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ON SOLVABILITY OF SOME BOUNDARY-VALUE
PROBLEMS FOR THE NON-LOCAL POISSON EQUATION
WITH FRACTIONAL-ORDER BOUNDARY OPERATORS

Abstract. In this paper, a non-local analogue of the Laplace op-
erator is introduced using involution-type mappings. For the cor-
responding non-local analogue of the Poisson equation in the unit
ball, two types of boundary-value problems are considered. In the
studied problems, the boundary conditions involve fractional-order
operators with derivatives of the Hadamard type. The first problem
generalizes the well-known Dirichlet, Neumann, and Robin prob-
lems for fractional-order boundary operators. The second prob-
lem is a generalization of periodic and antiperiodic boundary-value
problems for circular domains. Theorems on the existence and
uniqueness of solutions to the studied problems are proved. Exact
conditions for solvability of the studied problems are found, and
integral representations of the solutions are obtained.

Key words: non-local equation, fractional derivative, Hadamard
operator, periodic problem, Dirichlet problem, Neumann problem

2020 Mathematical Subject Classification: 35J05,35J25

1. Introduction. This paper is devoted to the study of correct
formulations of boundary-value problems for equations with transformed
arguments. In the equations, the considered transformation of arguments
is carried out using involution-type mappings. A mapping 𝑆 is called an
involution if 𝑆2 “ 𝐸, where 𝐸 is the identity mapping. For example,
such a mapping is the Dunkl transformation [5]. Some applications of
Dunkl-type mappings are considered in [7], [8].

Note that one of the first published papers for equations with involutive
transformations is the work of T. Carleman [4], where equations with
shifts of arguments of the type 𝛼 “ 𝛼p𝑡q, 𝛼2p𝑡q “ 𝑡 were studied. Some
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issues of the application of equations with shifts of the Carleman type are
considered in [6].

Further, let us consider statement of the problems studied in this work.
Let Ω “ t𝑥 P 𝑅𝑛 : |𝑥| ă 1u be a unit ball, 𝑛 > 2, BΩ be a unit sphere, 𝑢p𝑥q

be a smooth function in the domain Ω, 𝑟 “ |𝑥|, 𝜃 “
𝑥

𝑟
, 𝛿 “ 𝑟

𝑑

𝑑𝑟
be the

Dirac operator, where 𝑟
𝑑

𝑑𝑟
“

𝑛
ÿ

𝑗“1

𝑥𝑗
B

B𝑥𝑗
.

Let us consider the modified Hadamard integro-differential operators
( [11], p. 116)

𝐽𝛼𝜇 r𝑢s p𝑥q “

$

’

’

&

’

’

%

𝑢p𝑥q, 𝛼 “ 0

1

Γ p𝛼q

1
ż

0

ˆ

ln
1

𝜏

˙𝛼´1

𝜏𝜇´1𝑢 p𝜏𝑥q 𝑑𝜏, 𝛼 ą 0, 𝜇 > 0,

𝐷𝛼
𝜇 r𝑢s p𝑥q “ 𝑟´𝜇𝐽𝑚´𝛼 r𝛿𝑚 r𝜏𝜇 ¨ 𝑢ss p𝑥q , 𝑚´ 1 ă 𝛼 6 𝑚, 𝑚 > 1.

For any 𝑥P𝑅𝑛 consider the mappings 𝑆𝑖𝑥“p𝑥1, . . . , 𝑥𝑖´1,´𝑥𝑖, 𝑥𝑖`1, . . . , 𝑥𝑛q,
1 6 𝑖 6 𝑛. For the index 𝑖, we will use not only the usual notation, but
also its representation in the binary number system 𝑖 “ p𝑖𝑛 . . . 𝑖2𝑖1q2 ”
” 𝑖𝑛 ¨ 2𝑛´1 ` ¨ ¨ ¨ ` 𝑖2 ¨ 21 ` 𝑖1 ¨ 20. Using this notation, we can consider
mappings of the type 𝑆𝑖𝑛𝑛 . . . 𝑆𝑖22 𝑆

𝑖1
1 𝑥, where 𝑖𝑘 “ 0 or 𝑖𝑘 “ 1. The total

number of such mappings is 2𝑛.
Let 𝑎𝑖, 𝑖 “ 0, 1, . . . , 2𝑛 ´ 1 be some real numbers, ∆ be a Laplace

operator. Let us introduce the operator

𝐿𝑛𝑢p𝑥q “
2𝑛´1
ÿ

𝑖“0

𝑎𝑖 p´∆q𝑢
`

𝑆𝑖𝑛𝑛 . . . 𝑆𝑖22 𝑆
𝑖1
1 𝑥

˘

,

which we will call a non-local Laplace operator.
Then, for any point 𝑥 “ p𝑥1, 𝑥2, . . . , 𝑥𝑛q P Ω, we match the «oppo-

site» point 𝑥˚ “ p𝜎1𝑥1, 𝜎2𝑥2, . . . , 𝜎𝑛𝑥𝑛q P Ω, where 𝜎1 “ ´1, and 𝜎𝑗,
𝑗 “ 2, . . . , 𝑛 take one of the values ˘1. Let us denote

BΩ` “ t𝑥 P BΩ: 𝑥1 > 0u , BΩ´ “ t𝑥 P BΩ: 𝑥1 6 0u ,

𝐼 “ t𝑥 P BΩ: 𝑥1 “ 0u .
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Note that the point 𝑥˚ can be represented as 𝑥˚ “ 𝑆𝑗𝑛𝑛 . . . 𝑆𝑗22 𝑆
1
1𝑥.

Moreover, if 𝑥 P BΩ`, then 𝑥˚ P BΩ´.
In the domain Ω, we consider the equation

𝐿𝑛𝑢p𝑥q “ 𝑓p𝑥q, 𝑥 P Ω. (1)

In [20], for equation (1) the main boundary-value problems with the
Dirichlet and Neumann conditions were investigated. Spectral issues for
the operator 𝐿𝑛 were studied in [21]. The present work is a continuation of
these studies, and for equation (1) we will consider the following problems.

