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ON THE CLASS OF m(¢) BOUNDED VARIATION
SEQUENCES OF FUZZY REAL NUMBERS

Abstract. In this article, we introduce the sequence space
bv(¢, M, p), for 1 < p < w0 of fuzzy real numbers. We verify and
establish some algebraic and topological properties like solidness,
monotonicity, convergence-free etc. and prove some inclusion rela-
tions of this class of sequences.
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1. Introduction. In 1965, the concept of fuzzy set and its application
was introduced for the first time by Zadeh [21]|. Later, theory related to
boundedness and convergent properties of fuzzy sequences was studied.
Subsequently, Altinok, Altin and Et [1|, Tripathy and Dutta [16], Savas
[11], and several other authors have introduced the different classes of
fuzzy real number sequences from various aspects and applied in different
applications, such as fuzzy topology, classical metrics, fuzzy mathematical
programming, fuzzy ordering, fuzzy metrics etc.

Kizmaz [4] introduced the concept of the class of difference sequences
in 1981 for crisp sets, where he defined A(y;) = y — y441,Vt € N. In
the recent past, various authors ( 2], [3], [16], [15], [14]) applied the idea
in different aspects to construct some new difference sequence spaces and
different properties were studied. The sequence space m(¢) was introduced
by Sargent [10] in 1960. Later, Rath and Tripathy [9], Tripathy and
Dutta [14], Tripathy and Borgohain [13| have extended this concept to
study this space from different classes of fuzzy sequences.

A fuzzy real number X is a mapping X: R — I(= [0, 1]) associating
each real number ¢ with its grade of membership X (¢). X is said to be
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normal if X (ty) = 1 holds for some ¢, € R. It is also called upper semi-
continuous, if for each e > 0, X 1([0,a + ¢)), is open for all a € I in the
usual topology of R. If X (¢) > X(s) A X(r) = min(X(s), X(r)), where
s <t <r, then X is called convex.

The class of all upper semi-continuous, normal, convex fuzzy real num-
bers is denoted by R(7).

The set R of all real numbers can be embedded into R(I) as given

below: for each r € R,
1 fort=
() = or T,
0 fort+#r,

where 0 and 1 denote the additive identity and multiplicative identity of
R([I), respectively.

The a-level set of a fuzzy real number Y is denoted [Y]%,
0 < a < 1, where [Y]* = {t € R: Y(t) > «a}. The 0-level set is the
closure of {t e R: Y (t) > 0}.

Let X,Y € R(/); then X <Y if and only if for any a € (0, 1], 2§ < yf
and z§ < y§, where [X]* = [z, 2§] and [Y]* = [y, ¥5].

The arithmetic operations for a-level sets can be defined as follows:

[X +Y]* = [2f + 97, 25 + 5],
[X = Y]* = [27 — 95,25 —y7'],

[XxY]az[ min  xys, max xayz],

m,ne{l1,2} m,ne{l1,2} m
1 1
Xfl o [_ _] 0 a o]
[ ] l’g’l’? ) ¢[I1,ZC2]

For each o € (0,1], X“ is a non-empty compact subset of R. Also, The
closure of {t € R: X(t) > 0} is compact.
The absolute value of Y € R(I) is defined by
max{Y(¢),Y(—t)}, whent >0,
YI(t) =

0, when ¢ < 0.
Let X = [X1 X®] and Y = [YL, Y %] be two elements in the set of all
closed and bounded intervals of R, denoted by D, and we define a metric

d(X,Y) on D as follows: d(X,Y) = max {|X* —Y*|,|X® — Y|}, then
it is clear that (D, d) is a complete metric space.
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~ Again, we define the mapping d: R(I) x R(I) — R by
d(X,Y) = sup d(X*,Y*) for X,Y € R(I). Then it is clear that (R([), d)

0<a<l
is a complete metric space.

A fuzzy real-valued sequence (X;) is said to be convergent to a fuzzy
real number R if for every ¢ > 0 there exists n € N such that d(X;, R) < &,
VYt > n.

Let my,n; € C and p = (p;) be a bounded sequence of positive real

numbers. We use the following inequality in this paper:
Iy + ng Pt < max(1, 257 1) (|my [Pt 4 [ Pt),

where 0 < p; < supp; = L.

