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ESTIMATES FOR THE SECOND HANKEL-CLIFFORD
TRANSFORM AND TITCHMARSH EQUIVALENCE
THEOREM

Abstract. We obtain estimates of integrals containing the sec-
ond Hankel-Clifford transforms of functions from Sobolev-Hankel—
Clifford spaces. As a corollary, we obtain a new variant of Titch-
marsh equivalence theorem for the second Hankel-Clifford trans-
form.
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1. Introduction. Let f: R — C be in L'(R). The Fourier transform
of f is defined by

~

f(z) = (2m)~ 12 JR fe ™ dt, zeR.

~

If fe L”(R), 1 <p < 2, then Fourier transform f(z) is defined as the
b
limit of (27r)~Y2 { f(z)e~*dz in the norm of LY(R), ¢ = p/(p — 1), as

a,b— +oo.
From the definition it follows that f € LY(R). The following Hausdorff-
Young inequality

~ /p
il <cisty = [Iropa)”, rer®, 1<p<z
R

is valid. For p = ¢ = 2, we have the Plancherel equality instead of (1).
More about these results can be found in [14, Ch. IIT and IV] or [3, Ch. 5].
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In [14, Ch. 4, Theorem 85| the following Titchmarsh equivalence theorem
is proved:

Theorem 1. Let 0 < a <1 and f e L*(R). Then the conditions
@) 1fC+h) = f(-=h)l2 = Oh®), h > 0, and
(i) § [f(@)Pdz=0@y™), y=>0,
|z|>y
are equivalent.

The norm in L*(R) is translation-invariant and | f(-+h) — f(- —h)|2 =
=|f(-+2h) — f(-)]|2, b > 0, so the condition (i) may be substituted by
£ 28) — F()la = O(h), b > 0.

Lorentz [8] proved

Theorem 2. If1<p<2,1>a>1/p—1/2, and a2mw-periodic function
f € L'0,27] with tngonometncal Fourier coefficients a,,, b, belongs to
Lip(a) (ie., |f(z) — f(y)| < Clz —y|* for all x,y € R), then

e}
2 |ag|P + |bel?) < Cn~oP7 P2+ peN.

Since the proof of Theorem 2 uses the Parseval equality, the condition
f € Lip(a) may be replaced by the condition f € Lip(«,2) (i.e., f is

2T
2m-periodic, f € L*0,2x], and § |f(z + h) — f(2)|* dz = O(h**), h > 0.)
0

The aim of this paper is to obtain analogues and generalizations of The-
orems 1 and 2 for the second Hankel-Clifford transform. Note that an ana-
logue of Theorem 1 was obtained for the first Hankel-Clifford transform
by El Hamma, Daher, and Mahfoud [4], while estimates of this transform
in terms of corresponding differential operator were proved by Lahmadi
and El Hamma [7], but there are doubts in the last result. A more ele-
mentary estimate for the first Hankel-Clifford transform was obtained by
the author |15, Theorem 3|. Some close results and facts about the second
Hankel-Clifford transform can be found in [16].

2. Definitions. Let 1 < p < o, p > 0, Ry = [0, + o), and
L7(Ry) be the space of all real-valued measurable functions, such that

o0 1/

I fllze = ( § | f ()P d:c) i X is the indicator of a set £ R,
0

and fxg € L7 (Ry), then f e LF(E).
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The Bessel-Clifford function of the first kind of order u > 0 (see,
e.g., [5]) is defined by

4 EIT( +k+1)

x>0,

where by I'(«r) we have denoted the Euler gamma function. It is known
that ¢, (z) is a solution of the differential equation zy” + (u+ 1)y +y = 0.

If j,(x) is the normalized Bessel function of the first kind and order
v > —1/2, given by

jul@) =T +1) ), n!F(7(1_—i—1):+ 1)

(/2)™"

then ¢, and j, are connected by

cu() =T+ 1)ju(2Vx), x>0 (2)

Hayek [6] introduced the second Hankel-Clifford transform for
Je€ L}L(Rﬁ by

hou(f)(y) = S cu(yz) f(z)xt de.

0

By Lemma 2 below and (2), we have |c,(z)] < T7'(p+ 1) on R;. As
a corollary, we obtain

lh2p (e ST+ DIfly,  feLuRy). (3)

For p > 0, the transform hy, extends from L}(Ry) n L2(R,) onto
L2(R,) and
Ih2u(H)lzg = 1fl2z,  fe Lu(R). (4)
This Plancherel-type equality can be found in [6] or in [9]. Using Riesz—
Thorin interpolation theorem (see |2, Ch. 1, Theorem 1.1.1]), we obtain
a Hausdorff—Young type inequality

lhou(Dlzg < Clfleg,  fe LRy, ()

where 1 <p <2and ¢g=p/(p—1) asin (1).

