C(k+2°T(6+1),
) %ff”*¢<

(k+1)p1 + po
K+ 2 '

Thus we have

1
- 1
fw@(A)gb (“+ A+ +)\p2) AN =

K+ 2 K+ 2
~p1+§pz
) e _ (k+1)pi+p2
_ K+2 w(é) < K+2 ¢ (Z) dzé _
P2 — pP1 kp1+2p2 _ (k+1)p1+p2
(<+D)pg +p r+2 K+2

K+2

C(k+2°T(6+1), <
B

(k+1)p1 + po
K+ 2 '

So, for I; we obtain

I - < K+ 2 )5[w(1)¢(ﬁpl+202) _w<0)¢((/€+1)P1+P2>]_ (4)

P2 — P1 K+ 2 K+ 2
K42 \2 (5 +1L)p1 + p2
~T(+1 < > vl ( )
O =) e o005

In the same way, for I, we get

I — (_1)5< K+ 2 )a[w(1)¢<M) _w(0)¢<p1 - (/<a+1)p2>]_

P2 — P1 K+ 2 K+ 2
K+2\20 2p1 + Kp2
ST SRV g o2
( ) ( ) P2 — p1 (ﬂ1+i++21)p2)_¢ K+ 2

o ool - ()

DGR ) BT,

Subtracting (5) from (4) and rearranging, we have the desired equality.
This ends the proof. []
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Corollary 1. Under the assumptions of Lemma 2, if we take
w(A) = (A*+ %), then for k = 0, m = 1, and § = 1 with a > 0, we
get the identity:

L2060 + 0 (o] -6 (22 2)} - (©
T e (M) e (M52)] -

1
pz4p1f(A +%)[¢,(1;)\p1+1;)\p2)_

0

_¢<1+)\ 1;/\p2)]d/\.

Proof. Indeed, for the first expression from the right-hand side of (3), we
have

<p§fil>5{w“>[¢(m,i—i§m> +¢ (%) |- (7)

_w(o)[d)((Wr Dpr +P2> +¢<p1 + (k5 + 1)/)2)]} _

K+ 2 K+ 2

- o {20 =0 (B52) + 2000}

and for generalized fractional operators, we get

(o 20) P00 [y o( 2 )

w 76 p1+(f<a+1)pz)] B
s (P =

(o) T e (B R) e (P 52)] -

2 1 2
_ _<P23p1>2[ J w'(%)andﬂ

P1tpP2
2

p1tp2 by
! 2 —
+ f w (—m;m = p1>gb(/\)d)\]
p1
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P1tpP2
P2 :

2 2 \— Litez pitpr
:_(P2—,01> [ f w’( —p2_”21 )(ﬁ(/\)d)\—k J wl(ﬁ%bo‘)d)\]'
P1tpy 2 o1 2

2

Since w’ (t) = at®™!, we have

, )\ — Pl‘5ﬂ2 B N — P1‘502 a—1 B a1, ‘L p1+ po a—1
w p2—pP1 =« p2—p1 - 1 2

2 2 (102 - Pl>a_
and
N R\ TN e N N S T R N
w p2—p1 =« p2—p1 o a—1 9 o )
2 2 (P2 - Pl>

And, finally, the weighted operators become Riemann-Liouville fractional:

P2
— W ———2— ) p(N)d\+ 8
(Pz—ﬂl) L ( 22 : ) ) ®)

+ f w’(%)gb()\)d)\] -
2

02

- —( 2 )aﬂar(a)[L f (A—w>a_l¢(>\)d/\+

2

ot [ ()

P1

_ _<p2 2p1>a+1r(a +1) [J;J);—Cb (pl —g P2> + J§1+¢ (pl ‘;‘02)] .

