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1. Introduction. In what follows, ℋp𝐷q and ℳp𝐷q are the classes
of all holomorphic and meromorphic functions in the domain 𝐷 Ď C, re-
spectively. A family ℱĂℳp𝐷q is said to be normal in 𝐷 if every sequence
of functions in ℱ has a subsequence that converges locally uniformly in
𝐷 with respect to the spherical metric to a limit function, which is either
meromorphic in 𝐷 or the constant 8. In the case ℱ Ă ℋp𝐷q, the Eu-
clidean metric can be substituted for the spherical metric (see [25], [34]).
The idea of the normal family is attributed to Paul Montel [22], [23]. Ever
since its creation, the theory of normal families has been a cornerstone
of complex analysis with far-reaching applications in dynamics of rational
as well as transcendental maps, function theory of one and several vari-
ables, bicomplex analysis, harmonic mappings, complex projective geome-
try, functional analysis etc. (see [1], [2], [5], [6], [12], [15], [20], [31], [34]).

The main purpose of this paper is to study the normality of a sequence
of non-vanishing meromorphic functions in a domain 𝐷 Ď C, whose differ-
ential polynomials have non-exceptional holomorphic functions in 𝐷. For
𝑓, 𝑔 Pℳp𝐷q, if 𝑓p𝑧q ´ 𝑔p𝑧q ‰ 0 in 𝐷, then 𝑔 is said to be an exceptional
function of 𝑓 in 𝐷. On the other hand, if there exist at least one 𝑧 P 𝐷
for which 𝑓p𝑧q ´ 𝑔p𝑧q “ 0, then 𝑔 is said to be a non-exceptional function
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of 𝑓 in 𝐷. If 𝑔 happens to be a constant, say 𝑘, then 𝑘 is said to be an
exceptional (respectively, non-exceptional) value of 𝑓 in 𝐷.

Definition 1. [16] Let 𝑘 P N, 𝑓 P ℳp𝐷q and 𝑛0, 𝑛1, . . . , 𝑛𝑘 be non-
negative integers, not all zeros. By a differential monomial of 𝑓 we mean
an expression of the form

𝑀 r𝑓 s :“ 𝑎 ¨ p𝑓q𝑛0 p𝑓 1q𝑛1p𝑓2q𝑛2 ¨ ¨ ¨ p𝑓 p𝑘qq𝑛𝑘 ,

where 𝑎 pı 0,8q P ℳp𝐷q. If 𝑎 is taken to be the constant function 1,
then we say that the differential monomial 𝑀 r𝑓 s is normalized. Further,
the quantities

𝜆𝑀 :“
𝑘
ÿ

𝑗“0

𝑛𝑗 and 𝜇𝑀 :“
𝑘
ÿ

𝑗“0

p𝑗 ` 1q𝑛𝑗

are called the degree and weight of the differential monomial 𝑀 r𝑓 s, re-
spectively.

For 1 6 𝑖 6 𝑚, let 𝑀𝑖r𝑓 s “
𝑘
ś

𝑗“0

`

𝑓 p𝑗q
˘𝑛𝑗𝑖 be 𝑚 differential monomials

of 𝑓 . Then the sum

𝑃 r𝑓 s :“
𝑚
ÿ

𝑖“1

𝑎𝑖𝑀𝑖r𝑓 s

is called a differential polynomial of 𝑓 and the quantities

𝜆𝑃 :“ max t𝜆𝑀𝑖
: 1 6 𝑖 6 𝑚u and 𝜇𝑃 :“ max t𝜇𝑀𝑖

: 1 6 𝑖 6 𝑚u

are called the degree and weight of the differential polynomial 𝑃 r𝑓 s, re-
spectively. If 𝜆𝑀1 “ 𝜆𝑀2 “ ¨ ¨ ¨ “ 𝜆𝑀𝑚 , then 𝑃 r𝑓 s is said to be a homoge-
neous differential polynomial.

In this work, we are concerned with the homogeneous differential poly-
nomials of the form

𝑄r𝑓 s :“ 𝑓𝑥0p𝑓𝑥1qp𝑦1qp𝑓𝑥2qp𝑦2q ¨ ¨ ¨ p𝑓𝑥𝑘qp𝑦𝑘q, (1)

where 𝑥0, 𝑥1, . . ., 𝑥𝑘, 𝑦1, 𝑦2, . . ., 𝑦𝑘 are non-negative integers, such that
𝑥𝑖 > 𝑦𝑖 for 𝑖 “ 1, 2, . . . , 𝑘.

The differential polynomial (1) first appeared in the literature in [14]
and has been used extensively since then, particularly in finding normality
criteria of families of meromorphic functions (see [26], [27], [28]).
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We set 𝑥1 “
𝑘
ř

𝑖“1

𝑥𝑖 and 𝑦1 “
𝑘
ř

𝑖“1

𝑦𝑖. Further, we assume that 𝑥0 ą 0 and

𝑦1 ą 0. Using the generalized Leibniz rule for derivatives, one can easily
verify that

p𝑓𝑥𝑖qp𝑦𝑖q “
ÿ

𝑛1`𝑛2`¨¨¨`𝑛𝑥𝑖“𝑦𝑖

𝑦𝑖!

𝑛1!𝑛2! ¨ ¨ ¨𝑛𝑥𝑖 !
𝑓 p𝑛1q𝑓 p𝑛2q ¨ ¨ ¨ 𝑓 p𝑛𝑥𝑖 q,

where 𝑛𝑖’s are non-negative integers. Thus, the degree of 𝑄r𝑓 s,
𝜆𝑄 “ 𝑥0 ` 𝑥

1 and the weight of 𝑄r𝑓 s, 𝜇𝑄 “ 𝑥0 ` 𝑥
1 ` 𝑦1 “ 𝜆𝑄 ` 𝑦

1.

2. Motivation and main results. In [19, Problem 5.11], Hayman
posed the following problem:

Problem A. Let ℱ Ă ℳp𝐷q and 𝑘 be a positive integer. Suppose that
for each 𝑓 P ℱ , 𝑓p𝑧q ‰ 0, 𝑓 p𝑘q ‰ 1. Then, what can be said about the
normality of ℱ in 𝐷?

Gu [17] considered Problem A and confirmed that the family ℱ is
indeed normal in 𝐷. Subsequently, Yang [29] proved that the exceptional
value 1 of 𝑓 p𝑘q can be replaced by an exceptional holomorphic function.
Chang [3] considered the case when 𝑓 p𝑘q ´ 1 has limited number of zeros
and obtained the normality of ℱ . Thin and Oanh [28] replaced 𝑓 p𝑘q with a
differential polynomial of 𝑓 . Later, Deng et al. [11] established that there
is no loss of normality even when 𝑓 p𝑘q ´ ℎ has zeros for some ℎ P ℋp𝐷q
as long as the number of zeros are bounded by the constant 𝑘. Chen et
al. [8] took a sequence of exceptional holomorphic functions instead of a
single exceptional holomorphic function. Recently, Deng et al. [13] proved
the following theorem concerning a sequence of meromorphic functions:

Theorem B. Let t𝑓𝑗u Ă ℳp𝐷q and tℎ𝑗u Ă ℋp𝐷q be sequences of func-
tions in 𝐷. Assume that ℎ𝑗 Ñ ℎ locally uniformly in 𝐷, where ℎ P ℋp𝐷q
and ℎ ı 0. Let 𝑘 be a positive integer. If, for each 𝑗, 𝑓𝑗p𝑧q ‰ 0 and
𝑓
p𝑘q
𝑗 ´ ℎ𝑗p𝑧q has at most 𝑘 distinct zeros, ignoring multiplicities, in 𝐷,

then t𝑓𝑗u is normal in 𝐷.

Following Thin and Oanh [28], a natural question about Theorem B
arises:

Question C. Let t𝑓𝑗u Ă ℳp𝐷q and tℎ𝑗u Ă ℋp𝐷q be sequences of func-
tions in 𝐷. Is it possible to generalize Theorem B for differential polyno-
mials 𝑄r𝑓𝑗s?
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In this paper, our first objective is to find a complete answer to Ques-
tion C. Since normality is a local property, one can always restrict the
domain to the open unit disk D.

Theorem 1. Let t𝑓𝑗u ĂℳpDq and tℎ𝑗u Ă ℋpDq be such that ℎ𝑗 Ñ ℎ
locally uniformly in D, where ℎ P ℋp𝐷q and ℎ ı 0. Let 𝑄r𝑓𝑗s be a
differential polynomial of 𝑓𝑗 as defined in (1), having weight 𝜇𝑄. If, for
each 𝑗, 𝑓𝑗p𝑧q ‰ 0 and 𝑄r𝑓𝑗s ´ ℎ𝑗 has at most 𝜇𝑄 ´ 1 zeros, ignoring
multiplicities, in D, then t𝑓𝑗u is normal in D.

Remark 1. Theorem 1 gives an affirmative answer to Question C.

