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1. Introduction and statements of the main results. Let P𝑛

denote the set of all complex polynomials 𝑃 p𝑧q “
ř𝑛
𝑗“0 𝑏𝑗𝑧

𝑗 of degree 𝑛.
The subset P0

𝑛p𝜌q consists of polynomials whose zeros all lie within the
disk defined by |𝑧| 6 𝜌. Specifically, P0

𝑛 “ P0
𝑛p1q represents polynomials

with zeros inside the unit disk. The set P8
𝑛 includes polynomials whose

zeros are located in the region |𝑧| > 1.
For a polynomial 𝑃 P P𝑛, the 𝑝-norm in the Hardy space is defined as

}𝑃 }𝑝 “
´ 1

2𝜋

2𝜋
ż

0

|𝑃 p𝑒𝑖𝜃q|𝑝 𝑑𝜃
¯1{𝑝

, 0 ă 𝑝 ă 8.

It is not hard to observe that lim
𝑝Ñ8

}𝑃 }𝑝 “ max
|𝑧|“1

|𝑃 p𝑧q|. For this reason,

the uniform norm max
|𝑧|“1

|𝑃 p𝑧q| of 𝑃 p𝑧q is denoted by }𝑃 }8. On the other

hand, lim
𝑝Ñ0`

}𝑃 }𝑝 “ exp
´

1
2𝜋

2𝜋
ş

0

ln |𝑃 p𝑒𝑖𝜃q| 𝑑𝜃
¯

(see [15, p. 139], [21]). This

is known as the Mahler measure of 𝑃 p𝑧q and is denoted by }𝑃 }0. As an
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application of Jensen’s inequality, the Mahler measure of the 𝑛-th degree

polynomial 𝑃 p𝑧q “ 𝑏
𝑛
ś

𝑣“1

p𝑧 ´ 𝑧𝑣q can be explicitly given by

}𝑃 }0 “ |𝑏|
𝑛
ź

𝑣“1

maxp1, |𝑧𝑣|q. (1)

If 𝑃 P P𝑛, then

max
|𝑧|“1

|𝑃 1p𝑧q| 6 𝑛max
|𝑧|“1

|𝑃 p𝑧q| (2)

and
max
|𝑧|“𝑅ą1

|𝑃 p𝑧q| 6 𝑅𝑛 max
|𝑧|“1

|𝑃 p𝑧q|. (3)

Inequality (2) is an immediate consequence of S. Bernstein’s Theo-
rem [8] on the derivative of a trigonometric polynomial. Inequality (3) is
a simple deduction from the maximum modulus principle. The equality
in (2) and (3) holds for 𝑃 p𝑧q “ 𝑎𝑧𝑛, 𝑎 ‰ 0.

If we restrict ourselves to the class of polynomials 𝑃 P P8
𝑛 , then

inequalities (2) and (3) can be, respectively, replaced by

max
|𝑧|“1

|𝑃 1p𝑧q| 6
𝑛

2
max
|𝑧|“1

|𝑃 p𝑧q| (4)

and
max
|𝑧|“𝑅ą1

|𝑃 p𝑧q| 6
𝑅𝑛 ` 1

2
max
|𝑧|“1

|𝑃 p𝑧q|. (5)

Inequality (4) was conjectured by P. Erdös and later verified by
P. D. Lax [14]. Ankeny and Rivlin [1] used (4) to prove inequality (5).
The equality in (4) and (5) holds for 𝑃 p𝑧q “ 𝑎𝑧𝑛 ` 𝑏, |𝑎| “ |𝑏| ‰ 0.

As an analogue of Bernstein’s inequality in the Hardy space norm,
Zygmund [23] proved that if 𝑃 p𝑧q is a polynomial of degree 𝑛, then

}𝑃 1}𝑝 6 𝑛}𝑃 }𝑝, 𝑝 > 1. (6)

De Bruijn and Springer [10] and later Mahler [21] proved that this
inequality also holds for 𝑝 “ 0, but for the case 0 ă 𝑝 ă 1 its validity
remained an open question for quite a long time. Finally, Arestov [3]
obtained an inequality concerning the Schur-Szegő product of polynomials,
which among other things also answered the question.
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The Schur-Szegő composition of a polynomial 𝑃 p𝑧q “
𝑛
ř

𝑗“0

𝑏𝑗𝑧
𝑗 P P𝑛

with another polynomial𝑄p𝑧q “
𝑛
ř

𝑗“0

`

𝑛
𝑗

˘

𝛾𝑗𝑧
𝑗 is defined as 𝑃 ˚𝑄 “

𝑛
ř

𝑗“0

𝛾𝑗𝑏𝑗𝑧
𝑗.

For 𝑄 ˚ 𝑃 , Arestov [2] (see also [3]) proved the following inequality,
which also includes the case 0 6 𝑝 ă 1 of (6) as a special case:

}𝑄 ˚ 𝑃 }𝑝 6 }𝑄}0}𝑃 }𝑝, for 𝑝 > 0. (7)

Inequality (6) follows at once from (7) by taking 𝑄p𝑧q “ 𝑛𝑧p𝑧 ` 1q𝑛´1 “

=
𝑛
ř

𝑗“0

`

𝑛
𝑗

˘

𝑗𝑧𝑗. For the class of polynomials 𝑃 P 𝒫8𝑛 , inequality (6) can be

sharpened. In fact, in this case inequality (6) can be replaced by

}𝑃 1}𝑝 6 𝑛
}𝑃 }𝑝
}1` 𝑧}𝑝

, 𝑝 > 0. (8)

This inequality is due to N. G. De Bruijn [10] for 𝑝 > 1, whereas
Rahman and Schmeisser [18] extended it for 0 6 𝑝 ă 1.

