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COMMON FIXED POINT IN 𝐺-METRIC SPACES VIA
GENERALIZED Γ-𝐶𝐹 -SIMULATION FUNCTION

Abstract. We present the generalized Γ-𝐶𝐹 -simulation function
and establish the common fixed point result for weak p𝜂𝐹 , 𝑔q-contrac-
tion in complete 𝐺-metric space. The exploration extends to its
ramifications on both quasi-metric spaces and metric spaces. The
study explores the existence of a solution for a non-linear integral
equation as an application of these results.
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1. Introduction. Expanding the Banach fixed point theorem to
𝐺-metric spaces marks a significant advancement in mathematical analy-
sis. These extensions often entail adjusting the contraction condition to
suit the properties of 𝐺-metrics. Since Samet et al.’s work [14], it has
been recognized that 𝐺-metric spaces possess a quasi-metric structure.
As a result, many fixed-point theorems established within the domain of
𝐺-metric spaces can be inferred from existing results in (quasi-)metric
spaces. Specifically, when the contraction condition in a fixed-point the-
orem for a 𝐺-metric space can be simplified to involve only two variables
instead of three, it becomes feasible to establish analogous fixed-point
results in a metric space.

Further, Khojasteh et al. [9] introduced the notion of simulation func-
tions in order to express different contractivity conditions in a simple,
unified, coherent manner. By employing a unified language through simu-
lation functions, researchers can convey and analyze a wide range of con-
tractive mappings using a common set of principles. Later, this principle
has been extended in various directions (see [1], [6], [8], [10], [11], [12], [13]).

In this context, we introduce the generalized Γ´ 𝐶𝐹 -simulation func-
tion by employing the Γ-𝐶-class functions [11]. Additionally, we define
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weak contraction and establish a common fixed point result applicable to
𝐺-metric spaces, along with its implications for quasi-metric spaces and
metric spaces. This flexibility is crucial in addressing diverse mathematical
problems and adapting to various settings, allowing researchers to tailor
contractivity conditions to specific needs. Finally, we apply the derived
fixed-point result to solve a specific type of integral equation.

2. Preliminaries. Let us recollect some basic definitions and results
for 𝐺-metric space.

Definition 1. [15] Let 𝑋 be a nonempty set, 𝐺 : 𝑋 ˆ𝑋 ˆ𝑋 Ñ r0,`8q
be a function satisfying the following properties:

p𝐺1q 𝐺p𝑥, 𝑦, 𝑧q “ 0, if 𝑥 “ 𝑦 “ 𝑧,

p𝐺2q 𝐺p𝑥, 𝑥, 𝑦q ą 0, for all 𝑥, 𝑦 P 𝑋 with 𝑥 ‰ 𝑦,

p𝐺3q 𝐺p𝑥, 𝑥, 𝑦q 6 𝐺p𝑥, 𝑦, 𝑧q, for all 𝑥, 𝑦, 𝑧 P 𝑋 with 𝑧 ‰ 𝑦,

p𝐺4q 𝐺p𝑥, 𝑦, 𝑧q “ 𝐺p𝑥, 𝑧, 𝑦q “ 𝐺p𝑦, 𝑧, 𝑥q “ . . . (symmetry in all three
variables),

p𝐺5q 𝐺p𝑥, 𝑦, 𝑧q 6 𝐺p𝑥, 𝑎, 𝑎q ` 𝐺p𝑎, 𝑦, 𝑧q, for all 𝑥, 𝑦, 𝑧, 𝑎 P 𝑋 (rectangle
inequality).

The function 𝐺 is called 𝐺-metric on 𝑋 and the pair p𝑋,𝐺q is called
a 𝐺-metric space.

Definition 2. [15] A 𝐺-metric space p𝑋,𝐺q is said to be symmetric if

𝐺p𝑥, 𝑦, 𝑦q “ 𝐺p𝑦, 𝑥, 𝑥q, for all 𝑥, 𝑦 P 𝑋.

Lemma 1. [15] If p𝑋,𝐺q is a 𝐺-metric space, then

𝐺p𝑥, 𝑦, 𝑦q 6 2𝐺p𝑦, 𝑥, 𝑥q, for all 𝑥, 𝑦 P 𝑋.

Proposition 1. [15] Let p𝑋,𝐺q be a 𝐺-metric space, t𝑥𝑛u Ď 𝑋 be a
sequence, and 𝑥 P 𝑋. Then

(i) t𝑥𝑛u𝐺-converges to 𝑥ðñ lim
𝑛Ñ`8

𝐺p𝑥𝑛, 𝑥𝑛, 𝑥q“0 ðñ lim
𝑛Ñ`8

𝐺p𝑥𝑛, 𝑥, 𝑥q“0.

(ii) t𝑥𝑛u is 𝐺-Cauchy ðñ lim
𝑛,𝑚Ñ`8

𝐺p𝑥𝑛, 𝑥𝑚, 𝑥𝑚q “ 0.

(iii) p𝑋,𝐺q is complete if every 𝐺-Cauchy sequence in 𝑋 is 𝐺-convergent
in 𝑋.
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Definition 3. [15] Let p𝑋,𝐺q be a 𝐺-metric space. We say that a map-
ping 𝑇 : 𝑋 Ñ 𝑋 is 𝐺-continuous at 𝑥 P 𝑋 if t𝑇𝑥𝑚u Ñ 𝑇𝑥 for all sequence
t𝑥𝑚u Ď 𝑋 such that t𝑥𝑚u Ñ 𝑥.

