S. Jbeli

A NEW CHARACTERIZATION OF q-CHEBYSHEV POLYNOMIALS OF THE SECOND KIND

Abstract. In this work, we introduce the notion of $\mathcal{U}_{(q, \mu)}$-classical orthogonal polynomials, where $\mathcal{U}_{(q, \mu)}$ is the degree raising shift operator defined by $\mathcal{U}_{(q, \mu)}:=x\left(x H_{q}+q^{-1} I_{\mathcal{P}}\right)+\mu H_{q}$, where μ is a nonzero free parameter, $I_{\mathcal{P}}$ represents the identity operator on the space of polynomials \mathcal{P}, and H_{q} is the q-derivative one. We show that the scaled q-Chebychev polynomials of the second kind $\hat{U}_{n}(x, q), n \geqslant 0$, are the only $\mathcal{U}_{(q, \mu)}$-classical orthogonal polynomials.

Key words: orthogonal q-polynomials, q-derivative operator, q Chebyshev polynomials, raising operator

2020 Mathematical Subject Classification: Primary 33C45; Secondary 42C05

1. Introduction. Chebyshev polynomials and their q-analogues are used in many fields in the mathematics as well as in the physical sciences. Note that several contributions have been devoted to the q-extension of the Chebyshev polynomials and their properties [1], [8], [12], [18]. Our objective in this paper is to characterize the scaled q-Chebyshev polynomials of the second kind [18] via a raising operator.

Let \mathcal{O} be a linear operator, acting on the space of polynomials, that sends polynomials of degree n to polynomials of degree $n+n_{0}$, where n_{0} is a fixed integer $\left(n \geqslant 0\right.$ if $n_{0} \geqslant 0$ and $n \geqslant n_{0}$ if $\left.n_{0}<0\right)$. We call a sequence $\left\{P_{n}\right\}_{n \geqslant 0}$ of orthogonal polynomials \mathcal{O}-classical if $\left\{\mathcal{O} P_{n}\right\}_{n \geqslant 0}$ is also orthogonal. An orthogonal polynomial sequence $\left\{P_{n}\right\}_{n \geqslant 0}$ is called classical if $\left\{P_{n}^{\prime}\right\}_{n \geqslant 0}$ is also orthogonal. This is the Hahn property (see [10]) for the classical orthogonal polynomials. In [11], Hahn gave similar characterization theorems for orthogonal polynomials P_{n}, such that the polynomials
(C) Petrozavodsk State University, 2024
$D_{\omega} P_{n}$ or $H_{q} P_{n}(n \geqslant 1)$ are again orthogonal; here D_{ω} is the divided difference operator and H_{q} is the q-derivative operator given, respectively, by $D_{\omega} f(x)=\frac{f(x+\omega)-f(x)}{\omega}, \omega \neq 0$ and $H_{q} f(x)=\frac{f(q x)-f(x)}{(q-1) x}, q \neq 1$.

In this paper, we consider the raising operator

$$
\mathcal{U}_{(q, \mu)}:=x\left(x H_{q}+q^{-1} I_{\mathcal{P}}\right)+\mu H_{q},
$$

where μ is a nonzero free parameter and $I_{\mathcal{P}}$ represents the identity operator. We show that the scaled q-Chebyshev polynomial sequence of the second kind [18], $\left\{b^{-n} \hat{U}_{n}(b x)\right\}_{n \geqslant 0}$, where $b^{2}=-(q \mu)^{-1}$, is the only $\mathcal{U}_{(q, \mu)}$-classical orthogonal polynomial sequence.

Several authors have been interested in the study of the orthogonal polynomials using the lowering, transfer, and raising operators [2], [3] [5], [4], [6], [14], [17].

The structure of the paper is as follows. In Section 2, we give some useful results. In Section 3, we solve the problem. In Section 4, a property of the scaled q-Chebychev polynomials of the second kind is given.
2. Preliminaries. We denote by \mathcal{P} the vector space of the polynomials with coefficients in \mathbb{C} and by \mathcal{P}^{\prime} its dual space. The action of $u \in \mathcal{P}^{\prime}$ on $f \in \mathcal{P}$ is denoted as $\langle u, f\rangle$. In particular, we denote by $(u)_{n}:=$ $\left\langle u, x^{n}\right\rangle, n \geqslant 0$, the moments of u. For instance, for any form u, any polynomial g, and any $(a, c) \in(\mathbb{C} \backslash\{0\}) \times \mathbb{C}$, we let $H_{q} u, g u, h_{a} u, D u$, $(x-c)^{-1} u$, and δ_{c} be the forms defined as usually ([15] and [13]) for the images related to the operator H_{q}

$$
\begin{aligned}
& \left\langle H_{q} u, f\right\rangle:=-\left\langle u, H_{q} f\right\rangle,\langle g u, f\rangle:=\langle u, g f\rangle,\left\langle h_{a} u, f\right\rangle:=\left\langle u, h_{a} f\right\rangle, \\
& \langle D u, f\rangle:=-\left\langle u, f^{\prime}\right\rangle,\left\langle(x-c)^{-1} u, f\right\rangle:=\left\langle u, \theta_{c} f\right\rangle,\left\langle\delta_{c}, f\right\rangle:=f(c),
\end{aligned}
$$

where for all $f \in \mathcal{P}$ and $q \in \widetilde{\mathbb{C}}:=\left\{z \in \mathbb{C}, z \neq 0, z^{n} \neq 1, n \geqslant 1\right\}$, [13]

$$
\begin{gathered}
\left\{\begin{array}{l}
H_{q}(f)(x)=\frac{f(q x)-f(x)}{(q-1) x}, x \neq 0, \\
H_{q}(f)(0)=f^{\prime}(0),
\end{array}\right. \\
\left(h_{a} f\right)(x)=f(a x),\left(\theta_{c} f\right)(x)=\frac{f(x)-f(c)}{x-c} .
\end{gathered}
$$