Throughout this paper, w and w’ denote the class of all sequences and
all fuzzy real-valued sequences respectively.

2. Definitions and Preliminaries. In this section we give some
definitions.

Definition 1. An Orlicz function is a non-decreasing convex continu-
ous function M: [0,0) — [0,0) that satisfies the following properties:
M(@©0)=0,t>0 = M(t) >0 and M(t) — 0 when t — .

The Orlicz sequence space was defined by Lindenstrauss and Tzafriri [5]
as given below:

m

Uy = {yz (1) € w: ZM(@) < oo, for some m > 0},
t=1

(where w denotes the space of all sequences). Under the following norm,
the defined space is also a Banach space:

. ¢ \yt!)
= inf 0: M(— | <1;.
ly|| = in {m > t_gl ( - }

The Orlicz function M is said to satisfy As-condition, if for any § > 1,
there exists a positive constant C(0) > 0, such that M (dy) < C(5)M(y),
Yy > 0.

Remark 1. It is well-known that for any Orlicz function M, the property
M(pz) < M (x),Yx >0 and 0 < 5 < 1 holds.

e @]
Definition 2. Consider P; = {a e P: Y po) < s}, where P denotes
=1

the class containing only finite sets of positive integers which are distinct.
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Also, for any o € P, each term of the sequence {p;(c)} gives the value 1
ifte o and 0 ift ¢ o. Further, ¢ = (¢;) is an non-decreasing sequence of
positive real numbers that satisfies the condition t¢ 41y < (t+1)¢y, Vt € N.

In 1960, the m(¢) space was introduced by Sargent [10] as given below:

m@) = {y=ews s =il <o}

s>1,0€ePs

(where w is the space of all sequences).

After that, several authors have studied and extended this space.
An extension of m(¢) space to m(¢,p) was done by Tripathy and Sen [20]
as given below:

m((b,p):{y:(yt)ew: sup Z\yt]p<oo ()<p<oo}

s>1,0€Ps Qbs

Definition 3. Let K = {t,: neN; t; <ty <ty <...} € Nand E be a
fuzzy sequence space. A K-step space of E is a sequence space
M ={(Xy,) e wl : (Xy) € E}.

A canonical pre-image of a sequence (X;) € E is a sequence (Y,.) € w

defined as follows:
. {XT, ifrekK,

0, otherwise.

F

Definition 4. A canonical pre-image of a step space A\E. is a set of canon-
ical pre-images of all elements in \Z.

Definition 5. A class of fuzzy real-valued sequences E is said to be

monotone if the canonical pre-images of all its step sets are contained
in .

Definition 6. A class of fuzzy real-valued sequences E is said to be solid
if (X}) € E, whenever | X}| < |X?| and (X?) € E, Vt e N.

Definition 7. A class of fuzzy real-valued sequences E is said to be
convergence-free if (X}) € E, whenever (X?) € E and X}? = 0 implies
X! =0.

Definition 8. A class of fuzzy real-valued sequences E is said to be sym-
metric if (X;) € E = (Xzq) < E,V(X;) € E, where 7 denotes a
permutation of N.
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Remark 2. If a fuzzy real-valued sequence space E is solid then the
space is also monotone.

Definition 9. A sequence (X;) is said to be of bounded variation if it
0
satisfies the property > |Axy| < oo, where Ax; = xy — x4,V € N. The

=1
bounded variation sequence space is denoted by bv, which is given below:

bu = {(xt) Ew: §|Axt| < oo}.

Tripathy and Dutta [16] introduced and defined the class of lacunary
bounded variation fuzzy real-valued sequences as follows:

g = {0 ewfs 3 (1 D dax,0) <)

Also, Tripathy and Das |15] formed the p-bounded variation sequences
of fuzzy real numbers bfuf , as given below:

0
bvfz{ Z 1(AX,,0)} < o, for1<p<oo}.

In this paper, we introduce a new sequence space bv(¢, M, p) by using
Orlicz function M, m(¢) space, and the bounded variation fuzzy real-
valued sequences; this space is given below:

bv(qS,M,p):{(Xt)ewF:ii( D {M(@) 1Y) <o)

s=1

for some m > 0 and 1 < p < 0.
Also, we have constructed the Cesaro-type summable bounded varia-
tion sequence spaces of fuzzy real numbers as follows:

bo(C, M, p) = {(Xt) culs ) —

n

(S ) <)

for some m > 0 and 1 < p < 0.
3. Main Results.