As a generalization of (8) and in the spirit of (7), Arestov [4] also

proved that if 𝑃 p𝑧q P 𝒫8𝑛 and 𝑄p𝑧q “
𝑛
ř

𝑗“0

𝛾𝑗𝑧
𝑗 P P0

𝑛, then

}𝑃 ˚𝑄}𝑝 6
}𝛾0 ` 𝛾𝑛𝑧}𝑝
}1` 𝑧}𝑝

}𝑃 }𝑝, 𝑝 > 0. (9)

Inequality (8) follows from (9) by choosing𝑄p𝑧q “ 𝑛𝑧p𝑧`1q𝑛´1 “
𝑛
ř

𝑗“0

`

𝑛
𝑗

˘

𝑗𝑧𝑗.

For polynomials 𝑃 P P8
𝑛 , Boas and Rahman [9] established an ana-

logue of inequality (5) in the 𝐿𝑝-norm for 𝑝 > 1:

}𝑃 p𝑅𝑧q}𝑝 6
}𝑧 `𝑅𝑛}𝑝

}𝑧 ` 1}𝑝
}𝑃 p𝑧q}𝑝 , 𝑅 ą 1. (10)

Equality in (10) holds for 𝑃 p𝑧q “ 𝑎𝑧𝑛 ` 𝑏, with |𝑎| “ |𝑏| ‰ 0. By letting
𝑝Ñ 8 in (10), one can recover inequality (5).

Rahman and Schmeisser [18] (see also [4]) later showed that inequality
(9) also holds for 0 6 𝑝 ă 1. The above inequality has been generalized in
several ways and a good number of papers are available (see, for example,
[7], [6], [19], [20]). By applying inequality (10) to the polynomial 𝑧𝑛𝑃

`

1
𝑧

˘

,
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we immediately deduce that for 𝑃 P P𝑛 and 0 ă 𝑟 6 1, the following
inequality holds for each 𝑝 ą 0:

}𝑃 p𝑟𝑧q}𝑝 6
}𝑟𝑛𝑧 ` 1}𝑝
}𝑧 ` 1}𝑝

}𝑃 p𝑧q}𝑝. (11)

This result is sharp and equality in (11) holds for 𝑃 p𝑧q “ 𝑎𝑧𝑛` 𝑏 with
|𝑎| “ |𝑏| ‰ 0.

By letting 𝑝 Ñ 8 in (11), we obtain the following sharp inequality
under the conditions of (11):

}𝑃 p𝑟𝑧q}
8
6

´𝑟𝑛 ` 1

2

¯

}𝑃 p𝑧q}
8
. (12)

In this paper, we present the following result, which is a generalization
as well as a refinement of inequality (11). More precisely, we prove

Theorem 1. For any polynomial 𝑃 p𝑧q “
𝑛
ř

𝑗“0

𝑏𝑗𝑧
𝑗 P P0

𝑛, 0 6 𝑝 ă 8,

0 ă 𝑟 ă 1, and 0 6 𝑡 ă 1, we have
›

›

›
|𝑃 p𝑟𝑧q| ` 𝑡𝑚

𝜇𝑟 ´ 𝑟
𝑛

1` 𝜇𝑟

›

›

›

𝑝
6
}𝑟𝑛 ` 𝑧}𝑝
}𝜇𝑟 ` 𝑧}𝑝

}𝑃 p𝑧q}𝑝 , (13)

where 𝑚 “ min
|𝑧|“1

|𝑝p𝑧q| and

𝜇𝑟 “

˜

𝑟|𝑏0| ` 𝑟𝑡𝑚` |𝑏𝑛|

|𝑏0| ` 𝑡𝑚` 𝑟|𝑏𝑛|

¸

.

The result is sharp and equality in (13) holds for 𝑃 p𝑧q “ 𝑎𝑧𝑛 ` 𝑏,
|𝑎| “ |𝑏| ‰ 0.

Remark 1. Since 𝑃 p𝑧q “
𝑛
ř

𝑗“0

𝑏𝑗𝑧
𝑗 P P0

𝑛,

𝑄p𝑧q “ 𝑧𝑛𝑃 p1{𝑧q “
𝑛
ÿ

𝑗“0

𝑏𝑗𝑧
𝑛´𝑗

P P8
𝑛 .

By Lemma 4, we have |𝑏𝑛| > |𝑏0|`𝑚, where 𝑚 “ min
|𝑧|“1

|𝑄p𝑧q| “ min
|𝑧|“1

|𝑃 p𝑧q|.

This implies for 0 6 𝑡 6 1 |𝑏𝑛| > |𝑏0| ` 𝑡𝑚, which gives for 0 ă 𝑟 6 1

p1´ 𝑟q|𝑏𝑛| > p1´ 𝑟q|𝑏0| ` 𝑡𝑚p1´ 𝑟q,
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or, equivalently,
|𝑏𝑛| ` 𝑟|𝑏0| ` 𝑟𝑡𝑚

|𝑏0| ` 𝑟|𝑏𝑛| ` 𝑡𝑚
> 1.

That is, 𝜇𝑟 > 1 for 0 ă 𝑟 6 1.

Since }𝜇𝑟`𝑧}𝑝 > }1`𝑧}𝑝 , 𝑝 > 0, inequality (13) refines inequality (11).
For 𝑡 “ 0, inequality (13) reduces to the following refinement of in-

equality (11).

Corollary 1. If 𝑃 p𝑧q “
𝑛
ř

𝜈“0

𝑏𝜈𝑧
𝜈 P P0

𝑛, then for each 𝑟 ă 1, 0 6 𝑝 ă 8 :

}𝑃 p𝑟𝑧q}𝑝 6
}𝑟𝑛 ` 𝑧}𝑝
}𝛿𝑟 ` 𝑧}𝑝

}𝑃 p𝑧q}𝑝 , (14)

where
𝛿𝑟 “

𝑟|𝑏0| ` |𝑏𝑛|

|𝑏0| ` 𝑟|𝑏𝑛|
.

The result is sharp and equality in (14) holds for 𝑃 p𝑧q “ 𝑎𝑧𝑛 ` 𝑏 with
|𝑎| “ |𝑏| ‰ 0.