Definition 4. [2] A sequence t𝑥𝑛u in a 𝐺-metric space p𝑋,𝐺q is asymp-
totically regular if lim

𝑛Ñ`8
𝐺p𝑥𝑛, 𝑥𝑛`1, 𝑥𝑛`1q “ 0.

Barinde [5] introduced asymptotic regularity for two operators in met-
ric spaces, which can be extended to 𝐺-metric spaces as follows:

Definition 5. Let p𝑋,𝐺q be a 𝐺-metric space and 𝑓, 𝑔 : 𝑋 Ñ 𝑋 be
two operators. Then the operator 𝑔 is called 𝑓 -asymptotically regular
in p𝑋,𝐺q if

𝐺p𝑔𝑛p𝑥q, 𝑓p𝑔𝑛p𝑥qq, 𝑓p𝑔𝑛p𝑥qqq Ñ 0 as 𝑛Ñ `8, for all 𝑥 P 𝑋.

Let Γpr0,`8qq be the set of all non-decreasing functions
𝛾 : r0,`8q Ñ r0,`8q, such that 𝛾p𝑡q “ 0 if and only if 𝑡 “ 0.

Definition 6. [11] A function 𝐹 : r0,`8q2 Ñ R is called Γ-𝐶-class func-
tion if it is continuous and there exists 𝛾 P Γpr0,`8qq, such that:

(i) 𝐹 p𝑠, 𝑡q 6 𝛾p𝑠q;
(ii) 𝐹 p𝑠, 𝑡q “ 𝛾p𝑠q implies that either 𝑠 “ 0 or 𝑡 “ 0 for all 𝑠, 𝑡 > 0.

The collection of all Γ-𝐶-class functions is denoted by 𝒞Γ. For 𝛾p𝑡q “ 𝑡,
the Γ-𝐶-class function reduces to 𝐶-class function of [3].

Definition 7. [11] A function 𝐹 : r0,`8q2 Ñ R has the property Γ-𝐶𝐹 ,
if there exists 𝛾 P Γpr0,`8qq and 𝐶𝐹 > 0, such that:

(𝐹1) 𝐹 p𝑠, 𝑡q ą 𝐶𝐹 implies 𝛾p𝑠q ą 𝛾p𝑡q, for all 𝑠, 𝑡 > 0;
(𝐹2) 𝐹 p𝑡, 𝑡q 6 𝐶𝐹 , for all 𝑡 > 0.

Example 1. The following functions 𝐹𝑖 : r0,`8q2 Ñ R are elements of
𝒞Γ with property Γ-𝐶𝐹 :

(i) 𝐹1p𝑠, 𝑡q “
𝛾p𝑠q

1` 𝛾p𝑡q
, 𝐶𝐹 “ 1, 2.

(ii) 𝐹2p𝑠, 𝑡q “
𝛾p𝑠q

p1` 𝛾p𝑡qq𝑟
, 𝑟 P p0,`8q, 𝐶𝐹 “ 1.

3. Main results. In this section, we introduce generalized
Γ-𝐶𝐹 -simulation function using Γ-𝐶-class functions. Subsequently, the
conditions for the existence and uniqueness of a common fixed point result
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for weak contractions by using the generalized Γ-𝐶𝐹 -simulation function
are established.

Definition 8. A function 𝜂 : r0,`8q ˆ r0,`8q Ñ R is a (generalized)
Γ-𝐶𝐹 -simulation function of type II, if

(𝜂1) There exists 𝐶𝐹 > 0, such that

if 𝜂p𝑡, 𝑠q > 𝐶𝐹 then 𝜂p𝑡, 𝑠q 6 𝐹 p𝑠, 𝑡q, for all 𝑠, 𝑡 > 0,

where 𝐹 P 𝒞Γ with property Γ´ 𝐶𝐹 .
(𝜂2) If t𝑡𝑛u and t𝑠𝑛u are non increasing sequences in p0,`8q and

𝜂p𝑡𝑛, 𝑠𝑛q > 𝐶𝐹 , then

lim
𝑛Ñ`8

𝜂p𝑡𝑛, 𝑠𝑛q Ñ 𝐶𝐹 implies 𝑠𝑛 Ñ 0.

We say that 𝜂 is a (generalized) Γ-𝐶𝐹 -simulation function of type I, if it
satisfies (𝜂1) and the following p𝜂2q˚ condition:

p𝜂2q
˚ If t𝑡𝑛u and t𝑠𝑛u are non increasing sequences in p0,`8q, such that

lim
𝑛Ñ`8

𝑡𝑛 “ lim
𝑛Ñ`8

𝑠𝑛 ą 0, then lim sup
𝑛Ñ`8

𝜂p𝑡𝑛, 𝑠𝑛q ă 𝐶𝐹 .

Remark 1.

(i) Every simulation function is a (generalized) Γ-𝐶𝐹 -simulation func-
tion of type I.
It follows from definition 8 for 𝐶𝐹 “ 0 and 𝐹 p𝑠, 𝑡q “ 𝛾p𝑠q´ 𝛾p𝑡q and
𝛾p𝑡q “ 𝑡.

(ii) Also, condition p𝜂2q˚ is different from p𝜂2q.

Now, we introduce weak p𝜂𝐹 , 𝑔q-contraction for 𝐺-metric spaces.