In particular, this yields

$$
\left(H_{q} u\right)_{n}=-[n]_{q}(u)_{n-1}, n \geqslant 0
$$

where $(u)_{-1}=0$ and

$$
[n]_{q}:=\frac{q^{n}-1}{q-1}, n \geqslant 0 .
$$

Let $\left\{P_{n}\right\}_{n \geqslant 0}$ be a sequence of monic polynomials with $\operatorname{deg} P_{n}=n, n \geqslant 0$, (MPS for short) and let $\left\{u_{n}\right\}_{n \geqslant 0}$ be its dual sequence, $u_{n} \in \mathcal{P}^{\prime}$ defined by $\left\langle u_{n}, P_{m}\right\rangle:=\delta_{n, m}, n, m \geqslant 0$ [7], [15]. The form u is called regular if we can associate with it a MPS $\left\{P_{n}\right\}_{n \geqslant 0}$, such that ([7], [15]) $\left\langle u, P_{n} P_{m}\right\rangle=r_{n} \delta_{n, m}, n, m \geqslant 0 ; r_{n} \neq 0, n \geqslant 0$. The sequence $\left\{P_{n}\right\}_{n \geqslant 0}$ is then said to be orthogonal with respect to u (MOPS for short) and is characterized by the following three-term recurrence relation (Favard's theorem) (TTRR for short) [7]:

$$
\begin{align*}
& P_{0}(x)=1, \quad P_{1}(x)=x-\beta_{0} \\
& P_{n+2}(x)=\left(x-\beta_{n+1}\right) P_{n+1}(x)-\gamma_{n+1} P_{n}(x), \quad n \geqslant 0 \tag{1}
\end{align*}
$$

where $\beta_{n}=\frac{\left\langle u, x P_{n}^{2}\right\rangle}{\left\langle u, P_{n}^{2}\right\rangle} \in \mathbb{C}, \gamma_{n+1}=\frac{\left\langle u, P_{n+1}^{2}\right\rangle}{\left\langle u, P_{n}^{2}\right\rangle} \in \mathbb{C} \backslash\{0\}, n \geqslant 0$.
The shifted MOPS $\left\{\widehat{P}_{n}:=a^{-n}\left(h_{a} P_{n}\right)\right\}_{n \geqslant 0}$ is then orthogonal with respect to $\widehat{u}=h_{a^{-1}} u$ and satisfies (1) with [15]

$$
\widehat{\beta}_{n}=\frac{\beta_{n}}{a}, \quad \widehat{\gamma}_{n+1}=\frac{\gamma_{n+1}}{a^{2}}, \quad n \geqslant 0
$$

Moreover, the form u is said to be normalized if $(u)_{0}=1$. In this paper, we suppose that any regular form are normalized. In addition, $\left\{P_{n}\right\}_{n \geqslant 0}$ is a symmetric MOPS if and only if $\beta_{n}=0, n \geqslant 0$ or, equivalently, $(u)_{2 n+1}=0, n \geqslant 0[7],[15]$. When u is regular, let Φ be a polynomial, such that $\Phi u=0$, then $\Phi=0$ [15].
Lemma 1. [15], [17] Let $\left\{P_{n}\right\}_{n \geqslant 0}$ be a MPS and let $\left\{u_{n}\right\}_{n \geqslant 0}$ be its dual sequence. For any $u \in \mathcal{P}^{\prime}$ and any integer $m \geqslant 1$, the following statements are equivalent:
(i) $\left\langle u, P_{m-1}\right\rangle \neq 0,\left\langle u, P_{n}\right\rangle=0, n \geqslant m$;
(ii) $\exists \lambda_{v} \in \mathbb{C}, 0 \leqslant v \leqslant m-1, \lambda_{m-1} \neq 0$ such that $u=\sum_{v=0}^{m-1} \lambda_{v} u_{v}$.

As a consequence, when the MPS $\left\{P_{n}\right\}_{n \geqslant 0}$ is orthogonal with respect to u, necessarily, $u=u_{0}$.
Proposition 1. [15] Let $\left\{P_{n}\right\}_{n \geqslant 0}$ be a MPS with $\operatorname{deg} P_{n}=n, n \geqslant 0$, and let $\left\{u_{n}\right\}_{n \geqslant 0}$ be its dual sequence. The following statements are equivalent:
(i) $\left\{P_{n}\right\}_{n \geqslant 0}$ is orthogonal with respect to u_{0};
(ii) $u_{n}=\left\langle u_{0}, P_{n}^{2}\right\rangle^{-1} P_{n} u_{0}, n \geqslant 0$;
(iii) $\left\{P_{n}\right\}_{n \geqslant 0}$ satisfies the three-term recurrence relation (1).

Let us recall some results in the field of q-theory.
Lemma 2. [9], [13]

$$
\begin{gather*}
H_{q}(f g)(x)=\left(h_{q} f\right)(x)\left(H_{q} g\right)(x)+g(x)\left(H_{q} f\right)(x), f, g \in \mathcal{P}, \tag{2}\\
H_{q}(f u)(x)=f H_{q} u+\left(H_{q^{-1}} f\right) h_{q} u, f \in \mathcal{P}, u \in \mathcal{P}^{\prime}, \tag{3}\\
h_{a}(f g)(x)=\left(h_{a} f\right)(x)\left(h_{a} g\right)(x), f, g \in \mathcal{P}, a \in \mathbb{C}-\{0\}, \tag{4}\\
h_{a}(g u)=\left(h_{a^{-1}} g\right)\left(h_{a} u\right), g \in \mathcal{P}, u \in \mathcal{P}^{\prime}, a \in \mathbb{C}-\{0\}, \tag{5}\\
H_{q} \circ h_{a}=a h_{a} \circ H_{q} \quad \text { in } \mathcal{P}, \tag{6}\\
h_{q^{-1}} \circ H_{q}=H_{q^{-1}} \quad \text { in } \mathcal{P} . \tag{7}
\end{gather*}
$$