Let A(z,y,2) = (p(p — 2)(p — y)(p — 2))"/?, where p = (z +y + 2)/2,
be the area of the triangle with sides z, y, z. For p > 0, set
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AQ,qul(x y Z)
_D _ Y I
82 = Py + v

when the triangle with sides z, y, z exists, and D,(z,y,2) = 0 in other
cases. Then D, (z,y,z) is non-negative and symmetric in z, y, z. In
[12], Prasad, Singh, and Dixit suggested the generalized Hankel-Clifford
translation of f € L (R, ) as follows:

+00

L) = [ FDuen 2 s, 0 <y <

Using Lemma 1.3 from [12], we have, for f € L} (R, ):

ho (T () () = cu(zy)heu(f)(y), v =0. (6)

By Lemma 2.3 in [16], this result is also valid for f € LE(R;), 1 <p < 2,
a.e. on R,.
Now we introduce the difference of order m € N with step ¢ > 0 by

m

Aljsed @) = (1= T+ DT 1(0) = Y0 (") DT ),

=0

where [ is the identical operator, and the modulus of smoothness of order
min LE(R,), 1 < p < o, by

wm(fy 5)p,u,hc = Sup HA;n,;L,hcfHLZ'
0<t<d

Due to Lemma 1, for 1 < p < oo, p > 0, and § > 0, we have

wm(f7 5)p,u,hc < OHf”LZ
Let S(0,+00) be the set of all infinitely differentiable functions v (x)

defined on (0, +0), such that

pmi(¥) = sup |a"®(2)] < o0

O<z<o0

for all m,k € Z,. In [9] it is proved that hs, is an automorphism of
S(0,+00). Also, in |9, Proposition 6] it is established that for differential
operator B, (1)) = x¢" + (u + 1)y and ¢ € S(0, 4+ o0) the equality

hou(BL()(y) = (=)' hau(®)(y), y>0, €N, (7)
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holds (see also (1.14) in [12]). For p > 0, 1 < p < w0, and m € N, we
define the Sobolev space W, (R, ) consisting of fe Lﬁ(RJr), such that f,
f' ..., f®™=Y are absolutely continuous on each segment from (0, +o0)
and B},(f) € LE(Ry), i =1,2,...,m

Also, we can consider the space S.(R) as the space of pX|o +), where
¢ are even Schwartz functions. Then S.(R;) < S(0,0) and S.(R;) is
dense in all LE(R,), 1 < p < . Using the usual density arguments, we
state that (7) is valid for ¢ € W}, (R, ) and i = cm.

Denote by ® the set of Contmuous and 1ncreasmg on R, = [0,)

functions w, such that w(0) = 0. If w € ® and St w(t)dt = O(w(9)),

§ > 0, then w belongs to the Bary class B; if w € ® and §™ S t—m o (t) dt =
5

= O(w(0)) for some m > 0 and all § > 0, then w belongs to the Bary-
Stechkin class B,, (see [1]). We say that w € ® satisfies the Ag-condition
(we Ay), if w(2z) < Cw(x), x e R,.

3. Auxiliary propositions.

Lemma 1. Let 1<p<m,u>0, feLl(R,). Then

IT(e + DTf g < 1z
The proof of Lemma 1 belongs to Prasad and Singh [13, Lemma 1.1].

Lemma 2. Let p > 0. Then

(i) |ju(x)| <1 forz >0 and j,(x) <1 for z > 0;
(ii) 1 —j,(x) > C >0 forz > 1;

(iii) the double inequality Ciz* < 1 — j,(x) < Cox? is valid for some
Cy>Cy >0 and all z € [0,1].

Proof. For (i) and (ii), see papers by Platonov [11] and [10, Lemma 3.3].
The assertion of (iii) see, e.g., in [17]. O

From (6), (7), (2), and using induction, we deduce
Lemma 3. Let 1<p<2,u>0,fell(R,), meN,t>0. Then

hou (A nef)(y) = (1 — Ju2Vyt) " hau(f)(y)  for ae. yeR,.

For ke N and f e W} (R,), we have:

ho (A e Bi(F) () = (1= 3,2vyt)" (—y) heu(f)(y)  for ae. yeRy.
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Lemma 4 can be found in [16].

Lemma 4. Let p > 0, m > 0, w € B,,, and G(t) be a non-negative
measurable function on R, , such that

0
JG(t)t“ dt = O(w(1/y)), y>0.
y
Then t™G(t) is integrable on each segment [a,b] € R, and

Y

JtmG(t)t“ dt = O(y"w(1/y)), y>D0.

0
Lemma 5 is proved in [1].

Lemma 5. Letw e ® and m € N. Then the conditions (i) w € B,,; and
(ii) there exists a € (0, m), such that for all 0 < u < v < oo the inequality
w(v)/v™* < Cw(u)/u™ * holds; are equivalent. In particular, if w € B,,,
then w satisfies the Ay-condition.