Theorem 1. The class of sequences bv(¢p, M, p) is linear over the field C.
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Proof. Let «, B be two arbitrary elements of C and X = (X,),
Y = (Y;) € bu(¢, M, p). Then, for some m; > 0 and my > 0, we have

Y ( 3 {u(TERO) <o

s=1 o€Ps teo
and © CZ(AY )
, P
202 R <

Let m3 = max{2|a|mq, 2|5|ms}. Again, M is a non-decreasing convex
continuous function. Therefore,

(3 fueamey )

< max(1, 2p_1)[i i((fe};eg {M<_MA+:6)> }p>+
N Z i(UG;EU{ <d(Am—Yi70)>] < .

This implies (aX + BY) € bu(¢, M,p). Therefore, the sequence space
bu(¢p, M, p) is linear over C. []

Theorem 2. The class of sequences bv(¢, M,p) is a complete metric
space under the metric

pX,Y) =

— (X, Y3) + inf {m > 0; Z [ 3 {M(W)}p];él}.

o€ePs tec

Proof. It is very easy to show that bu(¢p, M, A, p) is a metric space with re-
spect to the given metric. Next, we prove that bv(¢, M, A, p) is a complete
metric space.

Consider a Cauchy sequence (Xt(u)):il € bu(¢p, M, A,p). We choose
z > 0, such that for a fixed positive number y > 0 we get M(%) > 1.

Let € > 0 be given. Then there exists a non-negative integer s = s(g) > 0,
such that Yu,v > s, B(X™, X)) < —. This implies
Yz
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d(x™, XY+

+ inf {m >0: Z ¢S [ Z {M(J(AXt(u:’;AXt(v))) }P] ’ < 1} < ¢,

o€ Ps teo

for Yu,v > s. Therefore, d(Xfu ,X(U)) < ¢ and

1

0 7 (u) (v) Py
inf{m>0:2¢i[ Z {M(d<AXtﬂ;AXt )>}} <1}<€,
s=1 79

o€ Ps teoc

for Vu,v > s. Here we see that (X (u)) is a Cauchy sequence in R(I) and,

since R(7) is a complete metric space, (X 1(“)) is convergent in R(T).

Let

gi_l)lc}oxl(u) =X (1)
Also,
i 1 l ¥ { <J(AX§"),AX§“>)>}IJ]§ .,
= o m h

oePs teo
Now, taking s = 1, Yu,v > s

1

[ 5 {M(Jﬁ))%))’,%f;))>}pr<¢1 .

oePs teoc
(AX(“ AX) )
o€Ps tec ’

AAX", AXt(v)) yz
- M( Bx@ xm) ) SO S M<_) .

— d(AX AX) < L

2 yz

(since M is a continuous non-decreasing function). Then we have
dAXY, AXY) < g

Here, A(Xt(u)) is a Cauchy sequence in R(7) and, since R(7) is a complete

metric space, A(X{™) is convergent in R(I).
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Let
lim AX™ =Y, e R(I), VteN. (2)

uU—00
From equation (1) and equation (2), we get lim Xt(ﬁ = X¢41,Vt > 1. This
UuU—00
implies lim AXt(u) = AX,,VteN.

u—00

Now, keeping u fixed, taking v — o0, and using the continuity of M

we get
“ 1 1AX™ Ax)\ )"
L s fu(fetax P,
s=1 ¢5 o€ Ps teo m

for some m > 0 and Vu > s
After taking the infimum of such m’s together, we have

hSA

1

dAX™ AX)\ P17
1nf{m>0 Z Sl 2 { ( - <1y <e,
oePs teoc
for Vu > s.
Therefore, 3(X™, X) < 2¢,Yu > s. Hence, lim X™ =

u—00

Now we need to show X € bv(¢p, M, A, p). Here 3(X,0)
+B(X™ 0) < oo,Yu > s. This implies X e bv(¢, M,
bu(p, M, A, p) is a complete metric space. []

X.
< BX, X M)+
A

,p). Hence,

Theorem 3. The class of sequences bu(¢p, M, p) is not monotone in gen-
eral.