Now, consider a MPS $\left\{P_{n}\right\}_{n \geqslant 0}$ as above and let [13]

$$
P_{n}^{[1]}(x ; q):=\frac{1}{[n+1]_{q}}\left(H_{q} P_{n+1}\right)(x), \quad n \geqslant 0 .
$$

Denote by $\left\{u_{n}^{[1]}(q)\right\}_{n \geqslant 0}$ the dual sequence of $\left\{P_{n}^{[1]}(\cdot ; q)\right\}_{n \geqslant 0}$. The following equality holds [13]:

$$
H_{q}\left(u_{n}^{[1]}(q)\right)=-[n+1]_{q} u_{n+1}, \quad n \geqslant 0 .
$$

Definition 1. [13] The form u_{0} is said to be H_{q}-classical if it is regular and there exist two polynomials, Φ monic, $\operatorname{deg} \Phi \leqslant 2$, and Ψ, $\operatorname{deg} \Psi=1$, such as:

$$
H_{q}\left(\Phi(x) u_{0}\right)+\Psi(x) u_{0}=0,
$$

where the pair (Φ, Ψ) is admissible, i.e., $\Psi^{\prime}(0)-\frac{1}{2} \Phi^{\prime \prime}(0)[n]_{q} \neq 0, n \geqslant 1$. The corresponding MOPS $\left\{P_{n}\right\}_{n \geqslant 0}$ is said to be H_{q}-classical.
Lemma 3. [13] When u_{0} satisfies the equation $H_{q}\left(\Phi u_{0}\right)+\Psi u_{0}=0$, then $\widehat{u}_{0}=h_{a^{-1}} u_{0}$ fulfils the equation

$$
H_{q}\left(\widehat{\Phi} \widehat{u}_{0}\right)+\widehat{\Psi} \widehat{u}_{0}=0
$$

where $\widehat{\Phi}(x)=a^{-\operatorname{deg} \Phi} \Phi(a x), \widehat{\Psi}(x)=a^{1-\operatorname{deg} \Phi} \Psi(a x)$.
Proposition 2. [13] For any orthogonal sequence $\left\{P_{n}\right\}_{n \geqslant 0}$, the successive assertions are equivalent:
(i) The sequence $\left\{P_{n}\right\}_{n \geqslant 0}$ is H_{q}-classical.
(ii) The sequence $\left\{P_{n}^{[1]}\right\}_{n \geqslant 0}$ is orthogonal.
(iii) There exist two polynomials, Φ monic, $\operatorname{deg} \Phi \leqslant 2, \Psi, \operatorname{deg} \Psi=1$, and a sequence $\left\{\lambda_{n}\right\}_{n \geqslant 0}, \lambda_{n} \neq 0, n \geqslant 0$, such that

$$
\begin{equation*}
\Phi(x)\left(H_{q} \circ H_{q^{-1}} P_{n+1}\right)(x)-\Psi(x)\left(H_{q^{-1}} P_{n+1}\right)(x)+\lambda_{n} P_{n+1}(x)=0, n \geqslant 0 . \tag{8}
\end{equation*}
$$

Let us recall the q-Chebyshev MOPS of the first kind: $\left\{\hat{T}_{n}(., q)\right\}_{n \geqslant 0}$ orthogonal with respect to \mathcal{T}_{q} and the q-Chebyshev MOPS of the second kind $\left\{\hat{U}_{n}(., q)\right\}_{n \geqslant 0}$ orthogonal with respect to \mathcal{U}_{q}. We have [18]:

$$
\left\{\begin{array}{l}
\gamma_{1}^{\mathcal{T}_{q}}=\frac{q}{q+1}, \gamma_{n+1}^{\mathcal{T}_{q}}=\frac{q^{n+1}}{\left(q^{n}+1\right)\left(q^{n+1}+1\right)}, \quad n \geqslant 1, \tag{9}\\
H_{q}\left(\left(x^{2}-1\right) \mathcal{T}_{q}\right)-q^{-1} x \mathcal{T}_{q}=0,
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\gamma_{n+1}^{\mathcal{U}_{q}}=\frac{q^{n+2}}{\left(q^{n+1}+1\right)\left(q^{n+2}+1\right)}, \quad n \geqslant 0, \tag{10}\\
H_{q}\left(\left(x^{2}-q^{-1}\right) \mathcal{U}_{q}\right)+\frac{1-q^{-3}}{1-q} x \mathcal{U}_{q}=0
\end{array}\right.
$$

Denote by $\left\{\tilde{U}_{n}(., q)\right\}_{n \geqslant 0}$ the MOPS with respect to $\tilde{\mathcal{U}}_{q}:=h_{q^{-\frac{1}{2}}} \mathcal{U}_{q}$. We have [18]:

$$
\begin{gather*}
\tilde{U}_{n}(x, q)=q^{-\frac{n}{2}} \hat{U}_{n}\left(q^{\frac{1}{2}} x, q\right), \quad n \geqslant 0 \tag{11}\\
\left(x^{2}-1\right) \mathcal{T}_{q}=-\frac{1}{q+1} h_{q^{-\frac{1}{2}}} \mathcal{U}_{q}=-\frac{1}{q+1} \tilde{\mathcal{U}}_{q} \tag{12}
\end{gather*}
$$

and

$$
\begin{equation*}
H_{q}\left(\hat{T}_{n+1}(x, q)\right)=\frac{q^{n+1}-1}{q-1} \tilde{U}_{n}(x, q), \quad n \geqslant 0 . \tag{13}
\end{equation*}
$$