Our next objective is to find whether the upper bound for the number
of zeros of 𝑄r𝑓𝑗s ´ ℎ𝑗 in Theorem 1 can be improved. In view of this, we
obtain the following result, which is more general than Theorem 1:

Theorem 2. Let t𝑓𝑗u Ă ℳpDq be a sequence, such that, for each 𝑗,
𝑓𝑗 has poles of multiplicity at least 𝑚, 𝑚 P N. Let tℎ𝑗u Ă ℋpDq be such
that ℎ𝑗 Ñ ℎ locally uniformly in D, where ℎ P ℋpDq and ℎ ı 0. Let
𝑄r𝑓𝑗s be a differential polynomial of 𝑓𝑗 as defined in (1), having degree
𝜆𝑄 and weight 𝜇𝑄. If, for each 𝑗, 𝑓𝑗p𝑧q ‰ 0 and 𝑄r𝑓𝑗s ´ ℎ𝑗 has at most
𝜇𝑄`𝜆𝑄p𝑚´1q´1 zeros, ignoring multiplicities, in D, then t𝑓𝑗u is normal
in D.

Remark 2. Clearly, if we do not take the multiplicity of poles of 𝑓𝑗 into
account, then Theorem 2 reduces to Theorem 1.

As a direct consequence of Theorems 1 and 2, we have

Corollary 1. Let t𝑓𝑗u Ă ℳpDq and tℎ𝑗u Ă ℋpDq be such that ℎ𝑗 Ñ ℎ
locally uniformly in D, where ℎ P ℋp𝐷q and ℎ ı 0. If, for each 𝑗, 𝑓𝑗p𝑧q ‰ 0
and 𝑄r𝑓𝑗sp𝑧q ‰ ℎ𝑗p𝑧q, then t𝑓𝑗u is normal in D.

In the following, we show that the condition ‘𝑓𝑗p𝑧q ‰ 0’ in Theorem 2
is essential.

Example 1. Consider a sequence t𝑓𝑗u Ă ℳpDq given by 𝑓𝑗p𝑧q “ 𝑗𝑧,
𝑗 P N, 𝑗 > 2. Let 𝑄r𝑓𝑗s :“ 𝑓𝑗𝑓

1
𝑗, so that 𝜇𝑄 “ 3, and let ℎ𝑗p𝑧q “ 𝑧. Then

ℎ𝑗 Ñ 𝑧 ı 0 and 𝑄r𝑓𝑗sp𝑧q ´ ℎ𝑗p𝑧q has at most one zero in D. However,
t𝑓𝑗u is not normal in D.

Taking ℎ𝑗p𝑧q “ 1{𝑧 in Example 1, we find that ℎ𝑗 cannot be meromor-
phic in D. Furthermore, the condition “ℎ ı 0” in Theorem 2 cannot be
dropped as demonstrated by the following example:
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Example 2. Let t𝑓𝑗u Ă ℳpDq be such that 𝑓𝑗p𝑧q “ 𝑒𝑗𝑧, 𝑗 P N, and let
ℎ𝑗 ” 0, so that ℎ𝑗 Ñ ℎ ” 0. Let 𝑄r𝑓𝑗s be any differential polynomial of
𝑓𝑗 of the form (1). Clearly, 𝑄r𝑓𝑗sp𝑧q ´ ℎp𝑧q has no zero in D. But the
sequence t𝑓𝑗u is not normal in D.

The following example establishes the sharpness of the condition
"𝑄r𝑓𝑗s ´ ℎ𝑗 has at most 𝜇𝑄 ` 𝜆𝑄p𝑚 ´ 1q ´ 1 distinct zeros in D" in
Theorem 2:

Example 3. Let t𝑓𝑗u ĂℳpDq be such that

𝑓𝑗p𝑧q “
1

𝑗𝑧
, 𝑗 > 3, 𝑗 P N,

and let 𝑄r𝑓𝑗s :“ 𝑓𝑗𝑓
1
𝑗. Then 𝜆𝑄 “ 2, 𝜇𝑄 “ 3, 𝑚 “ 1, and

𝑄r𝑓𝑗sp𝑧q “ ´1{𝑗2𝑧3. Consider ℎ𝑗p𝑧q “ 1{p𝑧 ´ 1q3, so that tℎ𝑗u P ℋpDq
and ℎ𝑗 Ñ 1{p𝑧´ 1q3 ı 0. Then, by simple calculations, one can easily see
that 𝑄r𝑓𝑗sp𝑧q ´ ℎ𝑗p𝑧q has exactly 𝜇𝑄` 𝜆𝑄p𝑚´ 1q “ 3 distinct zeros in D.
However, the sequence t𝑓𝑗u is not normal in D.

3. Preliminary results. What follow are the preparations for the
proof of the main result. We assume that the reader is familiar with stan-
dard definitions and notations of Nevanlinna’s value distribution theory,
like 𝑚p𝑟, 𝑓q, 𝑁p𝑟, 𝑓q, 𝑇 p𝑟, 𝑓q, 𝑆p𝑟, 𝑓q (see [18], [30]). Recall that a function
𝑔 PℳpCq is said to be a small function of 𝑓 PℳpCq if 𝑇 p𝑟, 𝑔q “ 𝑆p𝑟, 𝑓q
as 𝑟 Ñ 8, possibly outside a set of finite Lebesgue measure.

Notation: By 𝐷𝑟p𝑎q, we mean an open disk in C with center 𝑎 and
radius 𝑟. D “ 𝐷1p0q is the open unit disk in C.

The following lemma is an extension of the Zalcman–Pang Lemma due
to Chen and Gu [9] (cf. [24, Lemma 2]).

Lemma 1. (Zalcman–Pang Lemma) Let ℱ Ă ℳpDq be such that each
𝑓 P ℱ has zeros of multiplicity at least 𝑚 and poles of multiplicity at
least 𝑝. Let ´𝑝 ă 𝛼 ă 𝑚. If ℱ is not normal at 𝑧0 P D, then there exist
sequences t𝑓𝑗u Ă ℱ , t𝑧𝑗u Ă D, satisfying 𝑧𝑗 Ñ 𝑧0, and positive numbers
𝜌𝑗 with 𝜌𝑗 Ñ 0, such that the sequence t𝑔𝑗u defined by

𝑔𝑗p𝜁q “ 𝜌´𝛼𝑗 𝑓𝑗p𝑧𝑗 ` 𝜌𝑗𝜁q Ñ 𝑔p𝜁q

locally uniformly in C with respect to the spherical metric, where 𝑔 is
a non-constant meromorphic function on C, such that for every 𝜁 P C,
𝑔#p𝜁q 6 𝑔#p0q “ 1.
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We remark that if 𝑓p𝑧q ‰ 0 in 𝐷 for every 𝑓 P ℱ , then 𝛼 P p´𝑝, `8q.
Likewise, if each 𝑓 P ℱ does not have any pole in 𝐷, then 𝛼 P p´8, 𝑚q,
and if 𝑓p𝑧q ‰ 0, 8 in 𝐷 for every 𝑓 P ℱ , then 𝛼 P p´8, `8q.

Lemma 2. [10, Lemma 3] Let ℱ Ă ℳpDq and suppose that ℎ P ℋpDq
or ℎ ” 8. Further, assume that for each 𝑓 P ℱ , 𝑓p𝑧q ‰ ℎp𝑧q in D. If
ℱ is normal in Dz t0u but not normal in D, then there exists a sequence
t𝑓𝑗u Ă ℱ , such that 𝑓𝑗 Ñ ℎ in Dz t0u.

Proposition 1. Let 𝑓 P ℳpCq be a transcendental function and let
𝑄r𝑓 s be a differential polynomial of 𝑓 as defined in (1), having degree 𝜆𝑄
and weight 𝜇𝑄. Assume that 𝜓 pı 0, 8q is a small function of 𝑓 . Then

𝜆𝑄𝑇 p𝑟, 𝑓q 6 𝑁p𝑟, 𝑓q ` p1` 𝜇𝑄 ´ 𝜆𝑄q𝑁
´

𝑟,
1

𝑓

¯

𝑁
´

𝑟,
1

𝑄r𝑓 s ´ 𝜓

¯

` 𝑆p𝑟, 𝑓q.

Proof. By definition of 𝑄r𝑓 s, it is apparent that 𝑄r𝑓 s ı 0. Then, from
the first fundamental theorem of Nevanlinna, we have

𝜆𝑄𝑇 p𝑟, 𝑓q “ 𝜆𝑄 𝑚
´

𝑟,
1

𝑓

¯

` 𝜆𝑄𝑁
´

𝑟,
1

𝑓

¯

`𝑂p1q 6

6 𝑚
´

𝑟,
𝑄r𝑓 s

𝑓𝜆𝑄

¯

`𝑚
´

𝑟,
1

𝑄r𝑓 s

¯

` 𝜆𝑄𝑁
´

𝑟,
1

𝑓

¯

`𝑂p1q. (2)

From Nevanlinna’s theorem on logarithmic derivative, we find that

𝑚

ˆ

𝑟,
𝑄r𝑓 s

𝑓𝜆𝑄

˙

“ 𝑆p𝑟, 𝑓q.