By letting 𝑝 Ñ 8 in (13) and noting that 𝜇𝑟 > 1, we obtain the
following refinement of inequality (12):

Corollary 2. For any polynomial 𝑃 p𝑧q “
𝑛
ř

𝑗“0

𝑏𝑗𝑧
𝑗 P P0

𝑛, 0 ă 𝑟 ă 1, and

0 6 𝑡 ă 1, we have

}𝑃 p𝑟𝑧q}
8
6

ˆ

𝑟𝑛 ` 1

𝜇𝑟 ` 1

˙

}𝑃 p𝑧q}
8
´ 𝑡𝑚

ˆ

𝜇𝑟 ´ 𝑟
𝑛

1` 𝜇𝑟

˙

, (15)

where 𝑚 “ min
|𝑧|“1

|𝑃 p𝑧q| and 𝜇𝑟 is given by (13). The inequality is sharp

and equality in (15) holds for 𝑃 p𝑧q “ 𝑎𝑧𝑛 ` 𝑏, |𝑎| “ |𝑏| ‰ 0.

If 𝑃 p𝑧q “
𝑛
ř

𝑗“0

𝑏𝑗𝑧
𝑗 P P8

𝑛 , then the polynomial 𝑃 ˚p𝑧q “ 𝑧𝑛𝑃 p1{𝑧q P P0
𝑛.

Applying Theorem 1 to the polynomial 𝑃 ˚p𝑧q with 𝑟 “ 1
𝑅
, we obtain the

following refinement of inequality (10):

Corollary 3. If 𝑃 p𝑧q “
𝑛
ř

𝑗“0

𝑏𝑗𝑧
𝑗 P P8

𝑛 , then for each 𝑅 ą 1, 0 6 𝑝 ă 8,

and 0 6 𝑡 6 1:
›

›

›
|𝑃 p𝑅𝑧q| ` 𝑡𝑚

𝑅𝑛𝛿𝑅 ´ 1

1` 𝛿𝑅

›

›

›

𝑝
6
}𝑅𝑛 ` 𝑧}𝑝
}𝛿𝑅 ` 𝑧}𝑝

}𝑃 p𝑧q}𝑝 , (16)



106 N. A. Rather, N. Wani, A. Bhat

where 𝑚 “ min
|𝑧|“1

|𝑃 p𝑧q| and

𝛿𝑅 “
𝑅|𝑏0| ` |𝑏𝑛| ` 𝑡𝑚

|𝑏0| `𝑅|𝑏𝑛| `𝑅𝑡𝑚
p> 1q.

The bound is sharp and equality in (16) holds for 𝑃 p𝑧q “ 𝑎𝑧𝑛 ` 𝑏,
|𝑎| “ |𝑏| ‰ 0. Since }𝛿𝑅 ` 𝑧}𝑝 > }1 ` 𝑧}𝑝, 𝑝 > 0, inequality (16) refines
inequality (10). For 𝑡 “ 0, inequality (16) also refines inequality (10).

A. Aziz [5] proved that if 𝑃 p𝑧q “
ř𝑛
𝑗“0 𝑏𝑗𝑧

𝑗 P P0
𝑛p𝜌q where 𝜌 > 1, then

for 1 6 𝑝 ă 8 and 0 6 𝑡 6 1:

}𝑃 1p𝑧q}
8
>

𝑛

}𝑧 ` 𝜌𝑛}𝑝
}𝑃 p𝑧q}𝑝 . (17)

Now, we will show that the bound in (17) can be improved by using
Corollary 3. More precisely, we prove the following result:

Theorem 2. If 𝑃 p𝑧q “
ř𝑛
𝑗“0 𝑏𝑗𝑧

𝑗 P P0
𝑛p𝜌q where 𝜌 > 1, then for

0 6 𝑝 ă 8 and 0 6 𝑡 6 1:

}𝑃 1p𝑧q}8 >
𝑛

}𝜌𝑛 ` 𝑧}𝑝

}𝜑p𝜌q ` 𝑧}𝑝
}1` 𝑧}𝑝

›

›

›
|𝑃 p𝑧q| `

𝑡𝑚

𝜌𝑛
𝜌𝑛𝜑p𝜌q ´ 1

1` 𝜑p𝜌q

›

›

›

𝑝
, (18)

where

𝜑p𝜌q “
|𝑏0| ` 𝜌

𝑛`1|𝑏𝑛| ` 𝑡𝑚

𝜌𝑛|𝑏𝑛| ` 𝜌|𝑏0| ` 𝜌𝑡𝑚
and 𝑚 “ min

|𝑧|“𝜌
|𝑃 p𝑧q|. (19)

The result is sharp and equality in (18) holds for 𝑃 p𝑧q “ 𝑧𝑛 ` 𝜌𝑛.

Remark 2. Since all the zeros of 𝑃 p𝑧q are in |𝑧| 6 𝜌, 𝜌 > 1, it can be
easily seen that 𝜑p𝜌q > 1. In view of this, Theorem 2 is a refinement of
the inequality (17).

The following result is obtained by letting 𝑝Ñ 8 in the Theorem 2.

Corollary 4. If 𝑃 p𝑧q “
ř𝑛
𝑗“0 𝑏𝑗𝑧

𝑗 P P0
𝑛p𝜌q, where 𝜌 > 1, then for

0 6 𝑝 ă 8 and 0 6 𝑡 6 1

}𝑃 1p𝑧q}8 >
𝑛

1` 𝜌𝑛
1` 𝜑p𝜌q

2

"

}𝑃 p𝑧q}8 `
𝑡𝑚

𝜌𝑛
𝜌𝑛𝜑p𝜌q ´ 1

1` 𝜑p𝜌q

*

, (20)

where 𝜑p𝜌q is given by (19). The result is the best possible as shown by
𝑃 p𝑧q “ 𝑧𝑛 ` 𝜌𝑛.
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Since 𝜑p𝜌q > 1, inequality (20) improves the result by N. K. Govil [11],
which states that if 𝑃 p𝑧q P P0

𝑛p𝜌q, 𝜌 > 1, then

}𝑃 1}8 >
𝑛

1` 𝜌𝑛
}𝑃 }8.

