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NEW NORM INEQUALITIES FOR COMMUTATORS
OF HILBERT SPACE OPERATORS

Abstract. New norm inequalities for commutators of Hilbert space
operators are given. Among other inequalities, it is shown that
if A, B € B(H) and there exists a real number zp, such that
|A— z0l| = Da, then

|AB £ BA™| < 2Dal B,

where Dy = }\n([fj |A— AI|. In particular, under some conditions,
(S

we prove that
|AB| < Dal Bl

which is an improvement of submultiplicative norm inequality. Also,
we prove several numerical radius inequalities for products of two
Hilbert space operators.
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1. Introduction and preliminaries. Let B(H) denote the
C*-algebra of all bounded linear operators on a complex Hilbert space
H with inner product {-,-). A self-adjoint operator A is said to be posi-
tive if (Az, x) > 0 holds for all z € H. The numerical radius of A € B(H)
is defined by

w(A) = sup{|[(Az, 2)|: ] = 1}.

It is well known that w(-) is a norm on B(H), which is equivalent to the
usual operator norm | - ||. In fact, for all A € B(H),

<o < al (1)
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The first inequality becomes an equality if A2 = 0. The second inequality
becomes an equality if A is normal. Several numerical radius inequalities
improving the inequalities in (1) have been recently given in [2], [4], [5],
[7], 18], [11], [12], [13], [14], [15] and [16]. If A and B are operators in B(H),

we write the direct sum A @ B for the 2 x 2 operator matrix lé g] ’

regarded as an operator on H @ H. Thus
w(A® B) = max(w(A),w(B)).

Also,
0 A
4@ 51|} o]l - maxanie. 2)

The question about the best constant k, such that the inequality
w (AB) < k| Allw(B) (3)

holds for all operators A, B € B(H), is still open.
Concerning the inequality (3), it is shown in [1]| that if A, B € B(H),
then

“(AB) < w(A)(Ds + | B). (@)
Also, if A > 0, then
w(4B) < 4] (LELHIED )

and 5
W(AB) < S| A] w(B).

The commutator of two bounded linear operators A and B is the operator
AB — BA. In [6], Dragomir proved that if A, B € B(H) and A — B is

positive operator, then
|AB — BA| < min([[A], | B])[A - B| (6)
and, if A (or B) is positive, then

|AB — BA| < [A[|A = B (or [B[[|A = BJ).



Norm inequalities 121

Kittaneh in |9] proved that if A, B, C' € B(H), such that A or B is positive,
then

|AB — BA| < ||A]||B] (7)
and, also, if A and C are positive operators, then
|AB — BC| < max([| A, |C])|B]. (8)

In Section 2, we establish norm inequalities for commutators of Hilbert
space operators. Applications of these inequalities can be considered as
improving some of the inequalities expressed in [6]; for example, we ob-
tain refinements of the inequalities (6), (7), and (8). Finally, we obtain
refinements of the inequality (5).

2. Main results. Let Dy = }\Iel((f: |A— M| (the distance of A from

the scalar operators), and let R4 denote the radius of the smallest disk in
the complex plane containing o(A) (the spectrum of A). It is not hard to
check that there exist a Ao € C, such that Dgy = |A — X\oI||. It is known
(see, e.g., [17]) that D4 = R4 for any normal operator A.

In order to derive our main results, we need the following lemma, which
can be found in [10]:

Lemma 1. Let A, B e B(H). If 2y € C, such that |A — zoI|| = D4, then

|B+ B*|(4) | DaDp-p

AB)| <
|Re(agAB)| : :

+ DAU.)(B)

where oy = é—g‘

Theorem 1. Let A,B € B(H). If 2y € R, such that |A — zpI|| = Da,
then

|AB + BA*| < 2D,4| B].

Proof. By Theorem 1,

HB + B*”CU(A) n DADB+B*

<
|Re(aAB)| < 2 -

+ Daw(B). (9)

From the assumption, |A — zoI| = D, it follows that |a| = 1 and, by (9),

|B+ B*|(4) | DaDpp»

<
IRe(4B)| < =2 -

+ Daw(B). (10)
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Choose A; = lgl 1(31]’ B, = l—OB* g] in (10) to give

| Re(A1By)|| < Da,w(B).

Therefore,
0 AB
A e
Consequently,
0 AB — BA*
and, finally,

|AB — BA*|| < 2D4| B|
by (2). Replacing A by iA gives the related inequality
|AB + BA*| < 2D4| B

This completes the proof. []
Corollary 1. Let A, B e B(H). If A is a self-adjoint operator, then

|AB + BA| < <mz%1)4())\ — ml(n )\) |B|.

Proof. Let 2y = (mz%i‘())\ + ml(n A)/2. Since |A — zpI| = Da, from the
AE
Theorem 1 we have

|AB + BA| < 2D4 | B]. (11)

On the other hand,

max A — min A\
Aeo(A) Aea(A)

2 9

Dy=Ras=

and, so,

+ < — ] ,
|AB + BA| (;g;ag)x Aggg(g)x) B, (by (11))
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which is exactly the desired result. []

Remark 1. Let A,B € B(H) and A > 0. Since )\mi(rfll))\ > 0, from
€o

Corollary 1 we get

|AB — BA| < (max A — min )\) |B| =

Aea(A) Xea(A)
= (01 pmin ) 180 <
€o(A)
< JAlIBI,

which is a considerable improvement of inequality (7).