Finally, denote by $\left\{\hat{T}_{n}\right\}_{n \geqslant 0},\left\{\hat{U}_{n}\right\}_{n \geqslant 0}$ and $\left\{\tilde{U}_{n}\right\}_{n \geqslant 0}$ respectively, the sequences $\left\{\hat{T}_{n}(., q)\right\}_{n \geqslant 0},\left\{\hat{U}_{n}(., q)\right\}_{n \geqslant 0}$ and $\left\{\tilde{U}_{n}(., q)\right\}_{n \geqslant 0}$.
3. Main results. Let us introduce the operator

$$
\begin{align*}
\mathcal{U}_{(q, \mu)}: & \mathcal{P} \tag{14}\\
f & \longrightarrow \mathcal{P} \\
& \longmapsto \mathcal{U}_{(q, \mu)}(f)=\left(x^{2}+\mu\right) H_{q}(f)+q^{-1} x f .
\end{align*}
$$

Definition 2. The $\operatorname{MOPS}\left\{P_{n}\right\}_{n \geqslant 0}$ is said to be $\mathcal{U}_{(q, \mu)}$-classical if $\left\{\mathcal{U}_{(q, \mu)} P_{n}\right\}_{n \geqslant 0}$ is also orthogonal.

For any MPS $\left\{P_{n}\right\}_{n \geqslant 0}$, the MPS $\left\{Q_{n}\right\}_{n \geqslant 0}$ is defined by

$$
\begin{equation*}
Q_{n+1}(x):=\frac{\mathcal{U}_{(q, \mu)} P_{n}}{q^{-1}[n+1]_{q}}, n \geqslant 0, \tag{15}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
q^{-1}[n+1]_{q} Q_{n+1}(x):=\left(x^{2}+\mu\right) H_{q}\left(P_{n}\right)(x)+q^{-1} x P_{n}(x), n \geqslant 0 \tag{16}
\end{equation*}
$$

with $Q_{0}(x)=1$.
It is clear that the operator $\mathcal{U}_{(q, \mu)}$ raises the degree of any polynomial. Such operator is called raising operator [14]. By transposition of the operator $\mathcal{U}_{(q, \mu)}$, we have:

$$
\begin{equation*}
{ }^{t} \mathcal{U}_{(q, \mu)}=-\mathcal{U}_{(q, \mu)} . \tag{17}
\end{equation*}
$$

Denote by $\left\{u_{n}\right\}_{n \geqslant 0}$ and $\left\{v_{n}\right\}_{n \geqslant 0}$ the dual basis in \mathcal{P}^{\prime} corresponding to $\left\{P_{n}\right\}_{n \geqslant 0}$ and $\left\{Q_{n}\right\}_{n \geqslant 0}$, respectively. Then, according to Lemma 1 and (17), we get the relation

$$
\begin{equation*}
\left(x^{2}+\mu\right) H_{q}\left(v_{n+1}\right)+q^{-1} x v_{n+1}=-q^{-1}[n+1]_{q} u_{n}, \quad n \geqslant 0 . \tag{18}
\end{equation*}
$$

Assume that $\left\{P_{n}\right\}_{n \geqslant 0}$ and $\left\{Q_{n}\right\}_{n \geqslant 0}$ are MOPSs satisfying

$$
\begin{align*}
& \left\{\begin{array}{l}
P_{0}(x)=1, \quad P_{1}(x)=x-\beta_{0} \\
P_{n+2}(x)=\left(x-\beta_{n+1}\right) P_{n+1}(x)-\gamma_{n+1} P_{n}(x), \quad \gamma_{n+1} \neq 0, n \geqslant 0
\end{array}\right. \tag{19}\\
& \left\{\begin{array}{l}
Q_{0}(x)=1, \quad Q_{1}(x)=x-\chi_{0} \\
Q_{n+2}(x)=\left(x-\chi_{n+1}\right) Q_{n+1}(x)-\theta_{n+1} Q_{n}(x), \quad \theta_{n+1} \neq 0, n \geqslant 0
\end{array}\right. \tag{20}
\end{align*}
$$

Our goal is to describe all the $\mathcal{U}_{(q, \mu)}$-classical orthogonal polynomial sequences. Note that it is necessary that $\mu \neq 0$ to ensure the orthogonality of the sequence $\left\{Q_{n}\right\}_{n \geqslant 0}$. In fact, if we suppose that $\mu=0$, the relation (16) becomes, for $x=0, Q_{n+1}(0)=0, n \geqslant 0$, which contradicts the orthogonality of $\left\{Q_{n}\right\}_{n \geqslant 0}$. Indeed, from (20) we have $Q_{1}(x)=x$ and $Q_{2}(x)=\left(x-\chi_{1}\right) x-\theta_{1}$. For $x=0$, we obtain $\theta_{1}=0$, which is impossible.

We are going to establish the connection between the two sequences $\left\{P_{n}\right\}_{n \geqslant 0}$ and $\left\{Q_{n}\right\}_{n \geqslant 0}$.
Proposition 3. The sequences $\left\{P_{n}\right\}_{n \geqslant 0}$ and $\left\{Q_{n}\right\}_{n \geqslant 0}$ satisfy the following relation:

$$
\left(x^{2}+\mu\right) h_{q} P_{n}(x)=q^{n} Q_{n+2}(x)+\lambda_{n} Q_{n+1}(x)+\sigma_{n} Q_{n}(x), n \geqslant 0
$$

where

$$
\begin{aligned}
& \lambda_{n}=q^{-1}[n+1]_{q}\left(\beta_{n}-\chi_{n+1}\right), n \geqslant 0, \\
& \sigma_{n}=q^{-1}\left([n]_{q} \gamma_{n}-[n+1]_{q} \theta_{n+1}\right), n \geqslant 0,
\end{aligned}
$$

with $\gamma_{0}:=0$.
Proof. By applying the operator H_{q} to (19) and using (2), we get
$H_{q}\left(P_{n+2}\right)(x)=\left(q x-\beta_{n+1}\right) H_{q}\left(P_{n+1}\right)(x)-\gamma_{n+1} H_{q}\left(P_{n}\right)(x)+P_{n+1}(x), n \geqslant 0$.
Multiply equation (21) by $x^{2}+\mu$ and relation (20) by x. Then take the sum of these two resulting equations. Next, substituting (16), get

$$
\begin{aligned}
& q^{-1}[n+3]_{q} Q_{n+3}(x)= \\
& \quad=q^{-1}[n+2]_{q}\left(x-\beta_{n+1}\right) Q_{n+2}(x)-q^{-1}[n+1]_{q} \gamma_{n+1} Q_{n+1}(x)+ \\
& \\
&
\end{aligned}
$$