Problem 1. Let 0 6 𝜇, 0 6 𝛼 6 1. Find a function 𝑢p𝑥q from the
class 𝐶2pΩq X 𝐶pΩ̄q, for which 𝐷𝛼

𝜇r𝑢sp𝑥q P 𝐶pΩ̄q, satisfying equation (1)
and the condition

𝐷𝛼
𝜇r𝑢sp𝑥q “ 𝑔p𝑥q, 𝑥 P BΩ. (2)

Problem 2. Let 0 6 𝛽 ă 𝛼 6 1. Find a function 𝑢p𝑥q from the class
𝐶2pΩq X 𝐶pΩ̄q, for which 𝐷𝛼

0 r𝑢sp𝑥q P 𝐶pΩ̄q, satisfying equation (1) and
the conditions

𝐷𝛽
0 r𝑢sp𝑥q ´ p´1q𝑘𝐷𝛽

0 r𝑢sp𝑥
˚
q “ 𝑔0p𝑥q, 𝑥 P BΩ`, (3)

𝐷𝛼
0 r𝑢sp𝑥q ` p´1q𝑘𝐷𝛼

0 r𝑢sp𝑥
˚
q “ 𝑔1p𝑥q, 𝑥 P BΩ`, (4)

where 𝑘 takes one of the values 𝑘 “ ˘1.
As in the case 𝑥 P BΩ´ there is an inclusion 𝑥˚ P BΩ`; then, from

condition (3) it follows that

𝐷𝛽
0 r𝑢sp𝑥

˚
q ´ p´1q𝑘𝐷𝛽

0 r𝑢sp𝑥q “ 𝑔0p𝑥
˚
q, 𝑥 P BΩ´.

In this case, if 𝑥 P 𝐼 ô 𝑥 “ p0, 𝑥2, . . . , 𝑥𝑛q P BΩ`, then for the point
𝑥˚ P BΩ` corresponding to it we get: 𝑥˚ “ p0, 𝜎2𝑥2, . . . , 𝜎𝑛𝑥𝑛q P BΩ´ ô
𝑥˚ P 𝐼. Therefore, for points 𝑥 P 𝐼 it is necessary to fulfill the conditions
of agreement:

𝑔0p𝑥q “ 𝐷𝛽
0 r𝑢sp𝑥q ´ p´1q𝑘𝐷𝛽

0 r𝑢sp𝑥
˚
q

ˇ

ˇ

ˇ

𝑥P𝐼
“

“ ´p´1q𝑘
”

𝐷𝛽
0 r𝑢sp𝑥

˚
q ´ p´1q𝑘𝐷𝛽

0 r𝑢sp𝑥q
ı
ˇ

ˇ

ˇ

𝑥˚P𝐼
“ ´p´1q𝑘𝑔0p𝑥

˚
q.

Let
B
𝑚𝑢p𝑥q “

B𝑚

B𝑥𝑚1
1 . . . B𝑥𝑚𝑛

𝑛

,𝑚 “ p𝑚1, . . . ,𝑚𝑛q.
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Further, we will find solutions to Problem 2 from the class 𝐶𝜆`2
`

Ω̄
˘

,
0 ă 𝜆 ă 1. Then a necessary condition for the existence of a solution
to Problem 2 from this class is the fulfillment of the following matching
conditions:

B
𝑚𝑔0p0, 𝑥2, . . . , 𝑥𝑛q “ p´1q𝑘B𝑚𝑔0p0, 𝜎2𝑥2, . . . , 𝜎𝑛𝑥𝑛q, 𝑥 P 𝐼,𝑚 “ 0, 1, 2, (5)

B
𝑚𝑔1p0, 𝑥2, . . . , 𝑥𝑛q“´p´1q𝑘B𝑚𝑔1p0, 𝜎2𝑥2, . . . , 𝜎𝑛𝑥𝑛q, 𝑥 P 𝐼,𝑚 “ 0, 1, 2.

(6)
In what follows, we assume that conditions (5), (6) are satisfied. As

𝐽0
𝜇𝑢p𝑥q “ 𝑢p𝑥q, then in the case 𝛼 “ 1 the operator 𝐷1

𝜇 coincides with

the operator 𝑟
B

B𝑟
` 𝜇. In this case, Problem 1 for 𝜇 ą 0 coincides with

the Robin problem, and in the case 𝜇 “ 0 it coincides with the Neumann
problem.

Note that boundary-value problems for an elliptic equation with frac-
tional-order boundary operators were studied in [1], [10], [12], [13], [18],
[24]. In these works, operators with Hadamard, Riemann-Liouville, Ca-
puto derivatives and some of their modifications were considered as bound-
ary operators.

Boundary-value problems with periodic and antiperiodic conditions for
the Poisson equation in circular domains were first studied in [14], [15],
and for the non-local analogue of the Poisson equation in the case 𝑛 “ 2
they were considered in [23]. Later, some generalizations of these problems
with conditions of the Dirichlet, Neumann, and Robin type, as well as the
Samarskii-Ionkin type, were studied in [16], [17], [19], [25].

Also note that the boundary conditions in the considered problems are
specified as a relationship between the values of the unknown function at
different points of the boundary. Problems of this type are usually called
non-local problems of the Bitsadze-Samarskii type [2], [3].