From the integrals in the right-hand side in (3), we get

1

+1-—A 1+ A 1+ k+1—=X\
e )-o0( -
Jw()¢ K+ 2 ,01+/€+2p2 ¢ /ﬁ—2p1+ K+ 2 P2

0
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1
B o IN[,/71-=X 1+ YARR 11—\
_J(A+3)l¢(2m+2pg)¢ 5 Pt 5P dA.
0

Taking into account (7)—(9), it is not difficult to obtain (6). The proof is
complete. []

Remark 2. Identity (6) was obtained by Budak et al. (Lemma 1 in [14]).

Remark 3. In the case k=0 and m = 1
a) If we take w(\) = ((I_(IT_A))B + w%), we get Lemma 2.1 of [15]

with § = 1;
b) If we take w(\) = (A + 3)°, we have Lemma 2.1 of [6].

For convenience, we denote by L(d,x,w) the left-hand side of (3), so

LG5, ) = (= 2 )5{w(1)[¢(—“p1 i 2p2) + ¢(—2”1 - 2] (10)

P2 — p1 K+ 2 K+ 2
() s )
G R [ o)
Py AL )]

Theorem 1. Let¢: [0,00) — R and ¢ € D°[p1, p2], and ¢'9) € Ly[p1, ps],
and w(x) € , J[p1,p2] with 0 < p1 < po. If ¢ € N;fn[O,oo) and
&€ [p1, pa]; then

206 ,w)| < |(w()) ~ wo)o ()| < (11)
< (52206 + 0 () S0 ()

o) A S

m(k+2)

1

<1 (3) ot [ ()

0

()"

1

o () [ (1-n(557)) s

0
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1
14
+h35 Uw h85 + )M
0

wnf(1-n(3)) o () f 1-4(g))

Proof. Putting A\ = 5, we have, from the second-type generalized (h,m)
convexity of ¢, the following:

o(252) <t (Lot e (1-4(3))"s (%),

Putting p1 = “H522 + 25y and py = H5a + 2222y we have
x+y> 55(1) <n+1—)\ 1+)\)
<h® (= + +
¢( 2 )N\ Y

NN /14+Ax k+1-Ay
5
1-n(3)) ¢(5m ")
" ( o)) vem T vz m
Multiplying this inequality by w® ()\) and integrating between 0 and

1 with respect to A, we obtain

1

1
Jw (A)¢( 2 >d/\ h (2 v ¢( K+ 2 x+l€+2y>d)\ *

0

1
1\ 50 14 A -\
mt (1= (5 Jw<5>A¢ i £+Ly)d)\5
K+2m K+2 m
0

From this, we have

(w(1) — w () (“2) < h“<2>f o (1‘ (%)
i

Change of variables z = “H2g + 1+’\y in I and z = =55 + %%
in Iy leads us to the following result:
K+1—XA 142\ if A = 0, then 2 = (U7,
z= T+ =
K+ 2 K+ 2 1f)\—1thenz—m+2y

"2
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2 1 2 2\°
O GAR O Gh L L @:wd¢vz(5i—)df;
y—w y—z y—x y—z

1

kh1—XA  1+A
Ilsz@(A)d)( s x+ﬁ+2y>d)\‘5=

0

Kx+2y
K+2

_ ‘f W (2 DT2 DY, (22) g0

y— y—z y—

(k+Dax+y
K+2

RT+2y
w2 (k+1Dz+y

K+ 2\¢ s 7 — 5
- < ) f w( )(HerQy . (n+1)z+y>¢(z> dz" =

— T
Y K42 K+2

(r+l)zty
K+2

)ﬁ15+1)wj@ﬁhq_¢<

K+2

(/{ +2
y—x
Analogously, for I, we have

(/{+1)x+y>
K+ 2 ’