2. Lemmas. For the proof of our results, we need the following
lemmas. The first lemma is a well-known generalization of the Schwarz
lemma by Osserman [16].

Lemma 1. Let 𝐹 p𝑧q be analytic in |𝑧| ă1 with 𝐹 p0q“0, and |𝐹 p𝑧q| ă 1
for |𝑧| ă 1; then

|𝐹 p𝑧q| 6 |𝑧|
|𝑧| ` |𝐹 1p0q|

1` |𝑧||𝐹 1p0q|
, |𝑧| ă 1.

Lemma 2. Let 𝑎, 𝑏 be complex numbers independent of 𝛼, where 𝛼 is
real. Then for each 𝑝 ą 0:

2𝜋
ż

0

ˇ

ˇ𝑎` 𝑏𝑒𝑖𝛼
ˇ

ˇ

𝑝
𝑑𝛼 “

2𝜋
ż

0

ˇ

ˇ|𝑎| ` |𝑏|𝑒𝑖𝛼
ˇ

ˇ

𝑝
𝑑𝛼.

Using periodicity, it is easy to verify the lemma, so we omit the details.
The following Lemma is by Aziz and Rather [6]:

Lemma 3. If 𝐴, 𝐵, 𝐶 are non-negative real numbers and 𝐵 ` 𝐶 6 𝐴,
then for every real number 𝛼

ˇ

ˇp𝐴´ 𝐶q𝑒𝑖𝛼 ` p𝐵 ` 𝐶q
ˇ

ˇ 6
ˇ

ˇ𝐴𝑒𝑖𝛼 `𝐵
ˇ

ˇ .

The next lemma is by Gulzar and Rather [12]:

Lemma 4. If 𝑃 p𝑧q “
𝑛
ř

𝑗“0

𝑏𝑗𝑧
𝑗 P P0

𝑛 and 𝑚 “ min
|𝑧|“1

|𝑃 p𝑧q|, then

|𝑏𝑛| > |𝑏0| `𝑚.

The next lemma is a consequence of the result by Arestov [ [3], Theo-
rem 4]. Yet, here we deduce it from inequality (7) due to Arestov [2].

Lemma 5. If 𝑃 p𝑧q “
𝑛
ř

𝑗“0

𝑏𝑗𝑧
𝑗 P P8

𝑛 , then for every 𝑝 ą 0, 𝑟 ă 1 and

real 𝛽:
2𝜋
ż

0

ˇ

ˇ𝑃 p𝑟𝑒𝑖𝜃q ` 𝑒𝑖𝛽𝑟𝑛𝑃 p𝑒𝑖𝜃{𝑟q
ˇ

ˇ

𝑝
𝑑𝜃 6

ˇ

ˇ𝑟𝑛𝑒𝑖𝛽 ` 1
ˇ

ˇ

𝑝

2𝜋
ż

0

ˇ

ˇ𝑃 p𝑒𝑖𝜃q
ˇ

ˇ

𝑝
𝑑𝜃.
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Proof. For 0 ă 𝑟 6 1 and |𝑧| ą 1, |𝑧 ` 𝑟| ą |𝑟𝑧 ` 1|. This gives,

|𝑧 ` 𝑟|𝑛 ą |𝑟𝑧 ` 1|𝑛, |𝑧| ą 1,

which implies that the polynomial 𝑒𝑖𝛽p𝑧 ` 𝑟q𝑛 ` p𝑟𝑧 ` 1q𝑛 has no zeros in
|𝑧| ą 1. Hence, all the zeros of 𝑒𝑖𝛽p𝑧 ` 𝑟q𝑛 ` p𝑟𝑧 ` 1q𝑛 lie in |𝑧| 6 1 for
0 ă 𝑟 6 1. Setting 𝑄p𝑧q “ 𝑒𝑖𝛽p𝑧 ` 𝑟q𝑛 ` p𝑟𝑧 ` 1q𝑛 and noting that by (1),
}𝑄}0 “ |𝑟

𝑛𝑒𝑖𝛽 ` 1|, we obtain by invoking inequality (7),

}𝑃 p𝑟𝑧q ` 𝑒𝑖𝛽𝑟𝑛𝑃 p𝑧{𝑟q}𝑝 6 |𝑟
𝑛𝑒𝑖𝛽 ` 1|}𝑃 p𝑧q}𝑝, 𝑝 > 0.

That proves Lemma 5. l

Definition 1. [17, pp. 36]. Let 𝑓 and 𝑔 be analytic in |𝑧| ă 1. We
say that the function 𝑓 is subordinate to 𝑔, if there exists a function 𝑤,
analytic in |𝑧| ă 1 with 𝑤p0q “ 0 and |𝑤p𝑧q| ă 1 for |𝑧| ă 1, such that

𝑓p𝑧q “ 𝑔p𝑤p𝑧qq p|𝑧| ă 1q.

Lemma 6. [17, pp. 36]. Let 𝑓 and 𝑔 be analytic for |𝑧| 6 1 and such
that 𝑓 is subordinate to 𝑔. In addition, if 𝑔 is univalent in the same disc,
then for each 𝑝 ą 0 we have:

2𝜋
ż

0

|𝑓p𝑒𝑖𝜃q|𝑝𝑑𝜃 6

2𝜋
ż

0

|𝑔p𝑒𝑖𝜃q|𝑝𝑑𝜃.