Definition 9. Let p𝑋,𝐺q be a 𝐺-metric space and 𝑓, 𝑔 be self mappings
on 𝑋. For a function 𝜂 : r0,`8q ˆ r0,`8q Ñ R, 𝑓 is called

(i) an p𝜂𝐹 , 𝑔q-contraction if

𝜂p𝐺p𝑓𝑥, 𝑔𝑦, 𝑔𝑦q, 𝐺p𝑥, 𝑦, 𝑦qq > 𝐶𝐹 , for all 𝑥, 𝑦 P 𝑋, (1)

𝜂p𝐺p𝑔𝑥, 𝑓𝑦, 𝑓𝑦q, 𝐺p𝑥, 𝑦, 𝑦qq > 𝐶𝐹 , for all 𝑥, 𝑦 P 𝑋, (2)

(ii) a weak p𝜂𝐹 ,𝑔q-contraction if

𝜂p𝐺p𝑓𝑥, 𝑔𝑓𝑥, 𝑔𝑓𝑥q,𝐺p𝑥, 𝑓𝑥, 𝑓𝑥qq > 𝐶𝐹 , for all 𝑥 P 𝑋, (3)

𝜂p𝐺p𝑔𝑥, 𝑓𝑔𝑥, 𝑓𝑔𝑥q, 𝐺p𝑥, 𝑔𝑥, 𝑔𝑥qq > 𝐶𝐹 , for all 𝑥 P 𝑋, (4)
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(iii) a generalize weak non-expansive map if

𝐺p𝑓𝑥, 𝑔𝑓𝑥, 𝑔𝑓𝑥q 6 𝐺p𝑥, 𝑓𝑥, 𝑓𝑥q, for all 𝑥 P 𝑋, (5)

𝐺p𝑔𝑥, 𝑓𝑔𝑥, 𝑓𝑔𝑥q 6 𝐺p𝑥, 𝑔𝑥, 𝑔𝑥q, for all 𝑥 P 𝑋. (6)

For 𝑔 “ 𝑓 in (1)–(6), we get the following contractions:
A mapping 𝑓 is called

(a) an 𝜂𝐹 -contraction if

𝜂p𝐺p𝑓𝑥, 𝑓𝑦, 𝑓𝑦q, 𝐺p𝑥, 𝑦, 𝑦qq > 𝐶𝐹 , for all 𝑥, 𝑦 P 𝑋, (7)

(b) a weak 𝜂𝐹 -contraction if

𝜂p𝐺p𝑓𝑥, 𝑓 2𝑥, 𝑓 2𝑥q, 𝐺p𝑥, 𝑓𝑥, 𝑓𝑥qq > 𝐶𝐹 , for all 𝑥 P 𝑋, (8)

(c) a weak non-expansive map if

𝐺p𝑓𝑥, 𝑓 2𝑥, 𝑓 2𝑥q 6 𝐺p𝑥, 𝑓𝑥, 𝑓𝑥q, for all 𝑥 P 𝑋. (9)

Remark 2. In definition 9, for 𝑑𝐺p𝑥, 𝑦q“𝐺p𝑥, 𝑦, 𝑦q, an p𝜂𝐹 , 𝑔q-contraction
for 𝐺-metric spaces reduced to p𝜂𝐹 , 𝑔q-contraction for quasi-metric spaces
p𝑋, 𝑑𝐺q.

Now, we prove common fixed point result for the pair of mappings in
𝐺-metric spaces.

Theorem 1. Let p𝑋,𝐺q be a complete 𝐺-metric space, 𝑓 and 𝑔 be self
mappings on 𝑋 and 𝜂 : r0,`8q ˆ r0,`8q Ñ R be a function.

(i) Let 𝑓 be an p𝜂𝐹 , 𝑔q-contraction. If 𝜂 satisfies p𝜂1q, then 𝑓 and 𝑔 have
at most one common fixed point. Also, if 𝛾 P Γpr0,`8qq, then

𝐺p𝑓𝑥, 𝑔𝑦, 𝑔𝑦q ă 𝐺p𝑥, 𝑦, 𝑦q, for all 𝑥 ‰ 𝑦.

(ii) Let 𝜂 be a Γ-𝐶𝐹 -simulation function of type II; if 𝑓p𝑔𝑓q𝑛0 and
p𝑔𝑓q𝑛0 , 𝑛0 P N is a weak p𝜂𝐹 , 𝑔q-contraction, then 𝑓 is 𝑔-asymptotically
regular. The same result holds if 𝜂 is a Γ-𝐶𝐹 -simulation function of
type I and 𝑓 is a generalized weak non-expansive map.

(iii) Let 𝑓 be an p𝜂𝐹 , 𝑔q-contraction with 𝑓 or 𝑔 continuous, and 𝜂 be
a Γ-𝐶𝐹 -simulation function of type II (or type I with 𝑓 being a
generalized weak non-expansive map), then 𝑓 and 𝑔 have a unique
common fixed point.
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Proof.
(i) Suppose that 𝑔𝑥 “ 𝑓𝑥 “ 𝑥, 𝑔𝑦 “ 𝑓𝑦 “ 𝑦 and 𝑥 ‰ 𝑦; then

𝐺p𝑥, 𝑦, 𝑦q “ 𝐺p𝑓𝑥, 𝑔𝑦, 𝑔𝑦q “ 𝑡p𝑠𝑎𝑦q ą 0.
From (𝜂1) and p𝐹2q, we get

𝜂p𝑡, 𝑡q > 𝐶𝐹 ùñ 𝜂p𝑡, 𝑡q ă 𝐹 p𝑡, 𝑡q 6 𝐶𝐹 ,

which is a contradiction. Hence, common fixed point of 𝑓 and 𝑔 is unique
if exists.