2. Properties of integro-differentiation operators. In this sec-
tion, we present some known properties of operators 𝐽𝛼𝜇 and 𝐷𝛼

𝜇 in the
class of smooth functions. The statements below clarify the conditions
for reversibility and action of these operators in the Hölder class. Note
that studies in this direction were conducted in [9], where the properties
of fractional differential operators associated with the derivative 𝑞 were
studied in the class of harmonic functions. The following statements were
proved in [18]:

Lemma 1. Let 𝛼 ą 0, 𝜇 > 0, 0 ă 𝜆 ă 1 and 𝑢 p𝑥q P 𝐶𝜆`𝑝
`

Ω̄
˘

, 𝑝 > 0.
Then
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1) if 𝜇 ą 0, then 𝐽𝛼𝜇 r𝑢s p𝑥q P 𝐶𝜆`𝑝
`

Ω̄
˘

;
2) if 𝜇 “ 0 and the condition 𝑢 p0q “ 0 is satisfied, the function

𝐽𝛼0 r𝑢s p𝑥q also belongs to the class 𝐶𝜆`𝑝
`

Ω̄
˘

and the equality
𝐽𝛼0 r𝑢s p0q “ 0 is satisfied.

Lemma 2. Let 𝜇 > 0, 𝑝 ´ 1 ă 𝛼 6 𝑝, 𝑝 “ 1, 2, . . . , 0 ă 𝜆 ă 1, and
𝑢 p𝑥q P 𝐶𝜆`𝑞

`

Ω̄
˘

, 𝑞 > 𝑝. Then the function 𝐷𝛼
𝜇 r𝑢s p𝑥q belongs to the class

𝐶𝜆`𝑞´𝑝
`

Ω̄
˘

and the equality 𝐷𝛼
0 r𝑢s p0q “ 0 is satisfied.

Lemma 3. Let 𝜇 > 0, 𝑝 ´ 1 ă 𝛼 6 𝑝, 𝑝 “ 1, 2, . . . , 0 ă 𝜆 ă 1 and
𝑢 p𝑥q P 𝐶𝜆`𝑞

`

Ω̄
˘

, 𝑞 > 𝑝. Then for any 𝑥 P Ω̄ the equality

𝐽𝛼𝜇
“

𝐷𝛼
𝜇 r𝑢s

‰

p𝑥q “

#

𝑢 p𝑥q , 𝜇 ą 0,

𝑢 p𝑥q ´ 𝑢 p0q , 𝜇 “ 0.

is valid.

Lemma 4. Let 𝜇 > 0, 𝑝 ´ 1 ă 𝛼 6 𝑝, 𝑝 “ 1, 2, . . . , 0 ă 𝜆 ă 1, and
𝑢 p𝑥q P 𝐶𝜆`𝑞

`

Ω̄
˘

, 𝑞 > 𝑝. Then for any 𝑥 P Ω̄ if 𝜇 ą 0 the equality

𝐷𝛼
𝜇

“

𝐽𝛼𝜇 r𝑢s
‰

p𝑥q “ 𝑢 p𝑥q (7)

is valid; in the case 𝜇 “ 0, equality (7) is also valid under the additional
condition 𝑢 p0q “ 0.

Lemma 5. Let 𝜇 > 0, 𝑝 ´ 1 ă 𝛼 6 𝑝, 𝑝 “ 1, 2, . . . , 𝑓 p𝑥q be a smooth
function in the domain Ω̄ and ´∆𝑢 p𝑥q “ 𝑓 p𝑥q, 𝑥 P Ω. Then the equality

´∆𝐷𝛼
𝜇 r𝑢s p𝑥q “ 𝐹 p𝑥q , 𝑥 P Ω, (8)

is valid, where
𝐹 p𝑥q “ 𝐷𝛼

𝜇`2 r𝑓 s p𝑥q . (9)

Lemma 6. If 𝜇 “ 0, 0 ă 𝛼 6 1, then for the function 𝐹 p𝑥q from
equality (9) there is a representation

𝐹 p𝑥q “

ˆ

𝑟
𝑑

𝑑𝑟
` 2

˙

𝑓1´𝛼 p𝑥q ,

where 𝑓1´𝛼 p𝑥q “ 𝐽1´𝛼
2 r𝑓 s p𝑥q .

3. Existence and uniqueness of a solution to Problem 1. Let
us introduce the notation

𝜀𝑘 “
2𝑛´1
ÿ

𝑖“0

p´1q𝑘b 𝑖𝑎𝑖, 𝑘 “ 0, 1, . . . , 2𝑛 ´ 1,
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where 𝑘 b 𝑖 “ 𝑘𝑛𝑖𝑛 ` ¨ ¨ ¨ ` 𝑘1𝑖1 is a “scalar” product of numbers p𝑘q2 and
p𝑖q2, p𝑖q2 “ p𝑖𝑛 . . . 𝑖1q2 is the notation of the index 𝑖 in the binary number
system.

Note that in case 𝑛 “ 2 the numbers 𝜀𝑘 “
3
ř

𝑖“0

p´1q𝑘b 𝑖𝑎𝑖, 𝑘 “ 0, 1, 2, 3,

are written as:
"

𝜀0 ” 𝜀p00q2 “ 𝑎0 ` 𝑎1 ` 𝑎2 ` 𝑎3,𝜀1 ” 𝜀p01q2 “ 𝑎0 ´ 𝑎1 ` 𝑎2 ´ 𝑎3,
𝜀2 ” 𝜀p10q2 “ 𝑎0 ` 𝑎1 ´ 𝑎2 ´ 𝑎3,𝜀3 ” 𝜀p11q2 “ 𝑎0 ´ 𝑎1 ´ 𝑎2 ` 𝑎3.