Thus, from (2), we obtain

𝜆𝑄𝑇 p𝑟, 𝑓q 6 𝑚
´

𝑟,
1

𝑄r𝑓 s

¯

` 𝜆𝑄𝑁
´

𝑟,
1

𝑓

¯

` 𝑆p𝑟, 𝑓q “

“ 𝑇 p𝑟,𝑄r𝑓 sq ´𝑁
´

𝑟,
1

𝑄r𝑓 s

¯

` 𝜆𝑄𝑁
´

𝑟,
1

𝑓

¯

` 𝑆p𝑟, 𝑓q.

Applying the second fundamental theorem of Nevanlinna for small func-
tions to 𝑇 p𝑟,𝑄r𝑓 sq, we get

𝜆𝑄𝑇 p𝑟, 𝑓q 6 𝜆𝑄𝑁
´

𝑟,
1

𝑓

¯

`𝑁p𝑟,𝑄r𝑓 sq `𝑁
´

𝑟,
1

𝑄r𝑓 s

¯

`𝑁
´

𝑟,
1

𝑄r𝑓 s ´ 𝜓

¯

´

´𝑁
´

𝑟,
1

𝑄r𝑓 s

¯

` 𝑆p𝑟, 𝑓q “
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“ 𝜆𝑄𝑁
´

𝑟,
1

𝑓

¯

`𝑁p𝑟, 𝑓q `𝑁
´

𝑟,
1

𝑄r𝑓 s

¯

`𝑁
´

𝑟,
1

𝑄r𝑓 s ´ 𝜓

¯

´

(3)

´𝑁
´

𝑟,
1

𝑄r𝑓 s

¯

` 𝑆p𝑟, 𝑓q.

Since a zero of 𝑓 with multiplicity 𝑚 is also a zero of 𝑄r𝑓 s with mul-
tiplicity at least p𝑚` 1q𝜆𝑄 ´ 𝜇𝑄,

𝑁
´

𝑟,
1

𝑄r𝑓 s

¯

´𝑁
´

𝑟,
1

𝑄r𝑓 s

¯

> rp𝑚` 1q𝜆𝑄 ´ 𝜇𝑄 ´ 1s𝑁
´

𝑟,
1

𝑓

¯

.

Therefore, from (3), we obtain

𝜆𝑄𝑇 p𝑟,𝑓q 6 𝜆𝑄𝑁
´

𝑟,
1

𝑓

¯

`𝑁p𝑟, 𝑓q ` r1` 𝜇𝑄 ´ p𝑚` 1q𝜆𝑄s𝑁
´

𝑟,
1

𝑓

¯

`

`𝑁
´

𝑟,
1

𝑄r𝑓 s ´ 𝜓

¯

` 𝑆p𝑟, 𝑓q 6

6 𝑁p𝑟, 𝑓q ` p1` 𝜇𝑄 ´ 𝜆𝑄q𝑁
´

𝑟,
1

𝑓

¯

`𝑁
´

𝑟,
1

𝑄r𝑓 s ´ 𝜓

¯

` 𝑆p𝑟, 𝑓q.

l

Corollary 2. Let 𝑓 PℳpCq be a transcendental function and let 𝑄r𝑓 s
be a differential polynomial of 𝑓 as defined in (1). Assume that 𝜓 pı 0,8q
is a small function of 𝑓 . If 𝑓 ‰ 0, then 𝑄r𝑓 s ´𝜓 has infinitely many zeros
in C.

Proof. From Proposition 1, we have

𝜆𝑄𝑇 p𝑟, 𝑓q 6 𝑁p𝑟, 𝑓q` p1`𝜇𝑄´𝜆𝑄q𝑁
´

𝑟,
1

𝑓

¯

`𝑁
´

𝑟,
1

𝑄r𝑓 s ´ 𝜓

¯

`𝑆p𝑟, 𝑓q.

(4)
Since 𝑓 ‰ 0, 𝑁p𝑟, 1{𝑓q “ 0. Thus, from (4), we obtain

𝜆𝑄𝑇 p𝑟, 𝑓q 6 𝑁p𝑟, 𝑓q `𝑁
´

𝑟,
1

𝑄r𝑓 s ´ 𝜓

¯

` 𝑆p𝑟, 𝑓q.

This implies that

p𝜆𝑄 ´ 1q𝑇 p𝑟, 𝐹 q 6 𝑁
´

𝑟,
1

𝑄r𝐹 s ´ 𝜓

¯

` 𝑆p𝑟, 𝐹 q.
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Since 𝜆𝑄´ 1ą0, it follows that 𝑄r𝐹 s´𝜓 has infinitely many zeros in C. l

In [3], Chang proved that if 𝑓 is a non-constant rational function, such
that 𝑓 ‰ 0, then for 𝑘 > 1, 𝑓 p𝑘q ´ 1 has at least 𝑘 ` 1 distinct zeros
in C. Using the method of Chang [3], Deng et al. [11] proved that the
constant 1 can be replaced by a polynomial 𝑝 pı 0q. Recently, Xie and
Deng [32] sharpened the lower bound for the distinct zeros of 𝑓 p𝑘q´𝑝 in C
by involving the multiplicity of poles of 𝑓 . Thin and Oanh [28] extended
the result of Chang to differential polynomials by proving that if 𝑓 p‰ 0q
is a non-constant rational function, then 𝑄r𝑓 s ´ 1 has at least 𝜇𝑄 distinct
zeros in C. We obtain a better result in the following form:

Proposition 2. Let 𝑓 be a non-constant rational function, having poles
of multiplicity at least 𝑚, 𝑚 P N, and let 𝑝 pı 0q be a polynomial. Let
𝑄r𝑓 s be a differential polynomial of 𝑓 as defined in (1), having degree
𝜆𝑄 and weight 𝜇𝑄. Assume that 𝑓 ‰ 0. Then 𝑄r𝑓 s ´ 𝑝 has at least
𝜇𝑄 ` 𝜆𝑄p𝑚´ 1q distinct zeros in C.

Proof. Since 𝑓 ‰ 0, it follows that 𝑓 cannot be a polynomial and, so, 𝑓
has at least one pole. Therefore, we can write

𝑓p𝑧q “
𝐶1

𝑛
ś

𝑖“1

p𝑧 ` 𝛼𝑖q𝑛𝑖`𝑚´1
. (5)

Let

𝑝p𝑧q “ 𝐶2

𝑙
ź

𝑖“1

p𝑧 ` 𝛽𝑖q
𝑙𝑖 , (6)

where 𝐶1, 𝐶2 are non-zero constants; 𝑙, 𝑛, 𝑛𝑖 are positive integers; and 𝑙𝑖
are non-negative integers. Also, 𝛽𝑖 (when 1 6 𝑖 6 𝑙) are distinct complex
numbers and 𝛼𝑖 (when 1 6 𝑖 6 𝑛) are distinct complex numbers.

From (5), one can deduce that

𝑄r𝑓 sp𝑧q “
ℎ𝑄p𝑧q

𝑛
ś

𝑖“1

p𝑧 ` 𝛼𝑖q𝜆𝑄p𝑛𝑖`𝑚´1q`𝜇𝑄´𝜆𝑄
, (7)

where ℎ𝑄 is a polynomial of degree p𝑛´ 1qp𝜇𝑄 ´ 𝜆𝑄q.
Also, it is easy to see that𝑄r𝑓 s´𝑝 has at least one zero in C. Therefore,

we can set

𝑄r𝑓 sp𝑧q “ 𝑝p𝑧q `

𝐶3

𝑞
ś

𝑖“1

p𝑧 ` 𝛾𝑖q
𝑞𝑖

ś𝑛
𝑖“1p𝑧 ` 𝛼𝑖q

𝜆𝑄p𝑛𝑖`𝑚´1q`𝜇𝑄´𝜆𝑄
, (8)
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where 𝐶3 P Cz t0u, 𝑞𝑖 are positive integers, and 𝛾𝑖 (1 6 𝑖 6 𝑞) are distinct
complex numbers.

Let 𝐿 “
𝑙
ř

𝑖“1

𝑙𝑖 and 𝑁 “
𝑛
ř

𝑖“1

𝑛𝑖. Then from (6), (7) and (8), we have

𝐶2

𝑙
ź

𝑖“1

p𝑧`𝛽𝑖q
𝑙𝑖

𝑛
ź

𝑖“1

p𝑧`𝛼𝑖q
𝜆𝑄p𝑛𝑖`𝑚´1q`𝜇𝑄´𝜆𝑄`𝐶3

𝑞
ź

𝑖“1

p𝑧`𝛾𝑖q
𝑞𝑖 “ ℎ𝑄p𝑧q. (9)