Proof. The theorem can be proved by the following example.
Consider M (z) = 2*, Va € [0,00) and ¢, = s, Vs € N. Let p = 1 and
X; =1, Vt € N. Then we get d(AX;,0) = 0. Therefore,

25 B)) e

o€Ps teoc

for some m > 0. This implies (X;) € bv(¢, M, p).

Now, consider a subset K of the set of natural numbers N, such that
K = {t e N:t = 2n — 1,¥n € N}. Define the canonical pre-image
bug (¢, M, p) of the K-step set bug(¢p,M,p) of bu(¢p, M, p) as follows: let
Xy, forteK,

Y, eb ,M,p). Then Y; = < _
¢ € bux(9 P) n 0, fort ¢ K.
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Therefore,

e 5 Se))) - Eaee

for any fixed m > 0. This implies, (Y;) ¢ bv(¢, M, p). Therefore, the class
of sequences bv(¢, M, p) is not monotone in general. []

Theorem 4. The class of sequences bv(¢, M, p) is not convergence-free
in general.

Proof. The theorem can be proved by the following example.
Consider M (z) = 22, Vx € [0,00) and ¢, = s, Vs € N. Let p = 2 and
X; =4, Vt € N. Then we get d(AX;,0) = 0. Therefore,

Eal B ) e

for some m > 0. This implies (X;) € bv(¢, M, p).

1 - _
Now, consider another sequence Y; = (E)’ Vt € N. Thus, d(AY;,0) =
1

— — . Then we have for each fixed m > 0:
k+1

S T DR TR

Therefore, the class of sequences bv(¢, M, p) is not convergence-free in
general. []

| =

Theorem 5. The class of sequences bv(¢, M, p) is not solid in general.

Proof. The theorem can be proved by the following example.
Consider M(z) = z, Vo € [0,0) and ¢, = 1, Vs € N. Let p = 1 and
X; =3, Vt € N. Then we get d(AX;,0) = 0. Therefore,

Se( B ) oo

o€ Ps teo

for some m > 0. This implies (X;) € bv(¢p, M, p).
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Now, consider a sequence (o) of scalars, such that

t, for even t,

1 for even t
7 tev 7:0615th{

o+ =
! {0, otherwise. 0, otherwise.

Therefore,

Sa( B -

oePs teo

for any fixed m > 0. This implies (o, X;) ¢ bv(¢, M,p). Therefore, the
class of sequences bu(¢, M, p) is not solid in general. []

Note. The above theorem can be directly proved using Remark 2 and
Theorem 3.

© 1
Theorem 6. bu(M,p) < bv(¢, M, p) if > o < .
s=1Ws

Proof. Let (X;) € bu(M, p). This implies, for some m > 0,

S{u(E20) <o

Hence, there exists a positive integer ¢y, such that

3, (s <

teo,oc€Ps

for Vs > ty and for some m > 0.
Therefore, for some m > 0,

1 d(AX;, 00\ " 1
So( S ())<=

This implies

S 3 (")) <

for some m > 0.
Hence, (X;) € bv(¢, M, p), which implies bv(M,p) < bv(¢, M, p). []
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Theorem 7.

(1) bU(¢, Ml,p) - bU(¢,MO MlyP))
(11) bv(¢a Ml,p) M bU(¢, MQap) = bv(¢7 Ml + MZap)'

Proof. (i) Consider « > 0 and 8 > 0 that satisfy M?(a) = 3. Let
(X;) € bu(¢p, My, p). This implies, for some m > 0:

S d(AX, 00\ "

Z— Z { (M)} =« (say) < 0.
s=1 Qb oePs teo m

As M is a continuous non-decreasing function, then

(52 5 [(E)) -~

s=1 Ps teo

0 7 N p
— Zi Z {MoM1<M>} = [ < .
s=1 ¢s oePs teoc m
This implies (X;) € bv(¢p, M o Mp).
Therefore, bv(¢, My, p) < bv(¢, M o My, p).
(ii) Let (Xt) € bu(¢, My, p) n bu(é, Ma,p). This implies, for some

m > 0,
© 7 A p
23 () -
s=1 ¢ oePs teo m
and
© 7 A P
3 € D {M2(—d(AXt’O))} < .
s=1 ¢8 o€ePs teo m
Now, for some m > 0