As we have already noted, in the case of the classical Dirichlet (𝛼 “ 0)
and Neumann (𝛼 “ 1, 𝜇 “ 0) boundary conditions, Problem 1 was inves-
tigated in [20]. The following statement was proved:

Theorem 1. Let 𝜇 “ 0, the coefficients of the operator 𝐿𝑛 be such that
the conditions 𝜀𝑘 ‰ 0, 𝑘 “ 0, 1, . . . , 2𝑛´1 are satisfied, and 𝑓p𝑥q P 𝐶𝜆

`

Ω̄
˘

,
𝑔p𝑥q P 𝐶𝜆`2 pBΩq, 0 ă 𝜆 ă 1. Then

1) if 𝛼 “ 0, then a solution to Problem 1 exists and is unique;

2) if 𝛼 “ 1, then for the solvability of Problem 1 it is necessary and
sufficient that the condition

ż

Ω

𝑓p𝑦q𝑑𝑦 `

˜

2𝑛´1
ÿ

𝑖“0

𝑎𝑖

¸

ż

Ω

𝑔p𝑦q𝑑𝑠𝑦 “ 0 (10)

is satisfied.

If a solution to the problem exists, then it is unique up to a constant term
and belongs to the class 𝐶𝜆`2

`

Ω̄
˘

.

Example. Let 𝑥˚ “ p´𝑥1,´𝑥2, . . . ,´𝑥𝑛q, 𝐻𝑚p𝑥q be a homogeneous har-
monic polynomial of degree 𝑚 and 𝑢p𝑥q “ p1 ´ |𝑥|2q𝐻𝑚p𝑥q. It is obvious
that 𝑢p𝑥q|

BΩ “ 0. Moreover, ∆𝑢p𝑥q “ 2 p2𝑚` 𝑛q𝐻𝑚p𝑥q. Hence,

𝑎0∆𝑢p𝑥q ` 𝑎1∆𝑢p𝑥
˚
q “ ´2 p2𝑚` 𝑛q r𝑎0𝐻𝑚p𝑥q ` 𝑎0𝐻𝑚p𝑥

˚
qs .

If the polynomial 𝐻𝑚p𝑥q has the property 𝐻𝑚p𝑥q “ 𝐻𝑚p𝑥
˚q and

𝑎0 ` 𝑎1 “ 0, then we see that the function 𝑢p𝑥q “ p1´ |𝑥|2q𝐻𝑚p𝑥q is
a solution to the following homogeneous problem

𝑎0∆𝑢p𝑥q ` 𝑎1∆𝑢p𝑥
˚
q “ 0, 𝑥 P Ω; 𝑢p𝑥q|

BΩ “ 0.
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It follows from this example that if the coefficients of the operator 𝐿𝑛
are such that the condition 𝜀𝑘 “ 0, 𝑘 “ 0, 1, . . . , 2𝑛 ´ 1, is satisfied, then
the homogeneous Problem 1 can have infinitely many solutions.

In the general case, the following statement is valid:

Theorem 2. Let 0 ă 𝛼 ă 1, 𝜇 > 0, the coefficients of the operator
𝐿𝑛 be such that the conditions 𝜀𝑘 ‰ 0, 𝑘 “ 0, 1, . . . , 2𝑛 ´ 1, are satisfied,
and 𝑓p𝑥q P 𝐶𝜆`1

`

Ω̄
˘

, 𝑔p𝑥q P 𝐶𝜆`2pBΩq, 0 ă 𝜆 ă 1. Then the following
statements hold:

1) if 𝜇 ą 0, then a solution to Problem 1 exists and is unique;
2) if 𝜇 “ 0, then for the solvability of Problem 1 it is necessary and

sufficient that the condition
ż

Ω

𝑓1´𝛼p𝑦q𝑑𝑦 `

˜

2𝑛´1
ÿ

𝑖“0

𝑎𝑖

¸

ż

Ω

𝑔p𝑦q𝑑𝑠𝑦 “ 0 (11)

is satisfied. If a solution to the problem exists, it is unique up to a
constant term;

3) if a solution to the problem exists, it is represented in the form

𝑢 p𝑥q “ 𝐽𝛼𝜇 r𝑣s p𝑥q , (12)

where the function 𝑣p𝑥q is a solution to the problem

𝐿𝑛𝑣p𝑥q “ 𝐹 p𝑥q, 𝑥 P Ω, (13)

𝑣 p𝑥q|
BΩ “ 𝑔p𝑥q, (14)

where 𝐹 p𝑥q “ 𝐷𝛼
𝜇`2r𝑓 sp𝑥q. In case 𝜇 “ 0, the function 𝑣p𝑥q satisfies

the additional condition 𝑣p0q “ 0;
4) if a solution to the problem exists, then 𝑢p𝑥q P 𝐶𝜆`2

`

Ω̄
˘

.

Proof. Let 𝜇 ą 0 and the function 𝑢 p𝑥q be a solution to Problem 1. Let us
consider the function 𝑣 p𝑥q “ 𝐷𝛼

𝜇𝑢 p𝑥q. If we apply the operator ∆ to this
function, then, by virtue of equality (8), we obtain ∆𝑣p𝑥q “ 𝐷𝛼

𝜇`2r∆𝑢sp𝑥q.
Let 𝑆 be an orthogonal matrix and 𝐼𝑆𝑢p𝑥q “ 𝑢p𝑆𝑥q. Then the operators 𝐼𝑆
and ∆, as well as 𝐼𝑆 and 𝐷𝛼

𝜇 , commute. Therefore, for all 𝑖 “ 0, . . . , 2𝑛´1

we get ∆𝑣p𝑆𝑖𝑛𝑛 . . . 𝑆𝑖11 𝑥q “ 𝐷𝛼
2 r∆𝑢sp𝑆

𝑖𝑛
𝑛 . . . 𝑆𝑖11 𝑥q and, hence,
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𝐿𝑛𝑣p𝑥q “
2𝑛´1
ÿ

𝑖“0

𝑎𝑖∆𝐷
𝛼𝑢p𝑆𝑖𝑛𝑛 . . . 𝑆𝑖11 𝑥q “

“ 𝐷𝛼
𝜇`2

«

2𝑛´1
ÿ

𝑖“0

𝑎𝑖∆
2𝑢p𝑆𝑖𝑛𝑛 . . . 𝑆𝑖11 𝑥q

ff

“ 𝐷𝛼
𝜇`2r𝑓 sp𝑥q, 𝑥 P Ω.