From (9), we find that

𝑞
ÿ

𝑖“1

𝑞𝑖 “
𝑛
ÿ

𝑖“1

r𝜆𝑄p𝑛𝑖 `𝑚´ 1q ` 𝜇𝑄 ´ 𝜆𝑄s `
𝑙
ÿ

𝑖“1

𝑙𝑖 “

“ 𝜆𝑄𝑁 ` 𝑛p𝑚´ 1q𝜆𝑄 ` 𝑛p𝜇𝑄 ´ 𝜆𝑄q ` 𝐿

and 𝐶3 “ ´𝐶2.
Also, from (9), we get

𝑙
ź

𝑖“1

p1` 𝛽𝑖𝑟q
𝑙𝑖

𝑛
ź

𝑖“1

p1` 𝛼𝑖𝑟q
𝜆𝑄p𝑛𝑖`𝑚´1q`𝜇𝑄´𝜆𝑄 ´

𝑞
ź

𝑖“1

p1` 𝛾𝑖𝑟q
𝑞𝑖 “

“ 𝑟𝜇𝑄`𝜆𝑄p𝑁`𝑛p𝑚´1q´1q`𝐿𝑏p𝑟q,

where 𝑏p𝑟q :“ 𝑟p𝑛´1qp𝜇𝑄´𝜆𝑄qℎ𝑄p1{𝑟q{𝐶2 is a polynomial of degree at most
p𝑛´ 1qp𝜇𝑄 ´ 𝜆𝑄q. Furthermore, it follows that

𝑙
ś

𝑖“1

p1` 𝛽𝑖𝑟q
𝑙𝑖

𝑛
ś

𝑖“1

p1` 𝛼𝑖𝑟q
𝜆𝑄p𝑛𝑖`𝑚´1q`𝜇𝑄´𝜆𝑄

𝑞
ś

𝑖“1

p1` 𝛾𝑖𝑟q𝑞𝑖
“

“ 1`
𝑟𝜇𝑄`𝜆𝑄p𝑁`𝑛p𝑚´1q´1q`𝐿 𝑏p𝑟q

𝑞
ś

𝑖“1

p1` 𝛾𝑖𝑟q𝑞𝑖
“ 1`𝑂

`

𝑟𝜇𝑄`𝜆𝑄p𝑁`𝑛p𝑚´1q´1q`𝐿
˘

(10)

as 𝑟 Ñ 0. Taking logarithmic derivatives of both sides of (10), we obtain

𝑙
ÿ

𝑖“1

𝑙𝑖𝛽𝑖
1` 𝛽𝑖𝑟

`

𝑛
ÿ

𝑖“1

r𝜆𝑄p𝑛𝑖 `𝑚´ 1q ` 𝜇𝑄 ´ 𝜆𝑄s𝛼𝑖
1` 𝛼𝑖𝑟

´

𝑞
ÿ

𝑖“1

𝑞𝑖𝛾𝑖
1` 𝛾𝑖𝑟

“

“ 𝑂
`

𝑟𝜇𝑄`𝜆𝑄p𝑁`𝑛p𝑚´1q´1q`𝐿´1
˘

as 𝑟 Ñ 0. (11)
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Let 𝑆1 “ t𝛽1, 𝛽2, . . . , 𝛽𝑙u X t𝛼1, 𝛼2, . . . , 𝛼𝑛u and 𝑆2 “ t𝛽1, 𝛽2, . . . , 𝛽𝑙u X
t𝛾1, 𝛾2, . . . , 𝛾𝑞u. Consider the following cases:
Case 1: 𝑆1 “ 𝑆2 “ H.
Let 𝛼𝑛`𝑖 “ 𝛽𝑖 when 1 6 𝑖 6 𝑙 and

𝑁𝑖 “

#

𝜆𝑄p𝑛𝑖 `𝑚´ 1q ` 𝜇𝑄 ´ 𝜆𝑄, if 1 6 𝑖 6 𝑛,

𝑙𝑖´𝑛, if 𝑛` 1 6 𝑖 6 𝑛` 𝑙.

Then (11) can be written as

𝑛`𝑙
ÿ

𝑖“1

𝑁𝑖𝛼𝑖
1` 𝛼𝑖𝑟

´

𝑞
ÿ

𝑖“1

𝑞𝑖𝛾𝑖
1` 𝛾𝑖𝑟

“ 𝑂
`

𝑟𝜇𝑄`𝜆𝑄p𝑁`𝑛p𝑚´1q´1q`𝐿´1
˘

as 𝑟 Ñ 0. (12)

Comparing the coefficients of 𝑟𝑗, 𝑗 “ 0, 1, . . . , 𝜇𝑄 ` 𝜆𝑄p𝑁 ` 𝑛p𝑚 ´ 1q ´
1q ` 𝐿´ 2 in (12), we find that

𝑛`𝑙
ÿ

𝑖“1

𝑁𝑖𝛼
𝑗
𝑖´

𝑞
ÿ

𝑖“1

𝑞𝑖𝛾
𝑗
𝑖 “ 0, for each 𝑗 “ 1, 2, . . . , 𝜇𝑄`𝜆𝑄p𝑁`𝑛p𝑚´1q´1q`𝐿´1.

(13)
Now, let 𝛼𝑛`𝑙`𝑖 “ 𝛾𝑖 for 1 6 𝑖 6 𝑞. Then, from (13) and the fact that
𝑛`𝑙
ř

𝑖“1

𝑁𝑖 ´
𝑞
ř

𝑖“1

𝑞𝑖 “ 0, we deduce that the system of equations

𝑛`𝑙`𝑞
ÿ

𝑖“1

𝛼𝑗𝑖𝑥𝑖 “ 0, 𝑗 “ 0, 1, . . . , 𝜇𝑄 ` 𝜆𝑄p𝑁 ` 𝑛p𝑚´ 1q ´ 1q ` 𝐿´ 1, (14)

has a non-zero solution

p𝑥1, . . . , 𝑥𝑛`𝑙, 𝑥𝑛`𝑙`1, . . . , 𝑥𝑛`𝑙`𝑞q “ p𝑁1, . . . ,𝑁𝑛`𝑙,´𝑞1, . . . ,´ 𝑞𝑞q .

This is possible only when the rank of the coefficient matrix of the system
(14) is strictly less than 𝑛` 𝑙 ` 𝑞.

Hence, 𝜇𝑄`𝜆𝑄p𝑁`𝑛p𝑚´1q´1q`𝐿 ă 𝑛` 𝑙`𝑞. Since 𝑁 “
𝑛
ř

𝑖“1

𝑛𝑖 > 𝑛

and 𝐿 “
𝑙
ř

𝑖“1

𝑙𝑖 > 𝑙, it follows that 𝑞 > 𝜇𝑄 ` 𝜆𝑄p𝑚´ 1q.

Case 2: 𝑆1 ‰ H and 𝑆2 “ H.
We may assume, without loss of generality, that 𝑆1 “ t𝛽1, 𝛽2, . . . , 𝛽𝑠1u.
Then 𝛽𝑖 “ 𝛼𝑖 for 1 6 𝑖 6 𝑠1. Take 𝑠3 “ 𝑙 ´ 𝑠1.
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Subcase 2.1: 𝑠3 > 1.
Let 𝛼𝑛`𝑖 “ 𝛽𝑠1`𝑖 for 1 6 𝑖 6 𝑠3. If 𝑠1 ă 𝑛, then let

𝑁𝑖 “

$

’

&

’

%

𝜆𝑄p𝑛𝑖 `𝑚´ 1q ` 𝜇𝑄 ´ 𝜆𝑄 ` 𝑙𝑖, if 1 6 𝑖 6 𝑠1,

𝜆𝑄p𝑛𝑖 `𝑚´ 1q ` 𝜇𝑄 ´ 𝜆𝑄, if 𝑠1 ` 1 6 𝑖 6 𝑛,

𝑙𝑠1´𝑛`𝑖, if 𝑛` 1 6 𝑖 6 𝑛` 𝑠3.

If 𝑠1 “ 𝑛, then we take

𝑁𝑖 “

#

𝜆𝑄p𝑛𝑖 `𝑚´ 1q ` 𝜇𝑄 ´ 𝜆𝑄 ` 𝑙𝑖, if 1 6 𝑖 6 𝑠1,

𝑙𝑠1´𝑛`𝑖, if 𝑛` 1 6 𝑖 6 𝑛` 𝑠3.

Subcase 2.2: 𝑠3 “ 0.
If 𝑠1 ă 𝑛, then set

𝑁𝑖 “

#

𝜆𝑄p𝑛𝑖 `𝑚´ 1q ` 𝜇𝑄 ´ 𝜆𝑄 ` 𝑙𝑖, if 1 6 𝑖 6 𝑠1,

𝜆𝑄p𝑛𝑖 `𝑚´ 1q ` 𝜇𝑄 ´ 𝜆𝑄, if 𝑠1 ` 1 6 𝑖 6 𝑛

and if 𝑠1 “ 𝑛, then set𝑁𝑖 “ 𝜆𝑄p𝑛𝑖`𝑚´1q`𝜇𝑄´𝜆𝑄`𝑙𝑖, for 1 6 𝑖 6 𝑠1 “ 𝑛.
Thus, (11) can be written as:

𝑛`𝑠3
ÿ

𝑖“1

𝑁𝑖𝛼𝑖
1` 𝛼𝑖𝑟

´

𝑞
ÿ

𝑖“1

𝑞𝑖𝛾𝑖
1` 𝛾𝑖𝑟

“ 𝑂
`

𝑟𝜇𝑄`𝜆𝑄p𝑁`𝑛p𝑚´1q´1q`𝐿´1
˘

as 𝑟 Ñ 0,

where 0 6 𝑠3 6 𝑙 ´ 1. Proceeding in the similar fashion as in Case 1, we
deduce that 𝑞 > 𝜇𝑄 `𝑚´ 1.
Case 3: 𝑆1 “ H and 𝑆2 ‰ H.
We may assume, without loss of generality, that 𝑆2 “ t𝛽1, 𝛽2, . . . , 𝛽𝑠2u.
Then 𝛽𝑖 “ 𝛾𝑖 for 1 6 𝑖 6 𝑠2. Take 𝑠4 “ 𝑙 ´ 𝑠2.
Subcase 3.1: 𝑠4 > 1.
Let 𝛾𝑞`𝑖 “ 𝛽𝑠2`𝑖 for 1 6 𝑖 6 𝑠4. If 𝑠2 ă 𝑞, then set

𝑄𝑖 “

$

’

&

’

%

𝑞𝑖 ´ 𝑙𝑖, if 1 6 𝑖 6 𝑠2,

𝑞𝑖, if 𝑠2 ` 1 6 𝑖 6 𝑞,

´𝑙𝑠2´𝑞`𝑖, if 𝑞 ` 1 6 𝑖 6 𝑞 ` 𝑠4.