Suppose that 0 ă 𝑠 “ 𝐺p𝑥, 𝑦, 𝑦q 6 𝑡 “ 𝐺p𝑓𝑥, 𝑔𝑦, 𝑔𝑦q, where 𝑥 ‰ 𝑦.
From (1) and p𝜂1q, we have

𝐶𝐹 6 𝜂p𝐺p𝑓𝑥, 𝑔𝑦, 𝑔𝑦q, 𝐺p𝑥, 𝑦, 𝑦qq ă 𝐹 p𝐺p𝑥, 𝑦, 𝑦q, 𝐺p𝑓𝑥, 𝑔𝑦, 𝑔𝑦qq.

From p𝐹1q, we get

𝛾p𝐺p𝑓𝑥, 𝑔𝑦, 𝑔𝑦qq ă 𝛾p𝐺p𝑥, 𝑦, 𝑦qq.

Since 𝛾 is non-decreasing, 𝐺p𝑓𝑥, 𝑔𝑦, 𝑔𝑦q ă 𝐺p𝑥, 𝑦, 𝑦q, which is a contra-
diction. Hence, 𝐺p𝑓𝑥, 𝑔𝑦, 𝑔𝑦q ă 𝐺p𝑥, 𝑦, 𝑦q.

(ii) For any fixed 𝑥0 in 𝑋, construct a sequence t𝑥𝑛u with

𝑥2𝑛 “ p𝑔𝑓q
𝑛
p𝑥0q, 𝑥2𝑛`1 “ 𝑓p𝑥2𝑛q, for all 𝑛 > 0.

Let 𝑡𝑖“𝐺p𝑥𝑖, 𝑥𝑖`1, 𝑥𝑖`1q for all 𝑖 > 0. Suppose 𝑡𝑘“0, for some 𝑘 P N.
If 𝑥2𝑘 “ 𝑥2𝑘`1, then 𝑥2𝑘 is a fixed point of 𝑓 .
If 𝑥2𝑘`1 “ 𝑥2𝑘`2, then 𝑥2𝑘`1 is a fixed point of 𝑔.
Thus, at least one mapping of 𝑓 or 𝑔 has a fixed point.
Now, assume that 𝑡𝑘 ‰ 0, for all 𝑘 > 0. Put 𝑥 “ 𝑥2𝑛0`2𝑘 “ p𝑔𝑓q

𝑛0`𝑘p𝑥0q,
𝑘 “ 0, 1, . . . in (3) to get

𝐶𝐹 6 𝜂
`

𝐺p𝑓𝑥2𝑛0`2𝑘, 𝑔𝑓𝑥2𝑛0`2𝑘, 𝑔𝑓𝑥2𝑛0`2𝑘q,

𝐺p𝑥2𝑛0`2𝑘, 𝑓𝑥2𝑛0`2𝑘, 𝑓𝑥2𝑛0`2𝑘q
˘

“

“ 𝜂
`

𝐺p𝑥2𝑛0`2𝑘`1, 𝑥2𝑛0`2𝑘`2, 𝑥2𝑛0`2𝑘`2q,

𝐺p𝑥2𝑛0`2𝑘, 𝑥2𝑛0`2𝑘`1, 𝑥2𝑛0`2𝑘`1q
˘

“

“ 𝜂p𝑡2𝑛0`2𝑘`1, 𝑡2𝑛0`2𝑘q ă

ă 𝐹 p𝑡2𝑛0`2𝑘, 𝑡2𝑛0`2𝑘`1q. (10)

Put 𝑥 “ 𝑥2𝑛0`2𝑘`1 “ 𝑓p𝑔𝑓q𝑛0`𝑘p𝑥0q, 𝑘 “ 0, 1, . . . in (4) to get

𝐶𝐹 6 𝜂p𝐺p𝑔𝑥2𝑛0`2𝑘`1, 𝑓𝑔𝑥2𝑛0`2𝑘`1, 𝑓𝑔𝑥2𝑛0`2𝑘`1q,
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𝐺p𝑥2𝑛0`2𝑘`1, 𝑔𝑥2𝑛0`2𝑘`1, 𝑔𝑥2𝑛0`2𝑘`1qq “

“ 𝜂p𝐺p𝑥2𝑛0`2𝑘`2, 𝑥2𝑛0`2𝑘`3, 𝑥2𝑛0`2𝑘`3q,

𝐺p𝑥2𝑛0`2𝑘`1, 𝑥2𝑛0`2𝑘`2, 𝑥2𝑛0`2𝑘`2qq “

“ 𝜂p𝑡2𝑛0`2𝑘`2, 𝑡2𝑛0`2𝑘`1q ă

ă 𝐹 p𝑡2𝑛0`2𝑘`1, 𝑡2𝑛0`2𝑘`2q. (11)

From (10) and (11), we get

𝐶𝐹 6 𝜂p𝑡𝑖`1, 𝑡𝑖q ă 𝐹 p𝑡𝑖, 𝑡𝑖`1q, for all 𝑖 > 𝑛0. (12)

From p𝐹1q, we get 𝛾p𝑡𝑖`1q ă 𝛾p𝑡𝑖q. Since, 𝛾 is non-decreasing 𝑡𝑖`1 ă 𝑡𝑖,
that is,

𝐺p𝑥𝑖`1, 𝑥𝑖`2, 𝑥𝑖`2q ă 𝐺p𝑥𝑖, 𝑥𝑖`1, 𝑥𝑖`1q, for all 𝑖 > 𝑛0.