On account of the recurrence relation (20), we get

$$
\begin{aligned}
& \left(x^{2}+\mu\right) h_{q} P_{n+1}(x)= \\
& \quad=q^{n+1} Q_{n+3}(x)+q^{-1}[n+2]_{q}\left(\beta_{n+1}-\chi_{n+2}\right) Q_{n+2}(x)+ \\
& \quad+q^{-1}\left([n+1]_{q} \gamma_{n+1}-[n+2]_{q} \theta_{n+2}\right) Q_{n+1}(x), n \geqslant 0 .
\end{aligned}
$$

Now, replacing $n+1$ by n, we have for all $n \geqslant 1$:

$$
\begin{aligned}
\left(x^{2}+\mu\right) h_{q} P_{n}(x)=q^{n} Q_{n+2}(x)+ & q^{-1}[n+1]_{q}\left(\beta_{n}-\chi_{n+1}\right) Q_{n+1}(x)+ \\
& +q^{-1}\left([n]_{q} \gamma_{n}-[n+1]_{q} \theta_{n+1}\right) Q_{n}(x)
\end{aligned}
$$

with the constraint $\gamma_{0}:=0$.
For $n=0$, the Proposition 3 gives

$$
Q_{2}(x)+q^{-1}\left(\beta_{0}-\chi_{1}\right) Q_{1}(x)=x^{2}+\mu+q^{-1} \theta_{1}
$$

and using the fact that $Q_{1}(x)=x$, we obtain

$$
\begin{equation*}
Q_{2}(x)=x^{2}-\frac{\beta_{0}}{q+1} x+\frac{q \mu}{q+1} . \tag{22}
\end{equation*}
$$

By comparing (20) and (22) for $n=0$, we obtain $\chi_{1}=\frac{\beta_{0}}{q+1}$ and $\theta_{1}=-\frac{q \mu}{q+1}$.

In the following lemma, we establish an algebraic relation between the forms u_{0} and v_{0}.

Lemma 4. The forms u_{0} and v_{0} satisfy the relation

$$
h_{q}\left(\left(x^{2}+\mu\right) v_{0}\right)=\frac{\mu}{q+1} u_{0} .
$$

Proof. By virtue of Proposition 3, we get

$$
\begin{equation*}
\left\langle\left(x^{2}+\mu\right) v_{0}, h_{q} P_{n}\right\rangle=0, n \geqslant 1 . \tag{23}
\end{equation*}
$$

Moreover, by (22) we have $x^{2}+\mu=Q_{2}+\frac{\beta_{0}}{q+1} Q_{1}+\frac{\mu}{q+1}$. Since $\left\{Q_{n}\right\}_{n \geqslant 0}$ is orthogonal with respect to the form v_{0}, and v_{0} is supposed to be normalized, we obtain:

$$
\begin{equation*}
\left\langle\left(x^{2}+\mu\right) v_{0}, P_{0}\right\rangle=\left\langle v_{0}, Q_{2}+\frac{\beta_{0}}{q+1} Q_{1}\right\rangle+\frac{\mu}{q+1}=\frac{\mu}{q+1} . \tag{24}
\end{equation*}
$$

On account of Lemma 1, (23), and (24), the desired result holds.
Using the last lemma, we are going to establish a first-order q-difference equation satisfied by $\left\{Q_{n}\right\}_{n \geqslant 0}$.
Proposition 4. The following relation holds:

$$
\begin{equation*}
H_{q}\left(Q_{n+1}\right)(x)=[n+1]_{q} q^{-n}\left(h_{q} P_{n}\right)(x), n \geqslant 0 . \tag{25}
\end{equation*}
$$

Proof. Based on Proposition 1, we may write the relation (18) as

$$
\begin{align*}
\left(x^{2}+\mu\right) H_{q^{-1}}\left(Q_{n+1}\right)(x) h_{q} v_{0}+q^{-1} x Q_{n+1}(x) & v_{0}+\left(x^{2}+\mu\right) Q_{n+1}(x) H_{q}\left(v_{0}\right)= \\
& =\lambda_{n} P_{n}(x) u_{0}, \quad n \geqslant 0, \quad(26) \tag{26}
\end{align*}
$$

where $\lambda_{n}:=-q^{-1}[n+1]_{q}\left\langle v_{0}, Q_{n+1}^{2}\right\rangle\left\langle u_{0}, P_{n}^{2}\right\rangle^{-1}, n \geqslant 0$.
Making $n=0$ in (26) and using (3), we get:

$$
\left(x^{2}+\mu\right) x H_{q}\left(v_{0}\right)=-\left(x^{2}+\mu\right) h_{q} v_{0}-q^{-1} x^{2} v_{0}+\lambda_{0} u_{0} .
$$

Substituting this relation in (26), for $n \geqslant 0$ we obtain:

$$
\left(x H_{q^{-1}}\left(Q_{n+1}\right)(x)-Q_{n+1}(x)\right)\left(x^{2}+\mu\right) h_{q} v_{0}=\left(\lambda_{n} x P_{n}(x)-\lambda_{0} Q_{n+1}(x)\right) u_{0} .
$$