If 𝑠2 “ 𝑞, then set

𝑄𝑖 “

#

𝑞𝑖 ´ 𝑙𝑖, if 1 6 𝑖 6 𝑠2,

´𝑙𝑠2´𝑞`𝑖, if 𝑞 ` 1 6 𝑖 6 𝑞 ` 𝑠4.
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Subcase 3.2: 𝑠4 “ 0.
If 𝑠2 ă 𝑞, then set

𝑄𝑖 “

#

𝑞𝑖 ´ 𝑙𝑖 if 1 6 𝑖 6 𝑠2,

𝑞𝑖 if 𝑠2 ` 1 6 𝑖 6 𝑞,

and if 𝑠2 “ 𝑞, then set 𝑄𝑖 “ 𝑞𝑖 ´ 𝑙𝑖, for 1 6 𝑖 6 𝑠2 “ 𝑞.
Thus, (11) can be written as:

𝑛
ÿ

𝑖“1

r𝜆𝑄p𝑛𝑖 `𝑚´ 1q ` 𝜇𝑄 ´ 𝜆𝑄s𝛼𝑖
1` 𝛼𝑖𝑟

´

𝑞`𝑠4
ÿ

𝑖“1

𝑄𝑖𝛾𝑖
1` 𝛾𝑖𝑟

“

“ 𝑂
`

𝑟𝜇𝑄`𝜆𝑄p𝑁`𝑛p𝑚´1q´1q`𝐿´1
˘

as 𝑟 Ñ 0,

where 0 6 𝑠4 6 𝑙 ´ 1. Proceeding in the similar way as in Case 1, we
deduce that 𝑞 > 𝜇𝑄 ` 𝜆𝑄p𝑚´ 1q.
Case 4. 𝑆1 ‰ H and 𝑆2 ‰ H.
We may assume, without loss of generality, that 𝑆1 “ t𝛽1, 𝛽2, . . . , 𝛽𝑠1u ,
𝑆2 “ t𝛾1, 𝛾2, . . . , 𝛾𝑠2u. Then 𝛽𝑖 “ 𝛼𝑖 for 1 6 𝑖 6 𝑠1 and 𝛾𝑖 “ 𝛽𝑠1`𝑖 for
1 6 𝑖 6 𝑠2. Take 𝑠5 “ 𝑙 ´ 𝑠2 ´ 𝑠1.
Subcase 4.1: 𝑠5 > 1.
Let 𝛼𝑛`𝑖 “ 𝑢𝑠1`𝑠2`𝑖 for 1 6 𝑖 6 𝑠5 and if 𝑠1 ă 𝑛, then set

𝑁𝑖 “

$

’

&

’

%

𝜆𝑄p𝑛𝑖 `𝑚´ 1q ` 𝜇𝑄 ´ 𝜆𝑄 ` 𝑙𝑖, if 1 6 𝑖 6 𝑠1,

𝜆𝑄p𝑛𝑖 `𝑚´ 1q ` 𝜇𝑄 ´ 𝜆𝑄, if 𝑠1 ` 1 6 𝑖 6 𝑛,

𝑙𝑠1`𝑠2´𝑛`𝑖, if 𝑛` 1 6 𝑖 6 𝑛` 𝑠5.

If 𝑠1 “ 𝑛, then set

𝑁𝑖 “

#

𝜆𝑄p𝑛𝑖 `𝑚´ 1q ` 𝜇𝑄 ´ 𝜆𝑄 ` 𝑙𝑖, if 1 6 𝑖 6 𝑠1,

𝑙𝑠1`𝑠2´𝑛`𝑖, if 𝑛` 1 6 𝑖 6 𝑛` 𝑠5.

If 𝑠2 ă 𝑞, then set

𝑄𝑖 “

#

𝑞𝑖 ´ 𝑙𝑠1`𝑖, if 1 6 𝑖 6 𝑠2,

𝑞𝑖, if 𝑠2 ` 1 6 𝑖 6 𝑞,

and if 𝑠2 “ 𝑞, then set 𝑄𝑖 “ 𝑞𝑖 ´ 𝑙𝑠1`𝑖, for 1 6 𝑖 6 𝑠2.
Subcase 4.2: 𝑠5 “ 0.
If 𝑠1 ă 𝑛, then set

𝑁𝑖 “

#

𝜆𝑄p𝑛𝑖 `𝑚´ 1q ` 𝜇𝑄 ´ 𝜆𝑄 ` 𝑙𝑖, if 1 6 𝑖 6 𝑠1,

𝜆𝑄p𝑛𝑖 `𝑚´ 1q ` 𝜇𝑄 ´ 𝜆𝑄, if 𝑠1 ` 1 6 𝑖 6 𝑛.
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If 𝑠1 “ 𝑛, then set 𝑁𝑖 “ 𝜆𝑄p𝑛𝑖 `𝑚´ 1q ` 𝜇𝑄 ´ 𝜆𝑄 ` 𝑙𝑖 for 1 6 𝑖 6 𝑠1.
Also, if 𝑠2 ă 𝑞, then set

𝑄𝑖 “

#

𝑞𝑖 ´ 𝑙𝑠1`𝑖, if 1 6 𝑖 6 𝑠2,

𝑞𝑖, if 𝑠2 ` 1 6 𝑖 6 𝑞,

and if 𝑠2 “ 𝑞, then set 𝑄𝑖 “ 𝑞𝑖 ´ 𝑙𝑠1`𝑖, for 1 6 𝑖 6 𝑠2.
Thus, in both subcases, (11) can be written as

𝑛`𝑠5
ÿ

𝑖“1

𝑁𝑖𝛼𝑖
1` 𝛼𝑖𝑟

´

𝑞
ÿ

𝑖“1

𝑄𝑖𝛾𝑖
1` 𝛾𝑖𝑟

“ 𝑂
`

𝑟𝜇𝑄`𝜆𝑄p𝑁`𝑛p𝑚´1q´1q`𝐿´1
˘

as 𝑟 Ñ 0,

where 0 6 𝑠5 6 𝑙 ´ 2. Proceeding in the similar fashion as in Case 1, we
deduce that 𝑞 > 𝜇𝑄 ` 𝜆𝑄p𝑚´ 1q. l

Lemma 3. Let t𝑓𝑗u ĂℳpDq be a sequence of non-vanishing functions,
all of whose poles have multiplicities at least 𝑚, 𝑚 P N. Let tℎ𝑗u Ă ℋpDq
be such that ℎ𝑗 Ñ ℎ locally uniformly in D, where ℎ P ℋpDq and ℎp𝑧q ‰ 0
in D. If, for each 𝑗, 𝑄r𝑓𝑗s ´ ℎ𝑗 has at most 𝜇𝑄 ` 𝜆𝑄p𝑚 ´ 1q ´ 1 zeros,
ignoring multiplicities, in D, then t𝑓𝑗u is normal in D.