The following Corollary is a considerable improvement of the inequal-
ity (8):
Corollary 2. Let A,B,C € B(H). If A and C are positive operators,
then

|AB - BC| < (maxum, IC) = min A) 8],
Ae{o(A)uo(C)}

Proof. Let A, = [61 g], B, = lg g] Then A; is positive and

A1By — BiA| = [8 AB 6 BO]. By Remark 1 and (2),
JAB-BC| = |48y~ Bii| <
< (A — min N)|B| =
(lA] = min A)[B1]
- (maxqarich - min ) 15)
e{oc(A)uc(C)}
Consequently,
4B - B0 < (max(AL[C) = min 1) |2
e{o(A)uo(C)}

This completes the proof. []
Theorem 2. Let A, B e B(H). If A— B are self-adjoint operators, then

|AB — BA| < < max A — min /\) min(|| B, [|A])-
Aeo(A—B) Aeo(A—B
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Proof. By Corollary 1,

|AB —BA| = [(A-B)B—-B(A-B)| <
< ( max A — min )\> |B|.
Aeo(A—B) Aeo(A—B)
Consequently,
|AB — BA| < ( max A — min )\) |B| (12)
Aeo(A—B) Aeo(A—B)
and, similarly,
|AB - BA| — |(A-B)A—A(A-B)| <
< < max A — min )\) |A].
Aeo(A—B) Aeo(A—B)
Therefore,
|AB — BA| < < max A — min )\) | A (13)
Aeo(A—B) Aeo(A—B)

Utilising (12) and (13), we deduce the desired result. []

Remark 2. Let A, B € B(H) and A — B be a positive operator. Since

min A > 0, from Theorem 2 we get
Aeo(A—B)

|AB — BA| < ( max A — min )\> min(|B|, |A]) =
Aeo(A—B) Aeo(A—B)

(1451~ min, 2) min(|5), 1)) <
€oc(A—B)

|A = Bf min(] B, [ Al),

A

which is a considerable improvement of inequality (6).
The following result for the self-commutator holds:

Corollary 3. Let A e B(H). If ¢ and ¢ are the Cartesian decomposition
of an operator A, i.e.;, A = ¢ + 11, then

jaa - aal < 2(le= ol - min 3)min(ol, )
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Proof. Clearly,
5 L(AA* = A*A) = oy —
and, applying Theorem 2,
1 * *
S1AAT = ATA| =y — o] <

. <m A— min A) min([9], |¢]) <

Ao (p—1p) A€o (p—1p)

N

(I = w1~ _min, ) min(lol, oD

Consequently,

jaa - aeap <2 (o vl = _min A) min(lol, Lol

which is exactly the desired result. []

At the end of this section, we introduce some numerical radius inequal-
ities for products of two operators. In order to derive our results, we need
the following lemma, which can be found in [3]:

Lemma 2. Let a,b and e € H. Then

el

[Ka, e)<e; &)l < ==(lalb] + KKa, &)1)-

The following result holds:

Theorem 3. Let A, B,C € B(H) and 0 < a < 1. If A is a positive
operator, then

ICP + alBPIAICIIB ™ + w(BC)y

w(BAC) < 4] (112 :

Proof. Putting a = Cx,e = ACx, and b = B*z, where x € H and ||z| = 1,
in Lemma 2, gives:

|AC|?
2

[(C, ACx)(ACx, B*x)| < (ICz|[|B*x| + KCx, B*x)l).
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Hence,
|ACz|?
2(Cx, ACT)
|Az Az Cz|)2
QHAleP
HA 2 |?

|(ACz, B*z)|

N

(ICz[|B*z] + KOz, B*x)]) <

N

(ICz[|B*z| + KCz, B*x)[) <

N

(ICz[|B*z| + KCx, B*x)[) =

_ ”A”<uc 1B*2] + |(Ca, B*2)]) =

- ”A” A caliBra) + ((BCw,a)) <

< . Pl cnliBa) + sup ((BC,2)) =

|zl =1

= Il jcapisea) +wiBe)) -

_ ”A” P ew, Ca)2(B*z, B*2)? + w(BC)) =

- ”A”<<|c|2 DH|BPr.a) + w(BC)).

Therefore,

141
2

Now, let « € R and 0 < o < 1. By (14),

KACz, B*z)| < ({2, 2)3{| Bz, 2)% + w(BC)). (14)

[(BACz, )| < H<<|O|2,x>%<\3|2x,x>% +w(BC)) =

= Il ore, 0y 1BP2, Y51 25 B2 25" + w(BO)) <

< Al ere, 9 BPa, % 10171 B~ + w(BO)) =

;H((<|C|2 23| B2, 2)°)E | C°| B + w(BC)) <
S %(((1 — a)(|CPz,x) + a{| Bz, 2))?|C*| B|' = + w(BC)) <
HAH

(I = @)|CP + al BP|Z|CI* B~ + w(BO)).
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Therefore,

|(1 = a)|CP + alBP|2|C|*| B|'— + w(BC)

[(BACz, z)| < |A|( 5 )-

Taking the supremum over z € H, ||z| = 1 gives

[(1 = a)|CP + alBP[2|C|°| B + w(BC)

w(BAC) < [A|( 5 ),

which is exactly the desired result. []
Corollary 4. If B,C € B(H) and 0 < a < 1, then

w(BC) < (1= a)|C]* + alBP|= [C[*[ B[

Proof. If we replace A by I in Theorem 3, we deduce the desired result. []

Remark 3. Let A, B € B(H) and A be positive operators. By Theorem 3,
for « = 0 and replacing C' by I gives:

() < 14 1B+ 4(B)

This shows that Theorem 3 is a refinement of the inequality (5).
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