4. Main results. Theorem 3 is an analogue and an extension of
Theorem 2.

Theorem 3. Let p>0,1<p<2, 1/p+1/g=1meN, keZ,,
fell(Ry) fork=0orfe pvu(RJr)fork‘eN If0 <r < qandaeR,
then for all N > 0 we have:

o¢) o¢)

fy“!hz,u(f)(y)l’”y“ dy < C J o b=t gy (BR(F), 67 punet dt.

N N/2

Proof. By Lemma 3 and Hausdorff-Young inequality (5), we have

fR o (F) ()11 — G,(2/5E)) ™y dy <

ClHAtuhc p,( )H Clwq (Bk(f) )puhc
Let N > 0 and D; = [2'N, 2”1]\7), i€ Zy, t; = 27'N~L. Then, by
Lemma 2 (ii), we find that

f o (F) )| dy < Co(2N) M0 (BE(F), ) e

D;
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By the Holder inequality, for 0 < r < ¢ we obtain:

f Y o () () dy <

D;

<Jyaq/(Q—r)+u dy) 1_r/q<J|h27u(f)(y)|qy” dy)r/q <

D; D;
< Cy(2'N) DU (N TR (BR(f), 27 N1 e <
2N
<Gy f W (ft )y pupet @R Dt gy (8)
2i-1N
For r = ¢, we see that

fya|h2,u(f) <y)|qu dy < 05(2iN)a_kqwg@(Bﬁ(f)a 2_iN_1)p,u,hc <

D;
2LN
< O J WL (BE(P) ) et 0 e, (9)
2i-1N

Summing up (9) or (8) over i = 0,1,..., we obtain

o0 o0
fy"‘|h2,u(f)(y)|’“y“ dy < Cf f gkl rfagr (BE(F), t70) et dt.
N N/2

OJ

Corollary 1. Let 1 < p < 2, q = p/(p—1), w € Ay, mk € N,
f e Wy, (Ry) and wn(BJ(f),8)pune = O(w(3)), 6 > 0. Then

W

o0

[atn@pay < =S ws0 (10
N

Proof. By Theorem 3, we have for « = 0 and r = ¢:

0

| ety dy < Cusg (BN 2Ny [ £4 de <
N/2

N
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w(N™)
N*a

<0y , N >0,

due to the condition w € As. [

Remark. It is interesting to compare Corollary 1 with Theorem 2.1
in [7], where a similar to (10) estimate with hy , instead of hy ,, is obtained.
It seems that a factor N~2% in the analogue of (10) in [7] is not proper.

Now we can obtain a variant of Theorem 1 (or Titchmarsh equivalence
theorem).

Theorem 4. Let >0, f € L7(R), m € N and w” € B n By, Then
the conditions (1) Wy (f,0)puhe = O( (0)), 0 = 0;

[ee}
@) [ sl NPy dy = OWHN ), N >0,
N
and
(iii) f lho(F) (W) Py" dy = O(W?(N7)), N >0
are equivalent.
Proof. Let (i) be valid. By Theorem 3 in the case « =k =0, r = p = 2,
we obtain
e 0]
jwm WPy <0y [ e -
N/2
2/N
w(t) 2 2/ n7—1
= Cl / dt < C’lw (Q/N) < CQW (N ),

since w? € B and, by Lemma 5, w? satisfies Ay-condition. Thus, we prove
(i) = (ii) = (iii).

Conversely, let (iii) be true. Then

21+1N

fvm |y“dy—ZJ|h2u ()12 dy <
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- 1/@IN)
<O Y WA(@N)Y) = CP(N) + 0422 N f
=0 /(2N
Y@
204( ) + Z J “ t@ dt) < OCsw?(N7YH, N >0,
1/(2iN)

by the condition w? € B, i.e., (iii) = (ii).
By Lemma 3 and Plancherel-type equality (4), we have:

AT s = [ e = G250y dy =

1/(4t) o
([ + | Ire@Pa ey dy = 1) + B
0 1/(4t)

By Lemma 2 (i), Lemma 5, and condition (ii) of the Theorem, we
obtain:

o0

RO <27 [ b)Y dy < Co(ar) < Cr(e). (1)
1/(4t)

On the other hand, by Lemma 2 (iii):

1/(4t)
hwgaJWMHMWmWww
0

But by (11), the condition w? € By,,, and Lemma 4, we find that

1/(4t)
ijwﬁMWW@<@WWW%Mﬂ

0

and [1(t) < Cyw(t), t > 0, by Lemma 5. From the last inequality and
(11), we deduce that ||AwhcfHLi < (Cr 4 Co)Y2w(t), t > 0, and (i) = (i)
follows. Theorem 4 is proved. []
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