Proof. Without loss generality, suppose that t𝑓𝑗u is not normal at 0 P D.
Then, by Lemma 1, there exists a sequence of points t𝑧𝑗u Ă D with 𝑧𝑗 Ñ 0,
a sequence of positive real numbers satisfying 𝜌𝑗 Ñ 0, and a subsequence
of t𝑓𝑗u, again denoted by t𝑓𝑗u, such that the sequence

𝐹𝑗p𝜁q :“
𝑓𝑗p𝑧𝑗 ` 𝜌𝑗𝜁q

𝜌
p𝜇𝑄´𝜆𝑄q{𝜆𝑄
𝑗

Ñ 𝐹 p𝜁q,

spherically locally uniformly in C, where 𝐹 PℳpCq is a non-constant and
non-vanishing function having poles of multiplicity at least 𝑚. Clearly,
𝑄r𝐹𝑗s Ñ 𝑄r𝐹 s spherically uniformly in every compact subset of C disjoint
from poles of 𝐹 . Also, one can easily see that 𝑄r𝐹𝑗sp𝜁q “ 𝑄r𝑓𝑗sp𝑧𝑗 ` 𝜌𝑗𝜁q.
Thus, for every 𝜁 P Cz t𝐹´1p8qu,

𝑄r𝑓𝑗sp𝑧𝑗 ` 𝜌𝑗𝜁q´ℎ𝑗p𝑧𝑗 ` 𝜌𝑗𝜁q “ 𝑄r𝐹𝑗sp𝜁q´ℎ𝑗p𝑧𝑗 ` 𝜌𝑗𝜁q Ñ 𝑄r𝐹 sp𝜁q´ℎp0q

spherically locally uniformly. Since 𝐹 is non-constant and 𝑥0 ą 0, 𝑥𝑖 > 𝑦𝑖
for all 𝑖 “ 1, 2, . . . , 𝑘, by a result of Grahl [16, Theorem 7], it follows
that 𝑄r𝐹 s is non-constant. Next, we claim that 𝑄r𝐹 s ´ ℎp0q has at most
𝜇𝑄 ` 𝜆𝑄p𝑚´ 1q ´ 1 zeros in C.
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Suppose, on the contrary, that 𝑄r𝐹 s´ℎp0q has 𝜇𝑄`𝜆𝑄p𝑚´1q distinct
zeros in C, say 𝜁𝑖, 𝑖 “ 1, 2, . . . , 𝜇𝑄`𝜆𝑄p𝑚´1q. Then by Hurwitz’s theorem,
there exit sequences 𝜁𝑗,𝑖, 𝑖 “ 1, 2, . . . , 𝜇𝑄 ` 𝜆𝑄p𝑚 ´ 1q with 𝜁𝑗,𝑖 Ñ 𝜁𝑖,
such that for sufficiently large 𝑗, 𝑄r𝑓𝑗sp𝑧𝑗 ` 𝜌𝑗𝜁𝑗,𝑖q ´ ℎ𝑗p𝑧𝑗 ` 𝜌𝑗𝜁𝑗,𝑖q “ 0
for 𝑖 “ 1, 2, . . . , 𝜇𝑄 ` 𝜆𝑄p𝑚 ´ 1q. However, 𝑄r𝑓𝑗s ´ ℎ𝑗 has at most
𝜇𝑄`𝜆𝑄p𝑚´ 1q´ 1 distinct zeros in D. This proves the claim. Now, from
Corollary 2, it follows that 𝐹 must be a rational function which contradicts
Proposition 2. l

Proposition 3. Let 𝑡 be a positive integer. Let t𝑓𝑗u Ă ℳpDq be a
sequence of non-vanishing functions, all of whose poles have multiplic-
ities at least 𝑚, 𝑚 P N, and let tℎ𝑗u Ă ℋpDq be such that ℎ𝑗 Ñ ℎ
locally uniformly in D, where ℎ P ℋpDq and ℎp𝑧q ‰ 0. If, for every 𝑗,
𝑄r𝑓𝑗sp𝑧q ´ 𝑧𝑡ℎ𝑗p𝑧q has at most 𝜇𝑄 ` 𝜆𝑄p𝑚´ 1q ´ 1 zeros in D, then t𝑓𝑗u
is normal in D.

Proof. In view of Lemma 3, it suffices to prove that ℱ is normal at 𝑧 “ 0.
Since ℎp𝑧q ‰ 0 in D, it can be assumed that ℎp0q “ 1. Now, suppose,
on the contrary, that t𝑓𝑗u is not normal at 𝑧 “ 0. Then, by Lemma 1,
there exists a subsequence of t𝑓𝑗u, which, for simplicity, is again denoted
by t𝑓𝑗u, a sequence of points t𝑧𝑗u Ă D with 𝑧𝑗 Ñ 0, and a sequence of
positive real numbers satisfying 𝜌𝑗 Ñ 0, such that the sequence

𝐹𝑗p𝜁q :“
𝑓𝑗p𝑧𝑗 ` 𝜌𝑗𝜁q

𝜌
p𝑡`𝜇𝑄´𝜆𝑄q{𝜆𝑄
𝑗

Ñ 𝐹 p𝜁q

spherically locally uniformly in C, where 𝐹 P ℳpCq is a non-constant
function. Also, since each 𝑓𝑗 is non-vanishing, it follows that 𝐹 is non-
vanishing. We now distinguish two cases.
Case 1: Suppose that there exists a subsequence of 𝑧𝑗{𝜌𝑗, again denoted
by 𝑧𝑗{𝜌𝑗, such that 𝑧𝑗{𝜌𝑗 Ñ 8 as 𝑗 Ñ 8.

Define
𝑔𝑗p𝜁q :“ 𝑧

´p𝑡`𝜇𝑄´𝜆𝑄q{𝜆𝑄
𝑗 𝑓𝑗p𝑧𝑗 ` 𝑧𝑗𝜁q.

Then an elementary computation shows that

𝑄r𝑔𝑗sp𝜁q “ 𝑧´𝑡𝑗 𝑄r𝑓𝑗sp𝑧𝑗 ` 𝑧𝑗𝜁q,

and, hence,

𝑄r𝑓𝑗sp𝑧𝑗 ` 𝑧𝑗𝜁q ´ p𝑧𝑗 ` 𝑧𝑗𝜁q
𝑡ℎ𝑗p𝑧𝑗 ` 𝑧𝑗𝜁q “
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“ 𝑧𝑡𝑗𝑄r𝑔𝑗sp𝜁q´p𝑧𝑗`𝑧𝑗𝜁q
𝑡ℎ𝑗p𝑧𝑗`𝑧𝑗𝜁q “ 𝑧𝑡𝑗

“

𝑄r𝑔𝑗sp𝜁q´1` 𝜁q𝑡ℎ𝑗p𝑧𝑗 ` 𝑧𝑗𝜁q
‰

.

Since p1`𝜁q𝑡ℎ𝑗p𝑧𝑗`𝑧𝑗𝜁q Ñ p1`𝜁q𝑡 ‰ 0 in D, and𝑄r𝑓𝑗sp𝑧𝑗`𝑧𝑗𝜁q´𝑧𝑡𝑗p1`
𝜁q𝑡ℎ𝑗p𝑧𝑗 ` 𝑧𝑗𝜁q has at most 𝜇𝑄 ` 𝜆𝑄p𝑚´ 1q ´ 1 zeros in D, by Lemma 3,
it follows that t𝑔𝑗u is normal in D and, so, there exists a subsequence of
t𝑔𝑗u, again denoted by t𝑔𝑗u, such that 𝑔𝑗 Ñ 𝑔 spherically locally uniformly
in D, where 𝑔 PℳpDq or 𝑔 ” 8. If 𝑔 ” 8, then

𝐹𝑗p𝜁q “ 𝜌
´p𝑡`𝜇𝑄´𝜆𝑄q{𝜆𝑄
𝑗 𝑓𝑗p𝑧𝑗 ` 𝜌𝑗𝜁q “

“

´𝑧𝑗
𝜌𝑗

¯p𝑡`𝜇𝑄´𝜆𝑄q{𝜆𝑄
𝑧
´p𝑡`𝜇𝑄´𝜆𝑄q{𝜆𝑄
𝑗 𝑓𝑗p𝑧𝑗 ` 𝜌𝑗𝜁q “

“

´𝑧𝑗
𝜌𝑗

¯p𝑡`𝜇𝑄´𝜆𝑄q{𝜆𝑄
𝑔𝑗

´𝜌𝑗
𝑧𝑗
𝜁
¯

converges spherically locally uniformly to 8 in C, showing that 𝐹 ” 8:
a contradiction to the fact that 𝐹 is non-constant. Since 𝑔𝑗p𝜁q ‰ 0, it
follows that either 𝑔p𝜁q ‰ 0 or 𝑔 ” 0. If 𝑔p𝜁q ‰ 0, then, by the previous
argument, we find that 𝐹 ” 8: a contradiction. If 𝑔 ” 0, then choose
𝑛 P N, such that 𝑛 ` 1 ą p𝑡 ` 𝜇𝑄 ´ 𝜆𝑄q{p𝜆𝑄q. Thus, for each 𝜁 P C, we
have

𝐹
p𝑛`1q
𝑗 p𝜁q “ 𝜌

´p𝑡`𝜇𝑄´𝜆𝑄q{𝜆𝑄`𝑛`1
𝑗 𝑓

p𝑛`1q
𝑗 p𝑧𝑗 ` 𝜌𝑗𝜁q “

“

´𝜌𝑗
𝑧𝑗

¯´p𝑡`𝜇𝑄´𝜆𝑄q{𝜆𝑄`𝑛`1

𝑔
p𝑛`1q
𝑗

¯𝜌𝑗
𝑧𝑗
𝜁
¯

.