B2 3 [ (B2

:Zti 5 {M1<d(AXt,(_))> +M2( (AXt,(_))>}p<
Ax s

S
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5L )

crEPg teo

This implies (X;) € bv(¢p, My + M, p).
Therefore, bv(¢p, My, p) N bv(p, Mo, p) < bv(op, My + Ma,p). [

Theorem 8. Let 0 < ¢ < p < . Then bv(p, M, q) < bv(p, M, p).
Proof. Let (X;) € bu(¢, M,q) and 0 < ¢ < p < 0. Therefore, for some

B2 In(em)f <o

S geP, tec

This implies that there exists a natural number ¢', such that

{M(M)} <1 st

m

Therefore,

{M(—CZ(AW)?’O)) }p < {M(—J(A;Q’O)> }q, vt >t

This implies

&W S e 2 O -

i B 50 3 b)) -
- 52 3 P

O'EPg teo

This implies (X;) € bv(¢, M, p). Therefore, bv(¢p, M, q) < bv(p, M, p). []

Theorem 9. bv(¢, M,p) < bu(B, M, p) if and only if sup (%> < %

s>1

Proof. Let sup (?g) = S(< o). Therefore, ¢ps < SPs, Vs > 1
s=>1 s
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Consider (X;) € bv(¢, M, p). This implies, for some m > 0,

ism Z { (W)}Zif 2 {WW)}I)@.

Therefore, (X;) € bv(B,M,p). Hence, bu(p, M,p) < bu(B, M,p) if
Ps
< 0.
sup ()
Conversely, we need to show sup <Zs> < wifbu(p, M,p) < bv(B, M, p).

s>1

Let (X;) € bv(¢, M p). Therefore, for some m > 0,

S5 (I

S oePg teo

If possible, let sup <¢—) — o and bu(é, M, p) < bu(B, M,p). Then there

s>1 s

exist a sub-sequence <¢—s) of (¢s> that satisfies lim (¢—S> = 0. Then
ﬂsi ﬁs i—0 ﬁsi
there exist n € N for each T" € R*( set of positive real numbers) that
satisfies Z > T, Vs; > n. This implies, for some m > 0,
Y. 2 () - 28 B e ()
BS o€Pg teo t=1 (b o€Ps teo m

For sufficiently large T', we get:

i3 () -

$ oePs teoc

which implies (X;) ¢ bv(5, M, p). But this is a contradiction to the fact
that (X;) € bv(¢, M,p) and bv(p, M,p) < bv(5, M,p). Therefore, our

assumptlon was wrong. SO sup < s) < Q0.
s>1 /83

Hence, sup (%) < oo if bu(op, M, p) < bu(5, M, p). [

s>1 s

Corollary 1. bu(¢, M,p) = bu(53, My, p) if and only if sup (%> < o0 and

s>1
ﬁs>
su — ] < Q0.
521? <¢

s
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1
Theorem 10. bv(C, M, p) < bv(¢p, M, p) if lim inf %21#3 e N.
5 S — @y

Proof. Let X € bv(C, M, p). This implies, for some m > 0,

S () ) <

1
Suppose that liminf —Fsl;gb > 1,Vs € N. Therefore, there exists a
s S — s
1+ 1
positive integer v > 0, such that 7 = 5 . Now,
Y s
| d(AX;, 00\
Yo X () -
s=1 SUEPS,tEU m
= I 1< 1(AX;, 00\
:ZS+ . Z{M<( t )>}_
s=1 Qbs s+ 1 t=1 m
1 1(AX;, 00\ 7
Y- 3 {M<( b ))} <
s=1 ¢5 te{1,2,..,s}—0,0€Ps m
1 1 < d(AX;, 00\
i for(Haen)
Y s+ =1 m

Since X € bv(C, M, A, p), we get, for some m > 0,

[} 7 N p
23 ()]
s=1 ¢ oePs tec m
Hence, X € bu(¢p, M, p), which implies bv(C, M, p) < bv(¢p, M, p). [
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