By virtue of Lemma 4, the fact that $\lambda_{0}=-\theta_{1}=\frac{\mu}{q+1}$, and taking into account the regularity of u_{0}, we finally get

$$
\mu H_{q^{-1}}\left(Q_{n+1}\right)(x)=(q+1) \lambda_{n} P_{n}(x), n \geqslant 0 .
$$

The comparison of the degrees in the last equation gives $(q+1) \lambda_{n}=$ $=[n+1]_{q^{-1}} \mu, n \geqslant 0$. Therefore,

$$
H_{q^{-1}}\left(Q_{n+1}\right)(x)=[n+1]_{q^{-1}} P_{n}(x), n \geqslant 0,
$$

which is equivalent to

$$
H_{q}\left(Q_{n+1}\right)(x)=[n+1]_{q} q^{-n} h_{q} P_{n}(x), n \geqslant 0 .
$$

Now we will show that the scaled q-Chebyshev polynomial sequence $\left\{b^{-n} \hat{U}_{n}(b x)\right\}_{n \geqslant 0}$, where $b^{2}=-(q \mu)^{-1}$, is the only $\mathcal{U}_{(q, \mu)}$-classical orthogonal sequence. In particular, $\left\{\hat{U}_{n}(x)\right\}_{n \geqslant 0}$ is $\mathcal{U}_{(q,-1)}$-classical orthogonal sequence.

Theorem 1. For any nonzero complex number μ and any $\operatorname{MPS}\left\{P_{n}\right\}_{n \geqslant 0}$, the following statements are equivalent:
(i) $\left\{P_{n}\right\}_{n \geqslant 0}$ is $\mathcal{U}_{(q, \mu)}$-classical.
(ii) There exists $b \in \mathbb{C}, b \neq 0$, such that $P_{n}(x)=b^{-n} \hat{U}_{n}(b x), n \geqslant 0$.

Proof. (i) \Rightarrow (ii). Assume that $\left\{P_{n}\right\}_{n \geqslant 0}$ is $\mathcal{U}_{(q, \mu)}$-classical. Then there exists a monic orthogonal sequence $\left\{Q_{n}\right\}_{n \geqslant 0}$ satisfying (16). By applying v_{0} to (16), we get for $n \geqslant 0$:

$$
\left\langle v_{0}, q^{-1}[n+1]_{q} Q_{n+1}(x)\right\rangle=\left\langle v_{0},\left(x^{2}+\mu\right) H_{q}\left(P_{n}\right)+q^{-1} x P_{n}\right\rangle=0 .
$$

The preceding equation can be written as

$$
\left\langle H_{q}\left(\left(x^{2}+\mu\right) v_{0}\right)-q^{-1} x v_{0}, P_{n}\right\rangle=0, \quad n \geqslant 0 .
$$

Equivalently,

$$
H_{q}\left(\left(x^{2}+\mu\right) v_{0}\right)-q^{-1} x v_{0}=0
$$

The choice $a^{2}=-\mu^{-1}$ in Lemma 3 gives $v_{0}=\mathcal{T}_{q}$. Then, from (4) and (5),

$$
\begin{aligned}
\frac{-u_{0}}{q+1} & =-\mu^{-1} h_{q}\left(\left(x^{2}+\mu\right) v_{0}\right)=h_{q}\left(h_{a}\left(x^{2}-1\right) h_{a^{-1}} \mathcal{T}_{q}\right)= \\
& =h_{q} \circ h_{a^{-1}}\left(\left(x^{2}-1\right) \mathcal{T}_{q}\right)=\frac{-1}{q+1} h_{\left(q^{-1} a\right)^{-1}} \tilde{U}_{q}
\end{aligned}
$$

Consequently, $u_{0}=h_{\left(q^{-1} a\right)^{-1}} \tilde{U}_{q}$. Thus, for $n \geqslant 0$
$Q_{n}(x)=a^{-n} \hat{T}_{n}(a x), \quad P_{n}(x)=\left(a q^{-1}\right)^{-n} \tilde{U}_{n}\left(a q^{-1} x\right)=\left(a q^{\frac{-1}{2}}\right)^{-n} \hat{U}_{n}\left(a q^{\frac{-1}{2}} x\right)$.

The desired result is found by taking $b=a q^{\frac{-1}{2}}$; so, $b^{2}=-(q \mu)^{-1}$.
(ii) \Rightarrow (i). Let b in \mathbb{C}, with $b \neq 0$, and let $P_{n}(x)=b^{-n} \hat{U}_{n}(b x), n \geqslant 0$. It is clear that $\left\{P_{n}\right\}_{n \geqslant 0}$ is a MOPS. The sequence $\left\{\hat{T}_{n}\right\}_{n \geqslant 0}$ is H_{q}-classical; then, according to (8), (9), it satisfies the q-diffrence equation

$$
\left(x^{2}-1\right)\left(H_{q} \circ H_{q^{-1}} \hat{T}_{n+1}\right)(x)-q^{-1} x\left(H_{q^{-1}} \hat{T}_{n+1}\right)(x)=-\lambda_{n} \hat{T}_{n+1}(x), n \geqslant 0
$$

From (7), we get

$$
\begin{aligned}
\left(x^{2}-1\right) H_{q}\left(h_{q^{-1}}\left(H_{q} \hat{T}_{n+1}\right)\right)(x)+q^{-1} x h_{q^{-1}} & \left(H_{q} \hat{T}_{n+1}\right)(x)= \\
& =-\lambda_{n} \hat{T}_{n+1}(x), \quad n \geqslant 0 .
\end{aligned}
$$

On account of (13), the last equation becomes

$$
\begin{aligned}
{[n+1]_{q}\left(x^{2}-1\right) H_{q}\left(h_{q^{-1}} \tilde{U}_{n}\right)(x)+q^{-1}[n+1]_{q} x } & h_{q^{-1}} \tilde{U}_{n}(x)= \\
& =-\lambda_{n} \hat{T}_{n+1}(x), \quad n \geqslant 0
\end{aligned}
$$