if \ =0, then z = &+l

14Xz k+1-XAy m(k+2)
= —t =
K+2m K+2 m if)\zl,thenzz—rif:fgy);
)= T+ KRy —m(k +2)z :>d)\:_m(/<;+2)dz
y—x y—x
5 §
) — (_1)5(m(/< + 2)) dsd — _15<m(/f + 2)) dsd
y—x y—x
0 A A
1+ wk+1-Ay
L= [w®( ( = + —>d>\‘5=
2 Jw (N)e K+2m K+2 m
0
2zx+kKy
m(k+2)
-1 w(é)(x+my—m(/<;+2)z>¢(z) (M)éd,ﬁ -
y—x y—x
z+(k+1)y
m(k+2)
ac+((~+;))y
mirt T+RY
m(li + 2) 6 (5) m(k+2) < 1)
= ( y—T ) f w (m+(ﬁ+1)y _ 2z+Ry )¢(2) dz" =
2w try m(k+2) m(k+2)

m(k+2)
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- (%)%(5 0% fi”f;ffé’ﬁ(ﬁ(%)'

Taking into account the last two results in (12), we can see the first
inequality of (11).

To obtain the right-hand side member, using the generalized (h,m)-
convexity of the second type of ¢, we have, successively,

¢(K+1—>\x+1+)\y> :¢<K+1—)\x+<1_f€+1—)\)y> <

K+ 2 K+ 2 K+ 2 rt2
S ()

and

1+Xxz r+1-XAy 1+ Xz 1+ vy
2o ot (- 1))
¢<r<;—i—2m+ K+ 2 m) ¢</<;+2m+< k+2/m

< (i3)o () + (1= () "o ()

Multiplying the first inequality by h% (%) w®()\) and the second by
mo (1 —h (%))S(S w®(\), after integrating between 0 and 1 we obtain

1

hsé(l)fw<5>(A)¢<“+1_Ax+ 1+)\y>d/\5 < (13)

2 K+ 2 K+ 2
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1 [uoon(1-#(22)) ).

. . ﬁ+1 >\ 142
Making the change of variables z = ==22x + =5y in the integral of

the left-hand side of (13) and z = %’2\2 + H:iQATZiL in the integral of the
left-hand side of (14), the required inequality is obtained.

This ends the proof. []

Corollary 2. Under the assumptions of Theorem 1, if we take h(t) = t,
then for k =0, m = s = 1, we get the inequalities

([)22—6/)1)6 {[(0e () = 20(0)0 (22L2) + ()6 (p1)] -
2(1;2‘(5+1 [ 5 g ( >+wjal+¢(,01+,02>]}‘<

2
< —wo)e (52| <

5
e RIC ORI RIC DI

1
1 [|o(x |+ 1216 (y)]]
<
[+

—|—l\3

w® (N)dN°.

Remark 4. If we take w(\) = (A\* + %) and 6 = 1 with a > 0 in Corol-
lary 2, then we get the inequalities:

126 (00) — 6 (P22 w20 o)} -

p2—p1!3 2
2 D [ o (P 2) 4 e (2 52)] <

< (T <o (55 + e (FFY)] <

6@+ b
2

Here J' ¢ and J ¢ are Riemann-Liouville fractional integral opera-
tors. It should be noted that the last two inequalities are a variant of
the Hermite-Hadamard inequality for fractional integration operators.
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Remark 5. If we put h(\) = A\, k = 0 and w®(\) = 1 in the above
result, we obtain an extension of the Theorem 3.1 of [21].

By imposing more restrictive conditions on ¢(® on the right-hand side
of (3), we can obtain more refined inequalities.
So, we have this first result:

Theorem 2. Let ¢: [0,00) — R° and qb € Li[p1,p2], and
()EWMﬁmﬂmm0<1<p2HW )| e N2 10,00), withm € (0,1]
and 2 € [py, py|, then

|L(6,k,w)| <

ol e () e (R o
0

ool o0 (][ (1-0(53)) s (o525 )

Proof. By using properties of the fractal integral, for the right-side of (3)
we can write:

/<;+1—)\ 1+ A
— 1
U K+ 2 p1+/<;+2p2> (16)
1+ A K+1—M\
~o( )]av| <
¢ /<;+2'01+ K+ 2 p2 =
1
+1-=X 1+ A
< Jw]e? (5 )jix’
fw()aﬁ w12 TP +

0

1
I+ A kK+1-A 5
J ‘¢ (/@%—2 * K+ 2 ,02>‘d)\ B
0
= L] + [I2] -

And using the (h, m)—convexity of ¢ in both integrals leads us to

1=
I I (9) 55 H_)
L]+ 5] < |6 pl\j o (N ans
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1

+m6’¢ J H+1 A) A+

0
169 (o, ‘J h&(

oo )| w<»<1—h<i:;>>85dm

< \U ( <“:i?> I
o ([ e )
0

- (1—’1(&12)) 5)“]-

Which is the desired result. []

Corollary 3. Under the assumptions of Theorem 2, if we take h(t) =t
then, for k = 0, we get the inequalities

(n 36,01)5 {[wwe o) = 20000 (B52) + wivoten |-

0
e (M5 st (P52}

1

<[l + m o G o ((57)"+ (557) )]

0

Remark 6. If we take w(\) = (\*+ 1) andm = s = 6 = 1 with o > 0

in Corollary 3, then we get the inequality

lé {2¢ (p2) — ¢ <¥) +2¢ (/)1)} -

_ QQ(pZF_(O;S“D [ ° <p1 +P2> LR <,01 -2%02)]

<
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<228 (CE) [[6 ] + ] )]

Here J; ¢ and J, ¢ are Riemann-Liouville fractional integral operators.
This inequality was obtained by Budak et al. (see Theorem 1 in [14]).

Theorem 3. Let ¢: [0,0) — R’ and ‘¢(5)‘q € Ly[p1,p2], and
w(x) € p Jo[p1, pa] with 0 < p1 < po. If ‘ﬁb(é)‘q € Nif:'?n[()?OO)) with
m e (0,1] and 2 € [p1,p2], ¢ > 1, 5+5:1’ then

1

Ll < ([ wP<A>dA5)‘1’{[\¢<6><pl>\q f (3w an
s )| @w(%‘;))‘;w]i

n [‘qﬁ(‘;)(p ‘ flh(s(l:)\)d/\‘; ¢(5 qf 1+>\ > d)\élé}‘

0 0

Proof. Using the (h, m)-convexity of \¢(5)|q and the well-known Holder

inequality from (16), we obtain:

1

1
Sl
L+ 5| < P( dXs (4) th5<“—)dA5
1l < (([orn)? | 1696 L )ax
0 0
1

o () [ (- n(E52)) v

0

1

1
1+ A
P( dA5 @) qJ‘h5 — ) AN’

# ([urovae) o [ (15) ax+
0 0

1 1

q 5 q
f n+2>d)\] ’
0

From the last inequality, taking into account (3), it obviously follows that
(17). The proof is complete. []

‘gbé p2
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Theorem 4. Under the assumptions of the previous theorem, if ¢ > 1
and % + é = 1, then we have the following inequality:

1 1

26wl < ([oax) [l 0l [woms (52 )avs
et ()] fuon(1- (2 ]

[ e (1)t
w6 (2)[ Of“’W (-0 (25)) o]} as

Proof. The proof follows the same path as the previous one, only a dif-
ferent form of the Holder’s inequality is used: the power mean one. []

Remark 7. Under the conditions of Theorems 3 and 4, if we take
w(A) = (A*+3) with « > 0 and h(t) = t, then for k = 0, and
d =m = s =1, we get the Theorem 1 and 2 from [14].

Remark 8. Other refinements can be obtained using other known in-
equalities, such as Young’s.

3. Conclusions. In this work, we present a generalized formulation of
the fractal weighted integral, which contains, as a particular case, many
of the integral operators reported in the literature. In this context, we
present several integral inequalities that generalize several known results.
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