3. Proofs of the theorems.

Proof of Theorem 1. By the assumption, all the zeros of polynomial

𝑃 p𝑧q “
𝑛
ř

𝜈“0

𝑏𝜈𝑧
𝜈 lie in |𝑧| 6 1; therefore, the conjugate polynomial

𝑄p𝑧q “ 𝑧𝑛𝑃 p1{𝑧q “
𝑛
ř

𝑗“0

𝑏𝑗𝑧
𝑛´𝑗 has all its zeros in |𝑧| > 1

and 𝑚 “ min
|𝑧|“1

|𝑃 p𝑧q| “ min
|𝑧|“1

|𝑄p𝑧q|, which implies

|𝑧|𝑛𝑚 6 |𝑄p𝑧q| for |𝑧| “ 1.

By the Maximum Modulus principle, we have

|𝑧|𝑛𝑚 ă |𝑄p𝑧q| for |𝑧| ă 1. (21)
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So, for any 𝛼 P C with |𝛼| 6 1, the polynomial 𝐺p𝑧q “ 𝑄p𝑧q `𝛼𝑚𝑧𝑛 does
not vanish in |𝑧| ă 1. Indeed, if 𝐺p𝑧q “ 𝑄p𝑧q`𝛼𝑚𝑧𝑛 has a zero in |𝑧| ă 1
at 𝑧 “ 𝑧0, then

𝐺p𝑧0q “ 𝑄p𝑧0q ` 𝛼𝑚𝑧
𝑛
0 “ 0, |𝑧0| ă 1.

This implies

|𝑄p𝑧0q| “ 𝑚|𝛼||𝑧0|
𝑛
ă 𝑚|𝑧0|

𝑛 for |𝑧0| ă 1,

contradicting (21). Hence, we conclude that @𝛼 P C with |𝛼| 6 1, the
polynomial 𝐺p𝑧q “ 𝑄p𝑧q ` 𝛼𝑚𝑧𝑛 “ p𝑏0 ` 𝛼𝑚q𝑧

𝑛 `
ř𝑛
𝑗“1 𝑏𝑗𝑧

𝑛´𝑗 has all its
zeros in |𝑧| > 1. Let 𝐻p𝑧q “ 𝑧𝑛𝐺p1{𝑧q “ 𝑃 p𝑧q ` �̄�𝑚, then the function

𝐹 p𝑧q “
𝑧𝐻p𝑧q

𝐺p𝑧q
satisfies the assumption of Lemma 1 with 𝐹 1p0q “

𝑏0 ` �̄�𝑚

𝑏𝑛
and, therefore,

|𝐹 p𝑧q| 6 |𝑧|
|𝑧| `

ˇ

ˇ

ˇ

𝑏𝑜 ` �̄�𝑚

𝑏𝑛

ˇ

ˇ

ˇ

1`
ˇ

ˇ

ˇ

𝑏𝑜 ` �̄�𝑚

𝑏𝑛

ˇ

ˇ

ˇ
|𝑧|

.

This gives

|𝐻p𝑧q| 6
|𝑏𝑛||𝑧| ` |𝑏0 ` �̄�𝑚|

|𝑏𝑛| ` |𝑏0 ` �̄�𝑚||𝑧|
|𝐺p𝑧q| for |𝑧| ă 1. (22)

Setting 𝑧 “ 𝑟𝑒𝑖𝜃 where 0 6 𝜃 6 2𝜋 and 𝑟 ă 1 in (22), we get

|𝐻p𝑟𝑒𝑖𝜃q| 6
𝑟|𝑏𝑛| ` |𝑏0 ` �̄�𝑚|

|𝑏𝑛| ` 𝑟|𝑏0 ` �̄�𝑚|
|𝐺p𝑟𝑒𝑖𝜃q|. (23)

The function 𝑓p𝑥q “
𝑟|𝑏𝑛| ` 𝑥

|𝑏𝑛| ` 𝑟𝑥
is non-decreasing for 𝑥 > 0. Using the fact

that for any 𝛼 P C

|𝑏0 ` �̄�𝑚| 6 |𝑏0| ` |𝛼|𝑚,

we get from inequality (23) that for every 𝛼 P C with |𝛼| 6 1, 𝑟 ă 1 and
|𝑧| “ 1:

|𝐻p𝑟𝑒𝑖𝜃q| 6
𝑟|𝑏𝑛| ` |𝑏0| ` |𝛼|𝑚

|𝑏𝑛| ` 𝑟|𝑏0| ` 𝑟|𝛼|𝑚
|𝐺p𝑟𝑒𝑖𝜃q|.
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Equivalently,

𝜇𝑟|𝑃 p𝑟𝑒
𝑖𝜃
q ` �̄�𝑚| 6 |𝑟𝑛𝑃 p𝑒𝑖𝜃{𝑟q ` 𝛼𝑚𝑟𝑛|. (24)

where 𝜇𝑟 “
|𝑏𝑛| ` 𝑟|𝑏0| ` |𝛼|𝑟𝑚

𝑟|𝑏𝑛| ` |𝑏0| ` |𝛼|𝑚
. Choosing the argument of 𝛼 in the left-

hand side of (24) such that

|𝑃 p𝑟𝑒𝑖𝜃q ` �̄�𝑚| “ |𝑃 p𝑟𝑒𝑖𝜃q| ` |𝛼|𝑚,

we get

𝜇𝑟t|𝑃 p𝑟𝑒
𝑖𝜃
q| ` |𝛼|𝑚u 6 |𝑟𝑛𝑃 p𝑒𝑖𝜃{𝑟q| ` |𝛼|𝑟𝑛𝑚.