According to (11), we get

$$
\begin{aligned}
& q^{\frac{-n}{2}}[n+1]_{q}\left(x^{2}-1\right) H_{q}\left(h_{q} \frac{-1}{2} \hat{U}_{n}\right)(x)+q^{\frac{-n}{2}-1}[n+1]_{q} x h_{q \frac{-1}{2}} \hat{U}_{n}(x)= \\
&=-\lambda_{n} \hat{T}_{n+1}(x), \quad n \geqslant 0 .
\end{aligned}
$$

Applying $h_{q^{\frac{1}{2}}}$ to the previous equation and using (6), we get

$$
\begin{equation*}
q^{\frac{-n-1}{2}}\left(q x^{2}-1\right) H_{q} \hat{U}_{n}(x)+q^{\frac{-n-1}{2}} x \hat{U}_{n}(x)=\frac{-\lambda_{n}}{[n+1]_{q}} h_{\frac{1}{2}} \hat{T}_{n+1}(x), \quad n \geqslant 0 . \tag{27}
\end{equation*}
$$

Finally, applying h_{b} to (27) and using (6), we get

$$
\begin{align*}
q b\left(x^{2}-\left(q^{\frac{1}{2}} b\right)^{-2}\right) H_{q}\left(h_{b} \hat{U}_{n}\right)(x) & +b x h_{b} \hat{U}_{n}(x)= \\
& =\frac{-q^{\frac{n+1}{2}} \lambda_{n}}{[n+1]_{q}} h_{\left(b q^{\frac{1}{2}}\right)} \hat{T}_{n+1}(x), \quad n \geqslant 0 . \tag{28}
\end{align*}
$$

For $\mu=-\left(q^{\frac{1}{2}} b\right)^{-2}$ and multiplying (28) by b^{-n}, we get

$$
\left(x^{2}+\mu\right) H_{q}\left(P_{n}\right)(x)+q^{-1} x P_{n}(x)=\frac{-\lambda_{n}\left(b q^{\frac{1}{2}}\right)^{-(n+1)}}{[n+1]_{q}} h_{\left(b q^{\frac{1}{2}}\right)} \hat{T}_{n+1}(x), \quad n \geqslant 0 .
$$

Then

$$
\left(\mathcal{U}_{(q, \mu)} P_{n}\right)(x)=\frac{-\lambda_{n}\left(b q^{\frac{1}{2}}\right)^{-(n+1)}}{[n+1]_{q}} h_{\left(b q^{\frac{1}{2}}\right)} \hat{T}_{n+1}(x), \quad n \geqslant 0 .
$$

Since $\left\{\hat{T}_{n}\right\}$ an orthogonal polynomials sequence, then $\mathcal{U}_{(q, \mu)} P_{n}$ is also an orthogonal polynomials sequence. Therefore, $\left\{P_{n}\right\}_{n \geqslant 0}$ is $\mathcal{U}_{(q, \mu)}$-classical.

4. A property of the scaled q-Chebyshev polynomials.

Lemma 5. There exists an endomorphism \mathcal{E} of \mathcal{P} into itself, such that the polynomials $P_{n}(x), n \geqslant 0$, are eigenfunctions. We have:

$$
\begin{equation*}
\mathcal{E}\left(P_{n}\right)=\lambda_{n} P_{n}, \quad n \geqslant 0, \tag{29}
\end{equation*}
$$

with

$$
\begin{equation*}
\lambda_{n}=q^{-(n+1)}\left([n+1]_{q}\right)^{2} . \tag{30}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\mathcal{E}:=b_{1}(x) H_{q^{-1}} \circ H_{q}+b_{2}(x) H_{q^{-1}}+b_{3}(x) I_{\mathcal{P}} \tag{31}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{1}(x)=x^{2}+\mu, \quad b_{2}(x)=\left(q^{-2}+q^{-1}+1\right) x, \quad b_{3}(x)=q^{-1} \tag{32}
\end{equation*}
$$

and $I_{\mathcal{P}}$ represents the identity operator on the space of polynomials \mathcal{P}.
Proof. By applying the operator H_{q} to (15) and using (24), we obtain

$$
\begin{equation*}
H_{q} \circ \mathcal{U}_{(q, \mu)}\left(P_{n}\right)=q^{-(n+1)}\left([n+1]_{q}\right)^{2}\left(h_{q} P_{n}\right), \quad n \geqslant 0 . \tag{33}
\end{equation*}
$$

Then, applying the operator $h_{q^{-1}}$ to (33) and using (7), we get

$$
\begin{equation*}
H_{q^{-1}} \circ \mathcal{U}_{(q, \mu)}\left(P_{n}\right)=q^{-(n+1)}\left([n+1]_{q}\right)^{2} P_{n}, \quad n \geqslant 0 . \tag{34}
\end{equation*}
$$

Consequently, from (2), (7), (15), and (34), we deduce (31)-(32). In addition, we have:

$$
\mathcal{E}\left(X^{n}\right)=\lambda_{n} X^{n}+\mu_{n} X^{n-2}, n \geqslant 0,
$$

with

$$
\mu_{n}=q^{-(n-2)}[n]_{q}[n-1]_{q} \mu, n \geqslant 0 .
$$

Thus, the matrix of the endomorphism \mathcal{E} in the canonical basis $\left\{X^{n}\right\}_{n \geqslant 0}$ of \mathcal{P} is given by

$$
\mathbf{M}_{\mathcal{E}}=\left(\begin{array}{cccccc}
\lambda_{0} & 0 & \mu_{2} & 0 & \cdots & 0 \\
0 & \lambda_{1} & 0 & \ddots & \ddots & \vdots \\
& & \lambda_{2} & \ddots & \mu_{n} & 0 \\
& & & \ddots & 0 & \ddots \\
& & & & \lambda_{n} & \ddots \\
0 & & & & & \ddots
\end{array}\right)
$$

Using the relation (29), the matrix of \mathcal{E} in the basis $\left\{P_{n}\right\}_{n \geqslant 0}$ is as follows:

$$
\mathbf{E}=\left(\begin{array}{ccccc}
\lambda_{0} & 0 & \cdots & \cdots & 0 \\
0 & \lambda_{1} & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \lambda_{n} & 0 \\
0 & \cdots & \cdots & 0 & \ddots
\end{array}\right)
$$

Remark 1.