Therefore, 𝐹 p𝑛`1q𝑗 p𝜁q Ñ 0 spherically uniformly, which implies that 𝐹 is
a polynomial of degree at most 𝑛: a contradiction to the fact that 𝐹 is
non-constant and non-vanishing meromorphic function.
Case 2: Suppose that there exists a subsequence of 𝑧𝑗{𝜌𝑗, again denoted
by 𝑧𝑗{𝜌𝑗, such that 𝑧𝑗{𝜌𝑗 Ñ 𝛼 as 𝑗 Ñ 8, where 𝛼 P C. Then

𝐺𝑗p𝜁q “ 𝜌
´p𝑡`𝜇𝑄´𝜆𝑄q{𝜆𝑄
𝑗 𝑓𝑗p𝜌𝑗𝜁q “ 𝐹𝑗

ˆ

𝜁 ´
𝑧𝑗
𝜌𝑗

˙

Ñ 𝐹 p𝜁 ´ 𝛼q :“ 𝐺p𝜁q,

spherically locally uniformly in C. Clearly, 𝐺p𝜁q ‰ 0. Also, it is easy to
see that 𝑄r𝐺𝑗sp𝜁q “ 𝜌´𝑡𝑗 𝑄r𝑓𝑗sp𝜌𝑗𝜁q. Thus,

𝑄r𝐺𝑗sp𝜁q ´ 𝜁
𝑡ℎ𝑗p𝜌𝑗𝜁q “

𝑄r𝑓𝑗sp𝜌𝑗𝜁q ´ p𝜌𝑗𝜁q
𝑡ℎ𝑗p𝜌𝑗𝜁q

𝜌𝑡𝑗
Ñ 𝑄r𝐺sp𝜁q ´ 𝜁𝑡
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spherically uniformly in every compact subset of C disjoint from the poles
of 𝐺. Clearly, 𝑄r𝐺sp𝜁q ı 𝜁𝑡, otherwise 𝐺 has to be a polynomial, which is
not possible since 𝐺p𝜁q ‰ 0. Since 𝑄r𝑓𝑗sp𝜌𝑗𝜁q ´ p𝜌𝑗𝜁q𝑡ℎ𝑗p𝜌𝑗𝜁q has at most
𝜇𝑄 ` 𝜆𝑄p𝑚´ 1q ´ 1 distinct zeros in D, it follows that 𝑄r𝐺sp𝜁q ´ 𝜁𝑚 has
at most 𝜇𝑄`𝜆𝑄p𝑚´1q´1 distinct zeros in C and, hence, by Corollary 2,
𝐺 must be a rational function. However, this contradicts Proposition 2.
Hence ℱ is normal in D. l

4. Proof of Theorem 2. By virtue of Lemma 3, it is sufficient to
prove the normality of t𝑓𝑗u at points 𝑧 P D, where ℎp𝑧q “ 0. Without loss
of generality, assume that ℎp𝑧q “ 𝑧𝑡𝑎p𝑧q, where 𝑡 P N, 𝑎 P ℋpDq, 𝑎p𝑧q ‰ 0
and 𝑎p0q “ 1. Further, since ℎ𝑗 Ñ ℎ locally uniformly in D, we can assume
that

ℎ𝑗p𝑧q “ p𝑧 ´ 𝑧𝑗,1q
𝑡1p𝑧 ´ 𝑧𝑗,2q

𝑡2 ¨ ¨ ¨ p𝑧 ´ 𝑧𝑗,𝑙q
𝑡𝑙𝑎𝑗p𝑧q,

where
𝑙
ř

𝑖“1

𝑡𝑖 “ 𝑡, 𝑧𝑗,𝑖 Ñ 0 for 1 6 𝑖 6 𝑙 and 𝑎𝑗p𝑧q Ñ 𝑎p𝑧q locally uniformly

in D. Again, we may assume that 𝑧𝑗,1 “ 0, since t𝑓𝑗p𝑧qu is normal in D if
and only if t𝑓𝑗p𝑧 ` 𝑧𝑗,1qu is normal in D (see [25, p. 35]). Now, let us prove
the normality of t𝑓𝑗u at 𝑧 “ 0 by applying the principle of mathematical
induction on 𝑡.

Note that if 𝑡 “ 1, then 𝑙 “ 1 and, so, ℎ𝑗p𝑧q “ 𝑧𝑎𝑗p𝑧q. Thus, by
Proposition 3, t𝑓𝑗u is normal at 𝑧 “ 0. Also, if 𝑙 “ 1, then ℎ𝑗p𝑧q “ 𝑧𝑡𝑎𝑗p𝑧q,
and, again by Proposition 3, t𝑓𝑗u is normal at 𝑧 “ 0. So, let 𝑙 > 2 and for
𝑛 P N with 1 ă 𝑡 ă 𝑛, suppose that t𝑓𝑗u is normal at 𝑧 “ 0. In accordance
with the principle of mathematical induction, we only need to show that
t𝑓𝑗u is normal at 𝑧 “ 0 when 𝑛 “ 𝑡.

Rearranging the zeros of ℎ𝑗, if necessary, we can assume that
|𝑧𝑗,𝑖| 6 |𝑧𝑗,𝑙| for 2 6 𝑖 6 𝑙. Let 𝑧𝑗,𝑙 “ 𝑤𝑗. Then 𝑤𝑗 Ñ 0. Define

𝑔𝑗p𝑧q :“
𝑓𝑗p𝑤𝑗𝑧q

𝑤
p𝑡`𝜇𝑄´𝜆𝑄q{𝜆𝑄
𝑗

and 𝑣𝑗p𝑧q :“
ℎ𝑗p𝑤𝑗𝑧q

𝑤𝑡𝑗
, 𝑧 P 𝐷𝑟𝑗p0q, 𝑟𝑗 Ñ 8.

Then an easy computation shows that 𝑄r𝑔𝑗sp𝑧q “ 𝑤´𝑡𝑗 𝑄r𝑓𝑗sp𝑤𝑗𝑧q and

𝑣𝑗p𝑧q “ 𝑧𝑡1
´

𝑧 ´
𝑧𝑗,2
𝑤𝑗

¯𝑡2
¨ ¨ ¨

´

𝑧 ´
𝑧𝑗,𝑙´1
𝑤𝑗

¯𝑡𝑙´1

p𝑧 ´ 1q𝑡𝑙𝑎𝑗p𝑤𝑗𝑧q Ñ 𝑣p𝑧q

locally uniformly in C. Clearly, 0 and 1 are two distinct zeros of 𝑣 and,
hence, all zeros of 𝑣 have multiplicities at most 𝑡´ 1. Since

𝑄r𝑔𝑗sp𝑧q ´ 𝑣𝑗p𝑧q “
𝑄r𝑓𝑗sp𝑤𝑗𝑧q ´ ℎ𝑗p𝑤𝑗𝑧q

𝑤𝑡𝑗
(15)
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and 𝑄r𝑓𝑗sp𝑤𝑗𝑧q ´ ℎ𝑗p𝑤𝑗𝑧q has at most 𝜇𝑄 ` 𝜆𝑄p𝑚´ 1q ´ 1 distinct zeros,
it follows that 𝑄r𝑔𝑗sp𝑧q ´ 𝑣𝑗p𝑧q has at most 𝜇𝑄 ` 𝜆𝑄p𝑚 ´ 1q ´ 1 distinct
zeros in C. Thus, by induction hypothesis, we find that t𝑔𝑗u is normal in
C. Suppose that 𝑔𝑗 Ñ 𝑔 spherically locally uniformly in C. Then either
𝑔 PℳpCq or 𝑔 ” 8.
Case 1: 𝑔 PℳpCq.

Since 𝑔𝑗p𝑧q ‰ 0, it follows that either 𝑔p𝑧q ‰ 0 or 𝑔 ” 0. First, suppose
that 𝑔p𝑧q ‰ 0. Since 𝑔𝑗 Ñ 𝑔 spherically locally uniformly in C, it follows
that 𝑄r𝑔𝑗s Ñ 𝑄r𝑔s in every compact subset of C disjoint from the poles of
𝑔. Then, from (15), we find that 𝑄r𝑔s´ 𝑣 has at most 𝜇𝑄`𝜆𝑄p𝑚´ 1q´ 1
distinct zeros in C and, thus, by Corollary 2 and Proposition 2, 𝑔 has to
be a constant.

Next, we claim that t𝑓𝑗u is holomorphic in 𝐷𝛿{2p0q for some 𝛿 P p0,1q.
Suppose, on the contrary, that t𝑓𝑗u is not holomorphic in 𝐷𝛿{2p0q for any
𝛿 P p0,1q. Then there exists a sequence 𝜂𝑗 P 𝐷𝛿{2p0q, such that 𝜂𝑗 Ñ 0 and
𝑓𝑗p𝜂𝑗q “ 8. Assume that 𝜂𝑗 has the smallest modulus among the poles of
𝑓𝑗. It is easy to see that 𝜂𝑗{𝑤𝑗 Ñ 8, otherwise

𝑓𝑗p𝜂𝑗q “ 𝑤
p𝑡`𝜇𝑄´𝜆𝑄q{𝜆𝑄
𝑗 𝑔𝑗p𝜂𝑗{𝑤𝑗q Ñ 0, a contradiction.

Let

𝜓𝑗p𝑧q :“
𝑓𝑗p𝜂𝑗𝑧q

𝜂
p𝑡`𝜇𝑄´𝜆𝑄q{𝜆𝑄
𝑗

and 𝑢𝑗p𝑧q :“
ℎ𝑗p𝜂𝑗𝑧q

𝜂𝑡𝑗
, 𝑧 P 𝐷𝑟𝑗p0q, 𝑟𝑗 Ñ 8.