This gives

𝜇𝑟|𝑃 p𝑟𝑒
𝑖𝜃
q| ` |𝛼|𝑚p𝜇𝑟 ´ 𝑟

𝑛
q 6 |𝑟𝑛𝑃 p𝑒𝑖𝜃{𝑟q|,

equivalently,

𝜇𝑟

"

|𝑃 p𝑟𝑒𝑖𝜃q| ` |𝛼|𝑚
𝜇𝑟 ´ 𝑟

𝑛

1` 𝜇𝑟

*

6 |𝑟𝑛𝑃 p𝑒𝑖𝜃{𝑟q| ´ |𝛼|𝑚
𝜇𝑟 ´ 𝑟

𝑛

1` 𝜇𝑟
. (25)

Since, by Remark 1, 𝜇𝑟 > 1, therefore, we have

|𝑃 p𝑟𝑒𝑖𝜃q| ` |𝛼|𝑚
𝜇𝑟 ´ 𝑟

𝑛

1` 𝜇𝑟
6 |𝑟𝑛𝑃 p𝑒𝑖𝜃{𝑟q| ´ |𝛼|𝑚

𝜇𝑟 ´ 𝑟
𝑛

1` 𝜇𝑟
. (26)

Taking𝐴 “ |𝑟𝑛𝑃 p𝑒𝑖𝜃{𝑟q|, 𝐵 “ |𝑃 p𝑟𝑒𝑖𝜃q|, and 𝐶 “ |𝛼|𝑚
𝜇𝑟 ´ 𝑟

𝑛

1` 𝜇𝑟
in Lemma 3

and noting by (26) that 𝐵 ` 𝐶 6 𝐴´ 𝐶 6 𝐴, we get for every real 𝛽:

ˇ

ˇ

ˇ

´

|𝑟𝑛𝑃 p𝑒𝑖𝜃{𝑟q| ´ |𝛼|𝑚
𝜇𝑟 ´ 𝑟

𝑛

1` 𝜇𝑟

¯

𝑒𝑖𝛽 `
´

|𝑃 p𝑟𝑒𝑖𝜃q| ` |𝛼|𝑚
𝜇𝑟 ´ 𝑟

𝑛

1` 𝜇𝑟

¯ˇ

ˇ

ˇ
6

6
ˇ

ˇ|𝑟𝑛𝑃 p𝑒𝑖𝜃{𝑟q|𝑒𝑖𝛽 ` |𝑃 p𝑟𝑒𝑖𝜃q|
ˇ

ˇ.

This yields, for each 𝑝 ą 0,

2𝜋
ż

0

ˇ

ˇ𝑀p𝜃q ` 𝑒𝑖𝛽𝑁p𝜃q
ˇ

ˇ

𝑝
𝑑𝜃 6

2𝜋
ż

0

ˇ

ˇ|𝑟𝑛𝑃 p𝑒𝑖𝜃{𝑟q|𝑒𝑖𝛽 ` |𝑃 p𝑟𝑒𝑖𝜃q|
ˇ

ˇ

𝑝
𝑑𝜃, (27)
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where

𝑀p𝜃q “ |𝑃 p𝑟𝑒𝑖𝜃q| ` |𝛼|𝑚
𝜇𝑟 ´ 𝑟

𝑛

1` 𝜇𝑟
, 𝑁p𝜃q “ |𝑟𝑛𝑃 p𝑒𝑖𝜃{𝑟q| ´ |𝛼|𝑚

𝜇𝑟 ´ 𝑟
𝑛

1` 𝜇𝑟
.

Integrating both sides of (27) with respect to 𝛽 from 0 to 2𝜋 and using
Lemma 2, we get

2𝜋
ż

0

2𝜋
ż

0

ˇ

ˇ𝑀p𝜃q ` 𝑒𝑖𝛽𝑁p𝜃q
ˇ

ˇ

𝑝
𝑑𝜃𝑑𝛽 6

6

2𝜋
ż

0

2𝜋
ż

0

ˇ

ˇ|𝑟𝑛𝑃 p𝑒𝑖𝜃{𝑟q|𝑒𝑖𝛽 ` |𝑃 p𝑟𝑒𝑖𝜃q|
ˇ

ˇ

𝑝
𝑑𝜃𝑑𝛽 “

“

2𝜋
ż

0

!

2𝜋
ż

0

ˇ

ˇ|𝑟𝑛𝑃 p𝑒𝑖𝜃{𝑟q|𝑒𝑖𝛽 ` |𝑃 p𝑟𝑒𝑖𝜃q|
ˇ

ˇ

𝑝
𝑑𝛽

)

𝑑𝜃 “

“

2𝜋
ż

0

2𝜋
ż

0

ˇ

ˇ𝑃 p𝑟𝑒𝑖𝜃q ` 𝑟𝑛𝑒𝑖𝛽𝑃 p𝑒𝑖𝜃{𝑟q
ˇ

ˇ

𝑝
𝑑𝜃𝑑𝛽.

Combining this with Lemma 5, we have

2𝜋
ż

0

2𝜋
ż

0

ˇ

ˇ𝑀p𝜃q ` 𝑒𝑖𝛽𝑁p𝜃q
ˇ

ˇ

𝑝
𝑑𝜃𝑑𝛽 6

2𝜋
ż

0

ˇ

ˇ𝑟𝑛𝑒𝑖𝛽 ` 1
ˇ

ˇ

𝑝
𝑑𝛽

2𝜋
ż

0

|𝑃 p𝑒𝑖𝜃|𝑝𝑑𝜃. (28)

Now, for every real 𝛽 and 𝑟0 > 𝑟1 > 1, we have
ˇ

ˇ𝑟0 ` 𝑒
𝑖𝛽
ˇ

ˇ >
ˇ

ˇ𝑟1 ` 𝑒
𝑖𝛽
ˇ

ˇ ,

which implies, for each 𝑝 ą 0,

2𝜋
ż

0

ˇ

ˇ𝑟0 ` 𝑒
𝑖𝛽
ˇ

ˇ

𝑝
𝑑𝛼 >

2𝜋
ż

0

ˇ

ˇ𝑟1 ` 𝑒
𝑖𝜆
ˇ

ˇ

𝑝
𝑑𝛼.