Moreover, from the boundary condition (2) it follows that

𝑣 p𝑥q|
BΩ “ 𝐷𝛼

𝜇r𝑢sp𝑥q
ˇ

ˇ

BΩ
“ 𝑔p𝑥q.

Thus, if 𝑢 p𝑥q is a solution to Problem 1, then for the function
𝑣 p𝑥q “ 𝐷𝛼

𝜇r𝑢sp𝑥q we obtain the Dirichlet problem (13), (14) with the
function 𝐹 p𝑥q “ 𝐷𝛼

𝜇`2r𝑓 sp𝑥q. If 𝑓 p𝑥q P 𝐶𝜆`1
`

Ω̄
˘

, then, due to Lemma 2,
we get 𝐷𝛼

𝜇`2 r𝑓 s p𝑥q P 𝐶𝜆
`

Ω̄
˘

. Then, by Theorem 1, for the functions
𝐹 p𝑥q “ 𝐷𝛼

𝜇`2r𝑓 sp𝑥q P 𝐶
𝜆
`

Ω̄
˘

and 𝑔 p𝑥q P 𝐶𝜆`2 pBΩq a solution to problem
(13), (14) exists, is unique, and 𝑣p𝑥q P 𝐶𝜆`2

`

Ω̄
˘

. If we apply the operator
𝐽𝛼𝜇 , to the equality 𝑣 p𝑥q “ 𝐷𝛼

𝜇 r𝑢s p𝑥q on both sides, then, by virtue of the
assertion of Lemma 3, we obtain 𝑢 p𝑥q “ 𝐽𝛼𝜇 r𝑣s p𝑥q, i. e., the solution to
the problem is represented in the form (12). The inverse assertion is also
valid, i.e., if the function 𝑣 p𝑥q is a solution to problem (13), (14), then
the function 𝑢 p𝑥q “ 𝐽𝛼𝜇 r𝑣s p𝑥q satisfies all the conditions of Problem 1.
Indeed, as 𝑣p𝑥q P 𝐶𝜆`2

`

Ω̄
˘

, by the assertion of Lemma 1 the function
𝑢 p𝑥q “ 𝐽𝛼𝜇 r𝑣s p𝑥q also belongs to the class 𝐶𝜆`2

`

Ω̄
˘

. Further, if we apply
the operator 𝐿𝑛 to the function 𝑢 p𝑥q “ 𝐽𝛼𝜇 r𝑣s p𝑥q, we get

𝐿𝑛𝑢 p𝑥q “ 𝐿𝑛
“

𝐽𝛼𝜇 r𝑣s
‰

p𝑥q “ 𝐽𝛼𝜇`2 r𝐿𝑛𝑣s p𝑥q “

“ 𝐽𝛼𝜇`2
“

𝐷𝛼
𝜇`2 r𝑓 s

‰

p𝑥q “ 𝑓p𝑥q, 𝑥 P Ω.

Therefore, function (12) satisfies equation (1). In addition, from equa-
lity (7) it follows that

𝐷𝛼
𝜇r𝑢s p𝑥q

ˇ

ˇ

BΩ
“ 𝐷𝛼

𝜇

“

𝐽𝛼𝜇 r𝑣s
‰

p𝑥q
ˇ

ˇ

BΩ
“ 𝑣 p𝑥q|

BΩ “ 𝑔p𝑥q,

i. e., the boundary condition is also satisfied.
Further, we will consider the case 𝜇 “ 0. In this case, for the func-

tion 𝑣 p𝑥q “ 𝐷𝛼
0 𝑢 p𝑥q we also obtain problem (13), (14) with the function

𝐹 p𝑥q “ 𝐷𝛼
2 r𝑓 sp𝑥q. In addition, by virtue of the assertion of Lemma 2, the

function 𝑣 p𝑥q “ 𝐷𝛼
0 𝑢 p𝑥q must satisfy the additional condition 𝑣p0q “ 0.

From Lemma 6 it also follows that the function 𝐹 p𝑥q “ 𝐷𝛼
2 r𝑓 s p𝑥q can be
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represented as 𝐹 p𝑥q “ p𝛿 ` 2q 𝑓1´𝛼 p𝑥q. Further, in [20] it is proved (see
problem (5.4)) that for the equality 𝑣p0q “ 0 to be satisfied, it is necessary
and sufficient that

ż

Ω

𝑓1´𝛼p𝑦q𝑑𝑦`

˜

2𝑛´1
ÿ

𝑖“0

𝑎𝑖

¸

ż

BΩ

𝑔p𝑦q𝑑𝑦 “ 0.

Thus, the necessity of fulfilling condition (11) for the existence of a solution
to Problem 1 is proved. The other part of the theorem is proved in the
same way as in the case 𝜇 ą 0. The theorem is proved. l

Remark 1. If 𝛼 “ 1 and 𝜇 “ 0, then 𝑓0 p𝑥q “ 𝐽0
2 r𝑓 s p𝑥q ” 𝑓 p𝑥q and

then the solvability condition (11) coincides with condition (10).

4. Existence and uniqueness of a solution to Problem 2. First,
let us study the uniqueness of the solution to Problem 2. The following
assertion is valid:

Theorem 3. Let coefficients of the operator 𝐿𝑛 be such that the condi-
tions 𝜀𝑝 ‰ 0, 𝑝 “ 0, 1, . . . , 2𝑛´ 1, are satisfied and a solution to Problem 2
exists. Then

1) if 𝑘 “ 1 and 𝛽 “ 0, then the solution is unique;
2) in other cases, the solution is unique up to a constant term.