Then

𝑄r𝜓𝑗sp𝑧q ´ 𝑢𝑗p𝑧q “
𝑄r𝑓𝑗sp𝜂𝑗𝑧q ´ ℎ𝑗p𝜂𝑗𝑧q

𝜂𝑡𝑗
(16)

and
𝑢𝑗p𝑧q “ 𝑧𝑡1

´

𝑧 ´
𝑧𝑗,2
𝜂𝑗

¯𝑡2
¨ ¨ ¨

´

𝑧 ´
𝑤𝑗
𝜂𝑗

¯𝑡𝑙
𝑎𝑗p𝜂𝑗𝑧q Ñ 𝑧𝑡

locally uniformly in C. From Lemma 3, it follows that t𝜓𝑗u is normal in
Cz t0u. Since 𝜓𝑗p𝑧q ‰ 0 and 𝜓𝑗 is holomorphic in D, one can easily see that
t𝜓𝑗u is normal in D and, hence, in C. Assume that 𝜓𝑗 Ñ 𝜓 spherically
locally uniformly in C, where 𝜓 PℳpCq or 𝜓 ” 8. Since

𝜓𝑗p0q “
𝑓𝑗p0q

𝜂
p𝑡`𝜇𝑄´𝜆𝑄q{𝜆𝑄
𝑗

“

´𝑤𝑗
𝜂𝑗

¯p𝑡`𝜇𝑄´𝜆𝑄q{𝜆𝑄
𝑔𝑗p0q Ñ 0,
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therefore, 𝜓 ı 8. Also, since 𝜓𝑗p𝑧q ‰ 0, we have 𝜓p𝑧q ‰ 0 or 𝜓 ” 0.
However, the latter is not possible since 8 “ 𝜓𝑗p1q Ñ 𝜓p1q “ 8. Thus,
𝜓p𝑧q ‰ 0. Note that 𝑄r𝜓𝑗sp𝑧q´𝑢𝑗p𝑧q Ñ 𝑄r𝜓sp𝑧q´𝑧𝑡 spherically uniformly
in every compact subset of C disjoint from the poles of 𝜓, so, by (16), we
conclude that 𝑄r𝜓sp𝑧q ´ 𝑧𝑡 has at most 𝜇𝑄 ` 𝜆𝑄p𝑚 ´ 1q ´ 1 distinct
zeros in C. By Corollary 2 and Proposition 2, 𝜓 reduces to a constant,
which contradicts the fact that 8 “ 𝜓𝑗p1q Ñ 𝜓p1q “ 8. Hence, t𝑓𝑗u is
holomorphic in 𝐷𝛿{2p0q. Since 𝑓𝑗p𝑧q ‰ 0, it follows that t𝑓𝑗u is normal at
𝑧 “ 0.

Next, suppose that 𝑔 ” 0. Then, by the preceding discussion, one can
easily see that t𝑓𝑗u is holomorphic in 𝐷𝛿{2p0q and, hence, t𝑓𝑗u is normal
at 𝑧 “ 0.
Case 2: 𝑔 ” 8.

Let 𝜑𝑗p𝑧q :“ 𝑓𝑗p𝑧q{𝑧
p𝑡`𝜇𝑄´𝜆𝑄q{𝜆𝑄 . Then 1{𝜑𝑗p0q “ 0.

Subcase 2.1: When t1{𝜑𝑗u is normal at 𝑧 “ 0.
Then t𝜑𝑗u is normal at 𝑧 “ 0 and, so, there exists 𝑟 ą 0 with 𝐷𝑟p0q Ď

D, such that t𝜑𝑗u is normal in 𝐷𝑟p0q. Assume that 𝜑𝑗 Ñ 𝜑 spherically
locally uniformly. Since 𝜑𝑗p0q “ 8, there exists 𝜌 ą 0, such that, for
sufficiently large 𝑗, |𝜑𝑗p𝑧q| > 1 in 𝐷𝜌p0q Ă 𝐷𝑟p0q. Also, since 𝑓𝑗p𝑧q ‰ 0 in
𝐷𝜌p0q, 1{𝑓𝑗 is holomorphic in 𝐷𝜌p0q and, hence,

ˇ

ˇ

ˇ

1

𝑓𝑗p𝑧q

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

1

𝜑𝑗p𝑧q
¨

1

𝑧p𝑡`𝜇𝑄´𝜆𝑄q{𝜆𝑄

ˇ

ˇ

ˇ
6

´2

𝜌

¯p𝑡`𝜇𝑄´𝜆𝑄q{𝜆𝑄
in B𝐷𝜌{2p0q.

Then, by the maximum principle and Montel’s theorem [25, p.35], we
conclude that t𝑓𝑗u is normal at 𝑧 “ 0.
Subcase 2.2: When t1{𝜑𝑗u is not normal at 𝑧 “ 0.

By Montel’s theorem, it follows that, for every 𝜖 ą 0, t1{𝜑𝑗p𝑧qu is not
locally uniformly bounded in 𝐷𝜖p0q. Therefore, we can find a sequence
𝜖𝑗 Ñ 0, such that 1{𝜑𝑗p𝜖𝑗q Ñ 8. Since |1{𝜑𝑗| is continuous, there exists
𝑏𝑗 Ñ, such that |1{𝜑𝑗p𝑏𝑗q| “ 1.

Let

𝐾𝑗p𝑧q :“
𝑓𝑗p𝑏𝑗𝑧q

𝑏
p𝑡`𝜇𝑄´𝜆𝑄q{𝜆𝑄
𝑗

, 𝑧 P 𝐷𝑟𝑗p0q, 𝑟𝑗 Ñ 8 and 𝑞𝑗p𝑧q :“
ℎ𝑗p𝑏𝑗𝑧q

𝑏𝑡𝑗
.

Then 𝐾𝑗p𝑧q ‰ 0 and a simple computation shows that

𝑄r𝐾𝑗sp𝑧q “
𝑄r𝑓𝑗sp𝑏𝑗𝑧q

𝑏𝑡𝑗
and 𝑞𝑗p𝑧q “ 𝑧𝑡1

´

𝑧 ´
𝑧𝑗,2
𝑏𝑗

¯𝑡2
¨ ¨ ¨

´

𝑧 ´
𝑤𝑗
𝑏𝑗

¯𝑡𝑙
𝑎𝑗p𝑏𝑗𝑧q.
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Note that

𝑔𝑗

´ 𝑏𝑗
𝑤𝑗

¯

“
𝑓𝑗p𝑏𝑗q

𝑤
p𝑡`𝜇𝑄´𝜆𝑄q{𝜆𝑄
𝑗

“
𝑓𝑗p𝑏𝑗q

𝑏
p𝑡`𝜇𝑄´𝜆𝑄q{𝜆𝑄
𝑗

¨

´ 𝑏𝑗
𝑤𝑗

¯p𝑡`𝜇𝑄´𝜆𝑄q{𝜆𝑄
Ñ 8.

Since |1{𝜑𝑗p𝑏𝑗q| “ 1 and p𝑡`𝜇𝑄´𝜆𝑄q{𝜆𝑄 ą 0, it follows that 𝑏𝑗{𝑤𝑗 Ñ 8,
and, hence, 𝑤𝑗{𝑏𝑗 Ñ 0. This implies that 𝑞𝑗p𝑧q Ñ 𝑧𝑡 locally uniformly in C.
Further, since 𝑄r𝐾𝑗sp𝑧q´ 𝑞𝑗p𝑧q “ p𝑄r𝑓𝑗sp𝑏𝑗𝑧q´ℎ𝑗p𝑏𝑗𝑧qq{𝑏

𝑡
𝑗, it follows that

𝑄r𝐾𝑗s´ 𝑞𝑗 has at most 𝜇𝑄`𝜆𝑄p𝑚´ 1q´ 1 distinct zeros in C and, hence,
by Lemma 3, t𝐾𝑗u is normal in Cz t0u. We claim that t𝐾𝑗u is normal
in C. Suppose otherwise. Then, by Lemma 2, there is a subsequence
of t𝐾𝑗u, which for the sake of convenience, is again denoted by t𝐾𝑗u,
such that 𝐾𝑗p𝑧q Ñ 0 in Cz t0u, which is not possible since |𝐾𝑗p1q| “ 1.
This establishes the claim. Now, suppose that 𝐾𝑗 Ñ 𝐾 spherically locally
uniformly in C. It is evident that 𝐾p𝑧q ‰ 0 in C and 𝐾 ı 8, as 𝐾p1q “ 1.
Then 𝑄r𝐾𝑗s Ñ 𝑄r𝐾s spherically uniformly in every compact subset of C
disjoint from the poles of𝐾. Since𝑄r𝐾𝑗s´𝑞𝑗 has at most 𝜇𝑄`𝜆𝑄p𝑚´1q´1
distinct zeros in C, it follows that 𝑄r𝐾s´𝑧𝑡 has at most 𝜇𝑄`𝜆𝑄p𝑚´1q´1
distinct zeros in C, and, so, by Corollary 2 and Proposition 2, 𝐾 reduces
to a constant. Using the same arguments as in Case 1, we find that t𝑓𝑗u
is normal at 𝑧 “ 0. This completes the induction process and, hence, the
proof.
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