Hence t𝐺p𝑥𝑖, 𝑥𝑖`1, 𝑥𝑖`1qu is monotonically decreasing sequence of non-
negative real numbers. Thus, there exists 𝑟 > 0, such that
lim
𝑖Ñ`8

𝐺p𝑥𝑖, 𝑥𝑖`1, 𝑥𝑖`1q “ 𝑟.
Let us prove that 𝑟 “ 0. Suppose, on the contrary, that 𝑟 ą 0. Taking

limit as 𝑖Ñ `8 in (12) and using p𝐹2q, we get

𝐶𝐹 6 lim
𝑖Ñ`8

𝜂p𝑡𝑖`1, 𝑡𝑖q 6 𝐹 p lim
𝑖Ñ`8

𝑡𝑖, lim
𝑖Ñ`8

𝑡𝑖`1q “ 𝐹 p𝑟, 𝑟q 6 𝐶𝐹 .

Hence,
lim
𝑖Ñ`8

𝜂p𝑡𝑖`1, 𝑡𝑖q “ 𝐶𝐹 . (13)

Type II: From p𝜂2q, we get 𝑟 “ lim
𝑖Ñ`8

𝑡𝑖 “ 0: a contradiction.

Type I: From (5) and (6), we have 𝑡𝑖`1 6 𝑡𝑖, for all 𝑖 > 0. Using p𝜂2q˚,
we get lim sup

𝑖Ñ`8
𝜂p𝑡𝑖`1, 𝑡𝑖q ă 𝐶𝐹 : a contradiction to (13). Hence, 𝑟 “ 0.

Therefore,
lim
𝑖Ñ`8

𝐺p𝑥𝑖, 𝑥𝑖`1, 𝑥𝑖`1q “ 0. (14)

Since 𝐺p𝑥𝑖, 𝑥𝑖, 𝑥𝑖`1q 6 2𝐺p𝑥𝑖, 𝑥𝑖`1, 𝑥𝑖`1q, we get

lim
𝑖Ñ`8

𝐺p𝑥𝑖, 𝑥𝑖, 𝑥𝑖`1q “ 0. (15)

(iii) We now show that t𝑥𝑛u is a Cauchy sequence. It is sufficient to
show that t𝑥2𝑛u is Cauchy in 𝑋. On the contrary, assume that t𝑥2𝑛u
is not Cauchy. Then, from Lemma 4.1.5 in [2], there exists 𝜀 ą 0 and
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two subsequences t𝑥2𝑛p𝑘qu and t𝑥2𝑚p𝑘qu of t𝑥2𝑛u, such that, for all 𝑘 P N,
𝑘 6 𝑛p𝑘q ă 𝑚p𝑘q ă 𝑛p𝑘 ` 1q and for all given 𝑝1, 𝑝2, 𝑝3 P Z,

lim
𝑘Ñ`8

𝐺p𝑥2𝑛p𝑘q`𝑝1 , 𝑥2𝑚p𝑘q`𝑝2 , 𝑥2𝑚p𝑘q`𝑝3q “ 𝜀. (16)

Considering two non-increasing subequences

𝑎𝑙 “ 𝐺p𝑥2𝑛p𝑘qp𝑙q, 𝑥2𝑚p𝑘qp𝑙q, 𝑥2𝑚p𝑘qp𝑙qq

and
𝑎1𝑙 “ 𝐺p𝑥2𝑛p𝑘qp𝑙q`2, 𝑥2𝑚p𝑘qp𝑙q`2, 𝑥2𝑚p𝑘qp𝑙q`2q

of 𝐺p𝑥2𝑛p𝑘q, 𝑥2𝑚p𝑘q, 𝑥2𝑚p𝑘qq and 𝐺p𝑥2𝑛p𝑘q`2, 𝑥2𝑚p𝑘q`2, 𝑥2𝑚p𝑘q`2q, such that

lim
𝑙Ñ`8

𝑎𝑙 “ lim
𝑙Ñ`8

𝑎1𝑙 “ 𝜀. (17)

From (1) and p𝜂1q, we have

𝐶𝐹 6 𝜂p𝑎1𝑙, 𝑎𝑙q ă 𝐹 p𝑎𝑙, 𝑎
1
𝑙q.

Letting 𝑙 Ñ `8, we get

𝐶𝐹 6 lim
𝑙Ñ`8

𝜂p𝑎1𝑙, 𝑎𝑙q 6 𝐹 p lim
𝑙Ñ`8

𝑎𝑙, lim
𝑙Ñ`8

𝑎1𝑙q “ 𝐹 p𝜀, 𝜀q 6 𝐶𝐹 .

This implies
lim
𝑙Ñ`8

𝜂p𝑎1𝑙, 𝑎𝑙q “ 𝐶𝐹 . (18)

Type II: From p𝜂2q, lim
𝑙Ñ`8

𝑎𝑙 “ 0: a contradiction to (17).

Type I: From p𝜂2q
˚, we get lim sup

𝑙Ñ`8
𝜂p𝑎𝑙, 𝑎

1
𝑙q ă 𝐶𝐹 : a contradiction to (18).