Proof. Let the function 𝑢p𝑥q be a solution to the homogeneous Prob-
lem 2. In [20] it is proved (see Lemma 2) that under the condition 𝜀𝑘 ‰ 0,
𝑘 “ 0, 1, . . . , 2𝑛´1, the function 𝑢 p𝑥q satisfying the equation 𝐿𝑛𝑢p𝑥q “ 0,
𝑥 P Ω, is harmonic in Ω. Hence, 𝑢 p𝑥q satisfies the conditions of the
following problem:

∆𝑢p𝑥q “ 0, 𝑥 P Ω, (15)

𝐷𝛽
0𝑢p𝑥q ´ p´1q𝑘𝐷𝛽

0𝑢p𝑥
˚
q “ 0, 𝑥 P BΩ`, (16)

𝐷𝛼
0 𝑢p𝑥q ` p´1q𝑘𝐷𝛼

0 𝑢p𝑥
˚
q “ 0, 𝑥 P BΩ`. (17)

Let 𝑘 “ 1 and 𝑣p𝑥q “ 𝑢p𝑥q ´ 𝑢p𝑥˚q. Note that for any 𝑥 P Ω there is
the equality 𝑣p𝑥q “ 𝑢p𝑥q ´ 𝑢p𝑥˚q “ ´ r𝑢p𝑥˚q ´ 𝑢p𝑥qs “ ´𝑣p𝑥˚q.

Hence, if 𝑥 P BΩ`, then

𝐷𝛼
0 𝑣p𝑥q|BΩ` “ 𝐷𝛼

0 𝑢p𝑥q ´𝐷
𝛼
0 𝑢p𝑥

˚
q|
BΩ`

“ 0,

and if 𝑥 P BΩ´, then 𝑥˚ P BΩ` and

𝐷𝛼
0 𝑣p𝑥q|𝑥PBΩ´ “ ´ r𝐷

𝛼
0 𝑢p𝑥

˚
q ´𝐷𝛼

0 𝑢p𝑥qs|𝑥˚PBΩ` “ 0.
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Therefore, the function 𝑣p𝑥q satisfies the conditions of the problem

∆𝑣p𝑥q “ 0, 𝑥 P Ω, 𝐷𝛼
0 𝑣p𝑥q|BΩ “ 0. (18)

Then, by the assertion of Theorem 2 (case 𝑎0 “ 1, 𝑎𝑗 “ 0,
𝑗 “ 2, 3, . . . , 2𝑛 ´ 1) we get 𝑣p𝑥q ” 𝐶𝑜𝑛𝑠𝑡. As 𝑣p𝑥q “ ´𝑣p𝑥˚q, we see
that 𝑣p𝑥q ” 0, 𝑥 P Ω̄. Hence, 𝑢p𝑥q ” 𝑢p𝑥˚q, 𝑥 P Ω̄. From this equality
it follows that 𝐷𝛽

0𝑢p𝑥q ” 𝐷𝛽
0𝑢p𝑥

˚q, 𝑥 P BΩ. On the other hand, from
condition (16) we have 𝐷𝛽

0𝑢p𝑥q “ ´𝐷𝛽
0𝑢p𝑥

˚q, 𝑥 P BΩ`. So, we obtain
the equality 𝐷𝛽

0𝑢p𝑥q “ 0, 𝑥 P BΩ. Thus, the function 𝑢 p𝑥q satisfies the
conditions of the problem

∆𝑢p𝑥q “ 0, 𝑥 P Ω, 𝐷𝛽
0𝑢p𝑥q

ˇ

ˇ

ˇ

BΩ
“ 0. (19)

If 𝛽 “ 0, then problem (19) coincides with the Dirichlet problem and,
therefore, 𝑢p𝑥q ” 0, 𝑥 P Ω̄. If 𝛽 ą 0, then by the assertion of Theorem 2
we obtain 𝑢p𝑥q ” 𝐶. If 𝑘 “ 2, then for the function 𝑣p𝑥q “ 𝑢p𝑥q ´ 𝑢p𝑥˚q
we obtain the problem

∆𝑣p𝑥q “ 0, 𝑥 P Ω, 𝐷𝛽
0 𝑣p𝑥q

ˇ

ˇ

ˇ

BΩ
“ 0. (20)

In this case, for all 0 6 𝛽 ă 𝛼 we also get 𝑣p𝑥q ” 0, 𝑥 P Ω̄. Then
𝑢p𝑥q ” 𝑢p𝑥˚q, 𝑥 P Ω̄ and, hence, 𝐷𝛼

0 𝑢p𝑥q ” 𝐷𝛼
0 𝑢p𝑥

˚q, 𝑥 P Ω̄. On the other
hand, from condition (17) it follows that 𝐷𝛼

0 𝑢p𝑥q “ ´𝐷
𝛼
0 𝑢p𝑥

˚q, 𝑥 P BΩ`,
which is possible only in the case 𝐷𝛼

0 𝑢p𝑥q “ 0, 𝑥 P BΩ. Thus, the function
𝑢 p𝑥q satisfies the conditions of the problem

∆𝑢p𝑥q “ 0, 𝑥 P Ω, 𝐷𝛼
0 𝑢p𝑥q|BΩ “ 0. (21)

Then, by the assertion of Theorem 2 we obtain 𝑢p𝑥q ” 𝐶. The theorem
is proved. l

Let us consider the existence of a solution to Problem 2. In the case
𝑘 “ 1, the following assertion is valid:

Theorem 4. Let 𝑘 “ 1, and the coefficients of the operator 𝐿𝑛 be
such that the conditions 𝜀𝑝 ‰ 0, 𝑝 “ 0, 1, . . . , 2𝑛 ´ 1, are satisfied and
𝑔0p𝑥q, 𝑔1p𝑥q P 𝐶

𝜆`2 pBΩ`q, 𝑓p𝑥q P 𝐶𝜆
`

Ω̄
˘

, 0 ă 𝜆 ă 1. Then

1) if 𝛽 “ 0, then a solution to problem 2 exists and is unique;
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2) if 𝛽 ą 0, then for the solvability of Problem 2 it is necessary and
sufficient that the condition

ż

Ω

𝑓1´𝛼p𝑦q𝑑𝑦 `

˜

2𝑛´1
ÿ

𝑖“0

𝑎𝑖

¸

ż

BΩ`

𝑔0p𝑦q𝑑𝑠𝑦 “ 0 (22)

be satisfied.