If |𝑀p𝜃q| ‰ 0, we take 𝑟0 “ |𝑁p𝜃q|{|𝑀p𝜃q| and 𝑟1 “ 𝜇𝑟; then, by (25),
𝑟0 > 𝑟1 > 1, and we get, by using Lemma 2:
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2𝜋
ż

0

ˇ

ˇ𝑀p𝜃q ` 𝑒𝑖𝛽𝑟𝑛𝑁p𝜃q
ˇ

ˇ

𝑝
𝑑𝛽 “ |𝑀p𝜃q|𝑝

2𝜋
ż

0

ˇ

ˇ

ˇ
1` 𝑒𝑖𝛽

𝑁p𝜃q

𝑀p𝜃q

ˇ

ˇ

ˇ

𝑝

𝑑𝛽 “

“ |𝑀p𝜃q|𝑝
2𝜋
ż

0

ˇ

ˇ

ˇ
𝑒𝑖𝛽 `

𝑁p𝜃q

𝑀p𝜃q

ˇ

ˇ

ˇ

𝑝

𝑑𝛽 “ |𝑀p𝜃q|𝑝
2𝜋
ż

0

ˇ

ˇ

ˇ
𝑒𝑖𝛽 `

ˇ

ˇ

ˇ

𝑁p𝜃q

𝑀p𝜃q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

𝑝

𝑑𝛽 >

> |𝑀p𝜃q|𝑝
2𝜋
ż

0

ˇ

ˇ𝑒𝑖𝛽 ` 𝜇𝑟
ˇ

ˇ

𝑝
𝑑𝛽.

For |𝑀p𝜃q| “ 0, this inequality is trivially true. Using this inequality in
(28), we obtain for each 𝑝 ą 0, 𝑟 ă 1, and real 𝛽:

2𝜋
ż

0

ˇ

ˇ𝑒𝑖𝛽 ` 𝜇𝑟
ˇ

ˇ

𝑝
𝑑𝛽

2𝜋
ż

0

ˇ

ˇ

ˇ

ˇ

|𝑃 p𝑟𝑒𝑖𝜃q| ` |𝛼|𝑚
𝜇𝑟 ´ 𝑟

𝑛

1` 𝜇𝑟

ˇ

ˇ

ˇ

ˇ

𝑝

𝑑𝜃 6

6

2𝜋
ż

0

ˇ

ˇ𝑟𝑛𝑒𝑖𝛽 ` 1
ˇ

ˇ

𝑝
𝑑𝛽

2𝜋
ż

0

ˇ

ˇ𝑃 p𝑒𝑖𝜃q
ˇ

ˇ

𝑃
𝑑𝜃 “

“

2𝜋
ż

0

ˇ

ˇ𝑟𝑛 ` 𝑒𝑖𝛽
ˇ

ˇ

𝑝
𝑑𝛽

2𝜋
ż

0

ˇ

ˇ𝑃 p𝑒𝑖𝜃q
ˇ

ˇ

𝑝
𝑑𝜃.

This gives

›

›

›
|𝑃 p𝑟𝑒𝑖𝜃q| ` |𝛼|𝑚

𝜇𝑟 ´ 𝑟
𝑛

1` 𝜇𝑟

›

›

›

𝑝
6
}𝑟𝑛 ` 𝑧}𝑝
}𝜇𝑟 ` 𝑧}𝑝

}𝑃 p𝑧q}𝑝 , (29)

which proves the desired result for 𝑝 ą 0. To prove the result for 𝑝 “ 0,
we simply let 𝑝Ñ 0` in (29).

Proof of Theorem 2. By the assumption, all the zeros of 𝑃 p𝑧q lie in
|𝑧| 6 𝜌, where 𝜌 > 1. Therefore, all the zeros of 𝑇 p𝑧q “ 𝑃 p𝜌𝑧q are in
|𝑧| 6 1 and, consequently, the zeros of polynomial 𝑅p𝑧q “ 𝑧𝑛𝑇 p1{𝑧q are
outside |𝑧| ă 1. If 𝑧1, 𝑧2, . . . , 𝑧𝑛 are the zeros of 𝑅p𝑧q, then |𝑧𝑗| > 1,
𝑗 “ 1, 2, . . . , 𝑛, and

𝑧𝑅1p𝑧q

𝑅p𝑧q
“

𝑛
ÿ

𝑗“1

𝑧

𝑧 ´ 𝑧𝑗
.
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This gives, for the points 𝑒𝑖𝜃, 0 6 𝜃 ă 2𝜋 with 𝑅p𝑒𝑖𝜃q ‰ 0:

Re
𝑒𝑖𝜃𝑅1p𝑒𝑖𝜃q

𝑅p𝑒𝑖𝜃q
“

𝑛
ÿ

𝑗“1

Re
𝑒𝑖𝜃

𝑒𝑖𝜃 ´ 𝑧𝑗
6

𝑛
ÿ

𝑗“1

1

2
“
𝑛

2
.

This implies
ˇ

ˇ

ˇ

ˇ

𝑒𝑖𝜃𝑅1p𝑒𝑖𝜃q

𝑛𝑅p𝑒𝑖𝜃q

ˇ

ˇ

ˇ

ˇ

6

ˇ

ˇ

ˇ

ˇ

1´
𝑒𝑖𝜃𝑅1p𝑒𝑖𝜃q

𝑛𝑅p𝑒𝑖𝜃q

ˇ

ˇ

ˇ

ˇ

, 𝑅p𝑒𝑖𝜃q ‰ 0.