Thus t𝑥2𝑛u is a Cauchy sequence in p𝑋,𝐺q. Hence, t𝑥𝑛u is Cauchy in
p𝑋,𝐺q. Since p𝑋,𝐺q is complete, 𝑥𝑛 Ñ 𝑢 P 𝑋, implies that

lim
𝑛Ñ`8

𝑥2𝑛 “ lim
𝑛Ñ`8

𝑥2𝑛`1 “ 𝑢.

Assume 𝑓 is continuous; then lim
𝑛Ñ`8

𝑓𝑥2𝑛 “ lim
𝑛Ñ`8

𝑥2𝑛`1 “ 𝑓𝑢. This implies

that 𝑓𝑢 “ 𝑢. From (1), we have

𝐶𝐹 6 𝜂p𝐺p𝑓𝑢, 𝑔𝑓𝑢, 𝑔𝑓𝑢q, 𝐺p𝑢, 𝑓𝑢, 𝑓𝑢qq “

“ 𝜂p𝐺p𝑢, 𝑔𝑢, 𝑔𝑢q, 𝐺p𝑢, 𝑢, 𝑢qq ă

ă 𝐹 p𝐺p𝑢, 𝑢, 𝑢q, 𝐺p𝑢, 𝑔𝑢, 𝑔𝑢qq.
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This implies that 0 6 𝛾p𝐺p𝑢, 𝑔𝑢, 𝑔𝑢qq ă 𝛾p𝐺p𝑢, 𝑢, 𝑢qq “ 𝛾p0q “ 0. Hence,
𝐺p𝑢, 𝑔𝑢, 𝑔𝑢q “ 0, and so 𝑔𝑢 “ 𝑢. The uniqueness follows from part (i). l

The following example validates our result.

Example 2. Let 𝑋 “ r0, 1s. Define 𝐺 : 𝑋3 Ñ r0,`8q as

𝐺p𝑥, 𝑦, 𝑧q “

#

0, if 𝑥 “ 𝑦 “ 𝑧,

maxt𝑥, 𝑦, 𝑧u, otherwise.
(19)

Then p𝑋,𝐺q is a complete 𝐺-metric space. Define 𝑓, 𝑔 : 𝑋 Ñ 𝑋 as
𝑓p𝑥q “ 𝑥

2`𝑥
and 𝑔p𝑥q “ 𝑥

2
, @𝑥 P 𝑋. Also define 𝛾 : r0,`8q Ñ r0,`8q

by

𝛾p𝑡q “

#

𝑡, if 0 6 𝑡 ă 1,

2𝑡, if 1 6 𝑡,

and 𝜂 : r0,`8q2 Ñ R by

𝜂p𝑡, 𝑠q “
𝛾p𝑠q

1` 𝛾p𝑠q
´ 𝛾p𝑡q, for all 𝑡, 𝑠 P r0,`8q.

Take 𝐹 p𝑠, 𝑡q “ 𝛾p𝑠q´𝛾p𝑡q with 𝐶𝐹 “ 0, for all 𝑠, 𝑡 P r0,`8q. Then 𝜂 is
a (generalized) Γ-𝐶𝐹 -simulation function of type I and all the conditions
of Theorem 1 are satisfied, and 𝑥 “ 0 is the unique common fixed point
of 𝑓 and 𝑔.

4. From 𝐺-metric space to quasi-metric space and metric
space. We recollect some basic definitions and results for quasi-metric
spaces.

Definition 10. [7] Let 𝑋 be a non-empty set and let 𝑑 : 𝑋 ˆ 𝑋 Ñ

r0,`8q be a function, such that

(i) 𝑑p𝑥, 𝑦q “ 0 if and only if 𝑥 “ 𝑦;
(ii) 𝑑p𝑥, 𝑦q 6 𝑑p𝑥, 𝑧q ` 𝑑p𝑧, 𝑦q, for any points 𝑥, 𝑦, 𝑧 P 𝑋.

Then 𝑑 is called a quasi-metric on 𝑋 and the pair p𝑋, 𝑑q is called a quasi-
metric space.

Definition 11. [7] Let p𝑋, 𝑑q be a quasi-metric space and t𝑥𝑛u be a
sequence in 𝑋. We say that t𝑥𝑛u is

• left-Cauchy if and only if for every 𝜀 ą 0, there exists a positive
integer 𝑁 “ 𝑁p𝜀q, such that 𝑑p𝑥𝑛, 𝑥𝑚q ă 𝜀 for all 𝑛 > 𝑚 ą 𝑁 .
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• right-Cauchy if and only if for every 𝜀 ą 0, there exists a positive
integer 𝑁 “ 𝑁p𝜀q, such that 𝑑p𝑥𝑛, 𝑥𝑚q ă 𝜀 for all 𝑚 > 𝑛 ą 𝑁 .

• Cauchy if and only if for every 𝜀 ą 0, there exists a positive integer
𝑁 “ 𝑁p𝜀q, such that 𝑑p𝑥𝑛, 𝑥𝑚q ă 𝜀 for all 𝑚,𝑛 ą 𝑁 , that is, a
sequence t𝑥𝑛u in a quasi-metric space is Cauchy if and only if it is
both left-Cauchy and right-Cauchy.