If a solution to the problem exists, it is unique up to a constant term and
belongs to the class 𝐶𝜆`2

`

Ω̄
˘

.

Proof. Let 𝑘 “ 1 and 𝑢p𝑥q be the solution to Problem 2. Let us represent
this function as 𝑢p𝑥q “ 𝑣p𝑥q ` 𝑤p𝑥q, where

𝑣p𝑥q “
1

2
r𝑢p𝑥q ´ 𝑢p𝑥˚qs , 𝑤p𝑥q “

1

2
r𝑢p𝑥q ` 𝑢p𝑥˚qs .

Let us find the problems that the functions 𝑣p𝑥q and 𝑤p𝑥q satisfy. By
assumption, 𝑢p𝑥q satisfies equation (1), i. e.,

2𝑛´1
ÿ

𝑖“0

𝑎𝑖∆𝑢
`

𝑆𝑖𝑛𝑛 . . . 𝑆𝑖22 𝑆
1
1𝑥
˘

“ 𝑓p𝑥q, 𝑥 P Ω.

As the operators 𝐼
𝑆𝑗𝑛𝑛 ...𝑆

𝑗2
2 𝑆1

1

and ∆ commute, at the point 𝑥˚“𝑆𝑗𝑛𝑛 . . . 𝑆
𝑗2
2 𝑆

1
1𝑥

we get

2𝑛´1
ÿ

𝑖“0

𝑎𝑖∆𝑢
`

𝑆𝑖𝑛𝑛 . . . 𝑆𝑖22 𝑆
𝑖1
1 𝑥

˚
˘

“

2𝑛´1
ÿ

𝑖“0

𝑎𝑖∆𝐼𝑆𝑗𝑛𝑛 ...𝑆
𝑗2
2 𝑆1

1
𝑢
`

𝑆𝑖𝑛𝑛 . . . 𝑆𝑖22 𝑆
𝑖1
1 𝑥

˘

“

“ 𝐼
𝑆𝑗𝑛𝑛 ...𝑆

𝑗2
2 𝑆1

1

2𝑛´1
ÿ

𝑖“0

𝑎𝑖∆𝑢
`

𝑆𝑖𝑛𝑛 . . . 𝑆𝑖22 𝑆
𝑖1
1 𝑥

˘

“ 𝑓p𝑥˚q.

Hence, for the functions 𝑣p𝑥q and 𝑤p𝑥q we get:

𝐿𝑛𝑣p𝑥q “
1

2
r𝐿𝑛𝑢p𝑥q ´ 𝐿𝑛𝑢p𝑥

˚
qs “

1

2
r𝑓p𝑥q ´ 𝑓p𝑥˚qs ” 𝑓´p𝑥q, 𝑥 P Ω,

𝐿𝑛𝑤p𝑥q “
1

2
r𝐿𝑛𝑢p𝑥q ` 𝐿𝑛𝑢p𝑥

˚
qs “

1

2
r𝑓p𝑥q ` 𝑓p𝑥˚qs ” 𝑓`p𝑥q, 𝑥 P Ω.

It is clear, that if 𝑓p𝑥q P 𝐶𝜆`𝑘
`

Ω̄
˘

, 0 ă 𝜆 ă 1, 𝑘 “ 0, 1, . . . , then the
functions 𝑓˘p𝑥q also belong to the class 𝐶𝜆`𝑘

`

Ω̄
˘

.
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If 𝑥 P BΩ`, then, by virtue of condition (3), we have

𝐷𝛼
0 𝑣p𝑥q|BΩ` “

1

2
r𝐷𝛼

0 𝑢p𝑥q ´𝐷
𝛼
0 𝑢p𝑥

˚
qs

ˇ

ˇ

ˇ

ˇ

BΩ`

“
1

2
𝑔1p𝑥q,

and if 𝑥 P BΩ´, then 𝑥˚ P BΩ`, and thus:

𝐷𝛼
0 𝑣p𝑥q|BΩ´ “

1

2
r𝐷𝛼

0 𝑢p𝑥q ´𝐷
𝛼
0 𝑢p𝑥

˚
qs|
BΩ´

“

“ ´
1

2
r𝐷𝛼

0 𝑢p𝑥
˚
q ´𝐷𝛼

0 𝑢p𝑥qs|𝑥˚PBΩ` “ ´
1

2
𝑔1p𝑥

˚
q.

Similarly, taking into account condition (2) for the function 𝑤p𝑥q, we
obtain

𝐷𝛽
0𝑤p𝑥q

ˇ

ˇ

ˇ

BΩ`
“

1

2

”

𝐷𝛽
0𝑢p𝑥q `𝐷

𝛽
0𝑢p𝑥

˚
q

ı

ˇ

ˇ

ˇ

ˇ

BΩ`

“
1

2
𝑔0p𝑥q,

𝐷𝛽
0𝑤p𝑥q

ˇ

ˇ

ˇ

𝑥PBΩ´
“

1

2

”

𝐷𝛽
0𝑢p𝑥

˚
q `𝐷𝛽

0𝑢p𝑥q
ı

ˇ

ˇ

ˇ

ˇ

𝑥˚PBΩ`

“
1

2
𝑔0p𝑥

˚
q.