Equivalently,

|𝑅1p𝑒𝑖𝜃q| 6 |𝑛𝑅p𝑒𝑖𝜃q ´ 𝑒𝑖𝜃𝑅1p𝑒𝑖𝜃q| (30)

for the points 𝑒𝑖𝜃, 0 6 𝜃 ă 2𝜋, which are not zeros of 𝑅p𝑧q. This inequality
is also true, even if 𝑒𝑖𝜃 is a zero of 𝑅p𝑧q. It follows that

|𝑅1p𝑧q| 6 |𝑛𝑅p𝑧q ´ 𝑧𝑅1p𝑧q| for |𝑧| “ 1. (31)

Since all the zeros of 𝑇 p𝑧q are in |𝑧| 6 1, by the Gauss-Lucas theorem the
zeros of 𝑇 1p𝑧q also lie in |𝑧| 6 1. This implies that the polynomial

𝑧𝑛´1𝑇 1
´1

𝑧

¯

” 𝑛𝑅p𝑧q ´ 𝑧𝑅1p𝑧q (32)

does not vanish in |𝑧| ă 1. Therefore, in view of (30), we conclude that
the function

𝑓p𝑧q “
𝑧𝑅1p𝑧q

𝑛𝑅p𝑧q ´ 𝑧𝑅1p𝑧q

is analytic for |𝑧| 6 1 and |𝑓p𝑧q| 6 1 for |𝑧| “ 1. Moreover, 𝑓p0q “ 0.
Therefore, it follows that the function 1` 𝑓p𝑧q is subordinate to the uni-
valent function 1` 𝑧 for |𝑧| 6 1. Hence, by Lemma 6, we obtain

2𝜋
ż

0

|1` 𝑓p𝑒𝑖𝜃q|𝑝𝑑𝜃 6

2𝜋
ż

0

|1` 𝑒𝑖𝜃|𝑝𝑑𝜃, 𝑝 ą 0. (33)

Now,

1` 𝑓p𝑧q “
𝑛𝑅p𝑧q

𝑛𝑅p𝑧q ´ 𝑧𝑅1p𝑧q
.
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This gives, for |𝑧| “ 1, with the help of (22), for each 𝑝 ą 0

𝑛𝑝|𝑅p𝑒𝑖𝜃q|𝑝 “ |1` 𝑓p𝑒𝑖𝜃q|𝑝|𝑛𝑅p𝑒𝑖𝜃q ´ 𝑒𝑖𝜃𝑅1p𝑒𝑖𝜃q|𝑝 “

“ |1` 𝑓p𝑒𝑖𝜃q|𝑝|𝑒𝑖p𝑛`1q𝜃𝑇 1p𝑒𝑖𝜃q|𝑝 “

“ |1` 𝑓p𝑒𝑖𝜃q|𝑝|𝑇 1p𝑒𝑖𝜃q|𝑝. (34)

inequality (33) in conjunction with (34) gives, for each 𝑝 ą 0:

𝑛𝑝
2𝜋
ż

0

|𝑅p𝑒𝑖𝜃q|𝑝 𝑑𝜃 6

2𝜋
ż

0

|1` 𝑒𝑖𝜃|𝑝 𝑑𝜃

ˆ

max
|𝑧|“1

|𝑇 1p𝑧q|

˙𝑝

(35)

Equivalently, for each 𝑝 ą 0:

𝑛}𝑅p𝑧q}𝑝 6 }1` 𝑧}𝑝 max
|𝑧|“1

|𝑇 1p𝑧q|. (36)

As the polynomial 𝑅p𝑧q does not vanish in |𝑧| ă 1, we can apply
Corollary 3 to 𝑅p𝑧q with 𝑅 “ 𝜌 and obtain

}|𝑅p𝜌𝑧q| ` 𝑡𝑚˚𝜌
𝑛𝜑p𝜌q ´ 1

1` 𝜑p𝜌q
}𝑝 6

}𝜌𝑛 ` 𝑧}𝑝
}𝜑p𝜌q ` 𝑧}𝑝

}𝑅p𝑧q}𝑝, (37)

where

𝜑p𝜌q “
|𝑏0| ` 𝜌

𝑛`1|𝑏𝑛| ` 𝑡𝑚
˚

𝜌𝑛|𝑏𝑛| ` 𝜌|𝑏0| ` 𝑡𝜌𝑚˚
and 𝑚˚

“ min
|𝑧|“1

|𝑅p𝑧q|.

Again, since 𝑅p𝑧q “ 𝑧𝑛𝑇 p1{𝑧q “ 𝑧𝑛𝑃 p𝜌{𝑧q, we see that for 0 6 𝜃 ă 2𝜋

|𝑅p𝜌𝑒𝑖𝜃q| “ 𝜌𝑛|𝑃 p𝑒𝑖𝜃q| and 𝑚˚
“ min
|𝑧|“1

|𝑅p𝑧q| “ min
|𝑧|“1

|𝑇 p𝑧q| “ min
|𝑧|“𝜌

|𝑃 p𝑧q|.

Combining this with (36) and (37), we get:

𝑛}𝜌𝑛|𝑃 p𝑧q| ` 𝑡𝑚
𝜌𝑛𝜑p𝜌q ´ 1

1` 𝜑p𝜌q
}𝑝 6

}1` 𝑧}𝑝
}𝜑p𝜌q ` 𝑧}𝑝

}𝜌𝑛 ` 𝑧}𝑝 max
|𝑧|“1

|𝑇 1p𝑧q|. (38)

Applying inequality (2) to the polynomial 𝑇 1p𝑧q “ 𝜌𝑃 1p𝜌𝑧q of degree at
most 𝑛´ 1, where 𝜌 > 1, we have

max
|𝑧|“1

|𝑇 1p𝑧q| “ 𝜌max
|𝑧|“1

|𝑃 1p𝜌𝑧q| “ 𝜌max
|𝑧|“𝜌

|𝑃 1p𝑧q| 6 𝜌𝑛 max
|𝑧|“1

|𝑃 1p𝑧q|. (39)
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By using inequality (39) in (38), we finally obtain

𝑛

›

›

›

›

|𝑃 p𝑧q| `
𝑡𝑚

𝜌𝑛

ˆ

𝜌𝑛𝜑p𝜌q ´ 1

1` 𝜑p𝜌q

˙
›

›

›

›

𝑝

6
}1` 𝑧}𝑝
}𝜑p𝜌q ` 𝑧}𝑝

}𝜌𝑛 ` 𝑧}𝑝}𝑃
1
p𝑧q}8.
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