Jleli and Samet [7] gave the following results:

Theorem 2. Let p𝑋,𝐺q be a 𝐺-metric space. Let 𝑑𝐺 : 𝑋ˆ𝑋 Ñ r0,`8q
be the function defined by 𝑑𝐺p𝑥, 𝑦q “ 𝐺p𝑥, 𝑦, 𝑦q. Then

(1) p𝑋, 𝑑𝐺q is a quasi-metric space;
(2) t𝑥𝑛u Ă 𝑋 is 𝐺-convergent to 𝑥 P 𝑋 if and only if t𝑥𝑛u is convergent

to 𝑥 in p𝑋, 𝑑𝐺q;
(3) t𝑥𝑛u Ă 𝑋 is 𝐺-Cauchy if and only if t𝑥𝑛u is Cauchy in p𝑋, 𝑑𝐺q;
(4) p𝑋,𝐺q is 𝐺-complete if and only if p𝑋, 𝑑𝐺q is complete.

Definition 12. [7] Let p𝑋, 𝑑q be a quasi-metric space. We say that
p𝑋, 𝑑q is complete if and only if each Cauchy sequence in 𝑋 is convergent.

Asymptotic regularity for two operators for quasi-metric spaces is de-
fined as follows:

Definition 13. Let p𝑋, 𝑑q be a quasi-metric space and 𝑓, 𝑔 : 𝑋 Ñ 𝑋 be
two operators. The operator 𝑔 is called 𝑓 -asymptotically regular on 𝑋 if

lim
𝑛Ñ`8

𝑑p𝑔𝑛p𝑥q, 𝑓p𝑔𝑛p𝑥qqq “ 0 “ lim
𝑛Ñ`8

𝑑p𝑓p𝑔𝑛p𝑥qq, 𝑔𝑛p𝑥qq, for all 𝑥 P 𝑋.

Theorem 1 in context of quasi-metric spaces is stated as follows. For
proving the following result in quasi-metric spaces, we need contractive
conditions:

𝜂p𝑑p𝑓𝑥, 𝑔𝑓𝑥q, 𝑑p𝑥, 𝑓𝑥qq > 𝐶𝐹 ,

𝜂p𝑑p𝑔𝑥, 𝑓𝑔𝑥q, 𝑑p𝑥, 𝑔𝑥qq > 𝐶𝐹 , for all 𝑥 P 𝑋,

and two more contractive conditions got by changing the order of 𝑑p𝑥, 𝑦q.
But here, we can directly derive the result from 𝐺-metric space without
changing the order of 𝑑p𝑥, 𝑦q in the contractivity conditions.

Theorem 3. Let p𝑋, 𝑑q be a complete metric space, 𝑓 and 𝑔 be self
mappings on 𝑋, and 𝜂 : r0,`8q ˆ r0,`8q Ñ R be a function.
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(i) Let 𝑓 be an p𝜂𝐹 , 𝑔q-contraction. If 𝜂 satisfies p𝜂1q, then 𝑓 and 𝑔 have
at most one common fixed point (if any).
Also, if 𝛾 P Γpr0,`8qq, then

𝑑p𝑓𝑥, 𝑔𝑦q ă 𝑑p𝑥, 𝑦q, for all 𝑥 ‰ 𝑦.

(ii) Let 𝜂 be a Γ ´ 𝐶𝐹 -simulation function of type II. If 𝑓p𝑔𝑓q𝑛0 and
p𝑔𝑓q𝑛0 , 𝑛0 P N is a weak p𝜂𝐹 , 𝑔q-contraction, then 𝑓 is 𝑔-asymptotically
regular. The same result holds if 𝜂 is a Γ-𝐶𝐹 -simulation function of
type I and 𝑓 is a generalized weak non-expansive map.

(iii) Let 𝑓 be an p𝜂𝐹 , 𝑔q-contraction with 𝑓 or 𝑔 continuous, and 𝜂 be a
Γ-𝐶𝐹 -simulation function of type II (or type I, then 𝑓 is generalized
weak non-expansive map). Then 𝑓 and 𝑔 have a unique common
fixed point.

Proof. In Theorem 1, take 𝑑𝐺p𝑥, 𝑦q “ 𝐺p𝑥, 𝑦, 𝑦q; then result follows from
Theorem 2. l

Theorem 3 is also valid in the context of metric spaces.

Corollary 1. Let p𝑋, 𝑑q be a complete metric space, 𝑓 be a self mapping
on 𝑋, and 𝜁 : r0,`8q ˆ r0,`8q Ñ R be a function.

(i) Let 𝑓 be an 𝜁-contraction. If 𝜁 satisfies p𝜁1q, then 𝑓 has at most one
common fixed point (if any).
Also, if 𝛾 P Γpr0,`8qq, then

𝑑p𝑓𝑥,𝑓𝑦q ă 𝑑p𝑥,𝑦q, for all 𝑥 “ 𝑦.

(ii) Let 𝜁 be a simulation function of type II; if 𝑓𝑛0 , 𝑛0 P N is a weak
𝜁-contraction, then 𝑓 is asymptotically regular. The same result
holds if 𝜁 is a simulation function of type I and 𝑓 is a weak non-
expansive map.

(iii) Let 𝑓 be an 𝜁-contraction with 𝑓 continuous, and 𝜁 be a simulation
function of type II (or type I, then 𝑓 is weak non-expansive map).
Then 𝑓 has a unique fixed point.