1. When $q \rightarrow 1$ in Proposition 3, Lemma 4, Proposition 4 and Theorem 1, we recover the results, as well as the characterization of Chebyshev polynomials of the second kind in [3].
2. When $q \rightarrow 1$ in Lemma 5, we find the property described in [19] with $\xi_{1}=0$ for the Chebyshev polynomials of the second kind.

Acknowledgment. I would like to extend my sincere gratitude to the reviewers for dedicating their time to reviewing the article and for their valuable suggestions, which have significantly improved the quality of the manuscript.

References

[1] Atakishiyeva M, Atakishiyev N. On discrete q-extension of Chebyshev polynomials. Commun. Math. Anal., 2013. vol. 14(2), pp. 1-12.
[2] Aloui B. Characterization of Laguerre polynomials as orthogonal polynomials connected by the Laguerre degree raising shift operator. Ramanujan J., 2018, no. 45, pp. 475-481.
DOI: https://doi.org/10.1007/s11139-017-9901-x
[3] Aloui B. Chebyshev polynomials of the second kind via raising operator preserving the orthogonality. Period Math Hung., 2018, vol. 76, pp. 126-132. DOI: https://doi.org/10.1007/s10998-017-0219-7
[4] Bouanani A, Khériji L, Tounsi MI. Characterization of q-Dunkl Appell symmetric orthogonal q-polynomials. Expositiones Mathematicae., 2010, vol. 28(4), pp. 325-336.
DOI: https://doi.org/10.1016/j.exmath.2010.03.003
[5] Bouras B, Habbachi Y, Marcellán F. Characterizations of the Symmetric $T_{(\theta, q)}$-Classical Orthogonal q-Polynomials. Mediterranean Journal Of Mathematics., 2022, vol. 19(2).
DOI: https://doi.org/10.1007/s00009-022-01986-8
[6] Ben Cheikh Y, Gaied M. Characterization of the Dunkl-classical symmetric orthogonal polynomials. Appl. Math. Comput., 2007, vol. 187, pp. 105-114. DOI: https://doi.org/10.1016/j.amc.2006.08.108
[7] Chihara T. S. An Introduction to Orthogonal Polynomials. Gordon and Breach, New York, 1978.
[8] Ercan E, Cetin M, Tuglu N. Incomplete q-Chebyshev polynomials. Filomat., 2018, vol. 32(10), pp. 3599-3607.
DOI: https://doi.org/10.2298/fil1810599e
[9] Jbeli S. Description of the symmetric H_{q}-Laguerre-Hahn orthogonal q-polynomials of class one. Period Math Hung., 2024.
DOI: https://doi.org/10.1007/s10998-024-00574-5
[10] Hahn W. Über die Jacobischen polynome und zwei verwandte polynomklassen. Math. Z., 1935, vol. 39, pp. 634-638.
[11] Hahn W. Über Orthogonalpolynome, die linearen Funktionalgleichungen genügen. Dans : Lecture Notes in Mathematics., 1985, pp. 16-35.
DOI: 10.1007/bfb0076529
[12] Kizilates C, Tuǧlu N, Çekim B. On the (p, q)-Chebyshev polynomials and related polynomials. Mathematics., 2019, vol. 7(136), pp. 1-12.
[13] Khériji L, Maroni P. The H_{q}-classical orthogonal polynomials. Acta. Appl. Math., 2002, vol. 71, pp. 49-115.
DOI: https://doi.org/10.1023/a:1014597619994
[14] Koornwinder T.H. Lowering and raising operators for some special orthogonal polynomials. In: Jack, Hall-Littlewood and Macdonald Polynomials, Contemporary Mathematics, vol. 417, 2006.
[15] Maroni P. Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques. In Orthogonal Polynomials and their applications. Proc. Erice, 1990, IMACS, Ann. Comput. Appl. Math., 1991, vol. 9, pp. $95-130$. Math., 9, Baltzer, Basel, 1991.
[16] Maroni P. Variations around classical orthogonal polynomials. Connected problems. Journal Of Computational And Applied Mathematics., 1993, vol. 48(1-2), pp. 133-155.
DOI: https://doi.org/10.1016/0377-0427(93)90319-7
[17] Maroni P, Mejri M. The $I_{(q, \omega) \text {-classical orthogonal polynomials. Appl. Nu- }}$ mer. Math., 2002, vol. 43(4), pp. 423-458.
DOI: https://doi.org/10.1016/s0168-9274(01)00180-5
[18] Mejri M. q-Chebyshev polynomials and their q-classical characters. Probl. Anal. Issues Anal., 2022, vol. 11(29), no 1, pp. 81-101.
DOI: https://doi.org/10.15393/j3.art.2022.10330
[19] Souissi J. Characterization of polynomials via a raising operator. Probl. Anal. Issues Anal., 2024, vol. 13 (31), no 1, pp. 71-81.
DOI: https://doi.org/10.15393/j3.art.2024.14050
Received March 11, 2024.
In revised form, May 26, 2024.
Accepted May 28, 2024.
Published online June 07, 2024.
S. Jbeli

Université de Tunis El Manar
Campus Universitaire El Manar,
Tunis, 2092, Tunisie. LR13ES06
E-mail: jbelisobhi@gmail.com