Let us introduce the functions

2𝑔0p𝑥q “

#

𝑔0p𝑥q, 𝑥 P BΩ`,

𝑔0p𝑥
˚q, 𝑥 P BΩ´,

2𝑔1p𝑥q “

#

𝑔1p𝑥q, 𝑥 P BΩ`,

´𝑔1p𝑥
˚q, 𝑥 P BΩ´.

Then, for 𝑣p𝑥q and 𝑤p𝑥q, we get the following problems:

𝐿 𝑛𝑣p𝑥q “ 𝑓´p𝑥q, 𝑥 P Ω; 𝐷𝛼
0 𝑣p𝑥q|BΩ “ 𝑔1p𝑥q, (23)

𝐿 𝑥𝑤p𝑥q “ 𝑓`p𝑥q, 𝑥 P Ω; 𝐷𝛽
0𝑤p𝑥q

ˇ

ˇ

ˇ

BΩ
“ 𝑔0p𝑥q. (24)

If 𝑔1p𝑥q P 𝐶𝜆`2 pBΩ`q and the matching condition (6) is satisfied, then
𝑔1p𝑥q P 𝐶

𝜆`2 pBΩq. Then, according to Theorem 2, for the solvability of
problem (23) it is necessary and sufficient that the condition

ż

Ω

𝑓´1´𝛼p𝑦q𝑑𝑦 `

˜

2𝑛´1
ÿ

𝑖“0

𝑎𝑖

¸

ż

BΩ

𝑔1p𝑦q𝑑𝑠𝑦 “ 0. (25)

be satisfied, where 𝑓´1´𝛼p𝑦q “
1

2
r𝑓1´𝛼p𝑦q ´ 𝑓1´𝛼p𝑦

˚
qs . If this condition is

satisfied, then the solution to the problem exists, and it is unique up to
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a constant term. Let us study the integrals in equality (25). In [22] it is
proved that if 𝑆 is an orthogonal matrix, then the equalities

ż

Ω

𝑓p𝑆𝑦q𝑑𝑦 “

ż

Ω

𝑓p𝑦q𝑑𝑦,

ż

BΩ´

𝑔p𝑆𝑦q𝑑𝑠𝑦 “

ż

BΩ`

𝑔p𝑦q𝑑𝑠𝑦. (26)

are valid.
From these equalities for the functions 𝑓´1´𝛼p𝑦q and 𝑔1p𝑦q, we get
ż

Ω

𝑓´1´𝛼p𝑦q𝑑𝑦 “
1

2

ż

Ω

r𝑓1´𝛼p𝑦q ´ 𝑓1´𝛼p𝑦
˚
qs 𝑑𝑦 “ 0,

ż

BΩ

𝑔1p𝑦q𝑑𝑠𝑦 “ 0.

Thus, the solvability condition (25) is satisfied and, therefore, a solu-
tion to problem (23) exists and is unique up to a constant term. As
the function 𝑣p𝑥q has the property 𝑣p𝑥˚q “´𝑣p𝑥q, this is possible only
in the case 𝐶 ” 0.

Now we can consider problem (24). If 𝛽 “ 0, then this problem coin-
cides with the Dirichlet problem and, therefore, according to Theorem 1,
the problem is unconditionally solvable. In the case 𝛽 ą 0, the solvability
condition is written as

ż

Ω

𝑓`1´𝛼p𝑦q𝑑𝑦 `

˜

2𝑛´1
ÿ

𝑖“0

𝑎𝑖

¸

ż

BΩ

𝑔0p𝑦q𝑑𝑠𝑦 “ 0. (27)

where
𝑓`1´𝛼p𝑦q “

1

2
r𝑓1´𝛼p𝑦q ` 𝑓1´𝛼p𝑦

˚
qs .

If this condition is satisfied, the solution to the problem exists and is
unique up to a constant term. Further, from equalities (26), for the inte-
grals from (27) we have:

ż

Ω

𝑓`1´𝛼p𝑦q𝑑𝑦 “
1

2

ż

Ω

r𝑓1´𝛼p𝑦q ` 𝑓1´𝛼p𝑦
˚
qs 𝑑𝑦 “

ż

Ω

𝑓1´𝛼p𝑦q𝑑𝑦,

ż

BΩ

𝑔0p𝑦q𝑑𝑠𝑦 “
1

2

»

–

ż

BΩ`

𝑔0p𝑦q𝑑𝑠𝑦 `

ż

BΩ´

𝑔0p𝑦
˚
q𝑑𝑠𝑦

fi

fl “

ż

BΩ`

𝑔0p𝑦q𝑑𝑠𝑦.

Then the solvability condition (27) can be rewritten as (22). Thus we
have found the conditions under which solutions to problems (21) and (24)
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exist. The function 𝑢p𝑥q “ 𝑣p𝑥q `𝑤p𝑥q constructed from the solutions to
these problems satisfies all the conditions of Problem 2. The theorem is
proved. l

The following assertion is proved in a similar way.

Theorem 5. Let 𝑘 “ 2, the coefficients of the operator 𝐿𝑛 be such that
the following conditions 𝜀𝑝 ‰ 0, 𝑝 “ 0, 1, . . . , 2𝑛 ´ 1, are satisfied, and
𝑔0p𝑥q, 𝑔1p𝑥q P 𝐶𝜆`2 pBΩ`q, 𝑓p𝑥q P 𝐶𝜆

`

Ω̄
˘

, 0 ă 𝜆 ă 1. Then, for the
solvability of Problem 2, it is necessary and sufficient that the condition

ż

Ω

𝑓1´𝛼p𝑦q𝑑𝑦 `

˜

2𝑛´1
ÿ

𝑖“0

𝑎𝑖

¸

ż

BΩ`

𝑔1p𝑦q𝑑𝑠𝑦 “ 0

be satisfied.
If a solution to the problem exists, then it is unique up to a constant

term and belongs to the class 𝐶𝜆`2
`

Ω̄
˘

.
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