Proof. In Theorem 3, take 𝑔 “ 𝑓 , 𝐹 p𝑠, 𝑡q “ 𝛾p𝑠q ´ 𝛾p𝑡q, 𝛾p𝑡q “ 𝑡, and
𝐶𝐹 “ 0; then p𝜂𝐹 , 𝑔q-contraction reduces to 𝜁-contraction [9]. l

5. An application. In this section, we present an application of The-
orem 1: we guarantee the existence of a solution to an integral equation.
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Let 𝑋 “ 𝐶r0, 1s be the set of all continuous functions defined on r0,1s
and let 𝐺 : 𝑋 ˆ𝑋 ˆ𝑋 Ñ R be defined by

𝐺p𝑥, 𝑦, 𝑧q “ sup
𝑡Pr0,1s

| 𝑥p𝑡q´𝑦p𝑡q | ` sup
𝑡Pr0,1s

| 𝑦p𝑡q´𝑧p𝑡q | ` sup
𝑡Pr0,1s

| 𝑧p𝑡q´𝑥p𝑡q | .

Then p𝑋,𝐺q is a complete 𝐺-metric space. Consider the integral equation:

𝑥p𝑡q “

1
ż

0

𝐻p𝑡, 𝑠q𝐾
`

𝑠, 𝑇 p𝑥p𝑠qq
˘

𝑑𝑠, (20)

where 𝐻 : r0, 1s ˆ r0, 1s Ñ R` and 𝐾 : r0, 1s ˆ R` Ñ R` are continuous
functions and 𝑇 : 𝑋 Ñ 𝑋 is a self mapping on 𝑋.

Now we present the following theorem:

Theorem 4. Suppose the following assumptions hold:

(1) for all 𝑠 P r0, 1s and 𝑥, 𝑦 P 𝑋, we have

| 𝐾
`

𝑠, 𝑥q ´𝐾p𝑠, 𝑦q
˘

|6| 𝑥´ 𝑦 |;

(2) for all 𝑡, 𝑠 P r0, 1s, we have

sup
𝑡Pr0,1s

1
ż

0

𝐻p𝑡, 𝑠q𝑑𝑠 “
1

4
.

Then the integral equation (20) has a solution.

Proof. Let 𝑇 : 𝑋 Ñ 𝑋 be a mapping defined by

𝑇 p𝑥p𝑡qq “

1
ż

0

𝐻p𝑡, 𝑠q𝐾
`

𝑠, 𝑥p𝑠q
˘

𝑑𝑠, 𝑡 P r0, 1s, 𝑥 P 𝑋.

From condition (1) and (2), we have

𝐺p𝑓𝑥, 𝑔𝑓𝑥, 𝑔𝑓𝑥q “ 2 sup
𝑡Pr0,1s

| 𝑓p𝑥p𝑡qq ´ 𝑔𝑓p𝑥p𝑡qq |“

“ 2 sup
𝑡Pr0,1s

|

1
ż

0

𝐻p𝑡, 𝑠q𝐾
`

𝑠, 𝑥p𝑠q
˘

𝑑𝑠´

1
ż

0

𝐻p𝑡, 𝑠q𝐾
`

𝑠, 𝑓p𝑥p𝑠qq
˘

𝑑𝑠 |6
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6 2 sup
𝑡Pr0,1s

1
ż

0

𝐻p𝑡, 𝑠q | 𝐾
`

𝑠, 𝑥p𝑠q
˘

´𝐾
`

𝑠, 𝑓p𝑥p𝑠qq
˘

| 𝑑𝑠 6

6 2 sup
𝑡Pr0,1s

1
ż

0

𝐻p𝑡, 𝑠q | 𝑥p𝑠q ´ 𝑓p𝑥p𝑠qq | 𝑑𝑠 6

6 𝐺p𝑥, 𝑓𝑥, 𝑓𝑥q sup
𝑡Pr0,1s

1
ż

0

𝐻p𝑡, 𝑠q𝑑𝑠.

So, we get

𝐺p𝑓𝑥, 𝑔𝑓𝑥, 𝑔𝑓𝑥q 6
1

4
𝐺p𝑥, 𝑓𝑥, 𝑓𝑥q. (21)

Let 𝜂p𝑡, 𝑠q “ 1
4
𝛾p𝑠q ´ 𝛾p𝑡q, 𝐹 p𝑠, 𝑡q “ 𝛾p𝑠q ´ 𝛾p𝑡q for all 𝑠, 𝑡 P r0,`8q,

𝐶𝐹 “ 0, 𝛾p𝑡q “ 2𝑡 for all 𝑡 P r0,`8q.
Now,

𝜂
`

𝐺p𝑓𝑥, 𝑔𝑓𝑥, 𝑔𝑓𝑥q, 𝐺p𝑥, 𝑓𝑥, 𝑓𝑥q
˘

“

“
1

4
𝛾
`

𝐺p𝑥, 𝑓𝑥, 𝑓𝑥q
˘

´ 𝛾
`

𝐺p𝑓𝑥, 𝑔𝑓𝑥, 𝑔𝑓𝑥q
˘

“

“
1

4

`

2𝐺p𝑥, 𝑓𝑥, 𝑓𝑥q
˘

´ 2𝐺p𝑓𝑥, 𝑔𝑓𝑥, 𝑔𝑓𝑥q.

Then, from (21), we have

𝜂
´

𝐺p𝑓𝑥, 𝑔𝑓𝑥, 𝑔𝑓𝑥q, 𝐺p𝑥, 𝑓𝑥, 𝑓𝑥q
¯

> 0.

Thus all the conditions of Theorem 3 are satisfied and hence 𝑓 and 𝑔 have
a unique common fixed point 𝑥 P 𝑋. Thus 𝑥 is a solution of the integral
equation (20). l
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