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REFINEMENT OF ERDOS-LAX INEQUALITY FOR
N-OPERATOR

Abstract. Let P, be the space of all polynomials of degree less
than or equal to n. In this paper, we establish a refinement of
Erdos-Lax inequality in which the classical derivative (as an op-
erator on P,) is replaced by a B, operator. The result obtained
includes some interesting inequalities as special cases.

Key words: inequalities, N-operator, polynomaials, zeros

2020 Mathematical Subject Classification: 30406, 30A64,
30E10

1. Introduction. Let C denote the set of all complex numbers. For
a subset H < C, we denote by P,(H) < P, the set of all those polyno-
mials in P,, whose zeros lie in H. Further, let Q* = {z € C: |z| > 1},
O~ ={zeC: |z <1} and 02 = {z € C: |z| = 1}. For a complex function
f(z), the Hardy space g-norm is given by

£l = ( f|f wrzde), 0<q<o

It is a well known fact that lim |f(z)|, = rnaé(\f(z)\ and for this
q—%© z€0!

reason we write

|£(2) e = max | (2)].

The basic result on the extremal problems of Markov and Bernstein
type |26] was related with some investigations by the well-known Rus-
sian chemist Mendeleev [14]. Mendeleev’s problem, after some reductions,
was that if P(x) is an arbitrary quadratic polynomial and |P(z)| < 1 on
[—1,1], how large can |P’(x)| be on [—1,1]? Mendeleev himself found that
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|P'(x)| <4 on [—1,1], which is the best possible result with the extremal
polynomial P(z) =1 — 222

Later, in 1889, A. A. Markov [13] managed to solve the original prob-
lem of Mendeleev. In fact, Markov established that if P € P, is a polyno-
mial of degree n, such that |P(x)| < M for x € [a,b], then

|P'(z)] < Mn?.

Here the equality is attained only if

20 —a—0b
Plx)=+MT,| —— |,
() = 2, (2220

where T,,(z) = cos(n arccos x) are the Chebyshev polynomials.

An analogue of Markov’s theorem for the unit disk in the complex
plane instead of the interval [—1, 1] was formulated by Bernstein [5]. In
terms of the supremum norm, the Bernstein inequality [5] states that if
P(z) is a polynomial of degree n, then

[P'(2)]oe < 0l P(2)]co- (1)

There are many results on the aforementioned inequalities due to
Markov and Bernstein, and there are generalizations in various metrics
and restricted classes of polynomials. Several monographs and papers
have been published in this area (see, for example, [11], [19], [20], [25]).

For any P € P, of degree n, Zygmund [28] extended inequality (1) to
the integral mean and proved for ¢ > 1 that

[P'(2)]lq < nlP(2)]q (2)

De Bruijin and Springer [8] proved the inequality (2) for ¢ = 0, and
for the remaining values 0 < ¢ < 1, the inequality (2) was established by
Arestov [2]. Furthermore, we have the following inequality for R > 1:

|P(R2)]q < R P(2)]g,  q>0. (3)

Inequality (3) is a simple consequence of a result due to Hardy [10].

While restricting the zeros of P(z), De-Bruijin [7] refined inequality (2)
and established the fact that for every P € P,(2T u 0Q) and ¢ > 1, the
following inequality holds:

n

o <—
PG <

[2(2)llq- (4)
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The corresponding case of inequality (3) was verified by Boas and
Rahman [6] by proving the fact that

|R"z + 1Hq

|P(R2)q <
R PP

1P (2)]lgs for R>1and ¢ > 1. (5)

Inequalities (4) and (5) have also been proved for 0 < ¢ < 1 by Rahman
and Schmeisser [21].

An operator T: P, — P, is said to be a B,—operator if for every
polynomial P € P, that has all zeros in |z — 29| < 1 for some complex
number zg, the image T'[P] has all its zeros in |z — zp| < 1.

Now, for a polynomial P € P, of degree n, if we choose the complex
numbers Ag, A1, and A, such that

g(z) = Ao + (T) Az + <72l> No2?,

has all zeros in the half-plane |z| < |z — %], then it is an established fact
(see [15], corollary (18, 3)) that the polynomial

BN wrte o (5) P ()78

has all zeros in 2~ U €2 whenever P has all zeros in Q= U 02. This shows
that B is a B, operator. This operator was first investigated by Rah-
man [18]. He observed that Bernstein-type inequalities remain preserved
if the classical derivative is replaced by the operator B. In fact, in [18] it
is proved that if P € P, is of degree n, then for R > 1

|B[P(R2)][w < R"|A|[P(2)]w, (6)
where
2 30
A=A0+/\1%+>\2w. (7)

Clearly, inequality (6) yields Bernstein inequality (1) as a special case by
just choosing \yg = A =0 and R = 1.

Recently Rather and Shah [24] proved a more general result than (6)
by extending the sup-norm || - |, to the Hardy space g-norm. In fact, they
proved the following results:
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Theorem 1. If P e P,, then for R > 1 and 0 < q < 0, the following
inequality holds:

IBIP(R2)]]y < R*IA[[P(2)]q, (8)

n

where A is defined in (7). The result is sharp as shown by P(z) = az",
a# 0.

Theorem 2. IfPeP,(QT o), then for every R > 1 and 0 < ¢ < o0,
we have

HR”AZ + )\0

I e LLOI Q)

where A is defined in (7). The result is sharp and the extremal polynomial
is P(z) = az" + b, |a] = |b] # 0.

By introducing the minimum value of |P(z)| on |z| = 1, S. L. Wali [27]
proved the following refinement of Theorem 2:

Theorem 3. Let P e P,(Q2T U Q). Then, for every complex number 3
with || <1, R>1and 0 < ¢ < w0,

RA] = [Aof
2

‘RnAZ + )\()Hq

Jmisl], < EEL PG (10

\BIP(R:)] + (
where m = még |P(2)| and A is defined as in (7). The result is sharp and
ZE
equality holds if P(z) = 2" + 1.
It can be seen in [23| that the operator B has been recently extended

to an operator N: P, — P, by Rather et. al, who defined it by involving
first s derivatives of the underlying polynomial through the expression

s v P(V)
N[P(z)] := VZ_:())\V <%> V!(Z), VPeP, and zeC, (11)
where the numbers )\, for v = 0,1,...,s are chosen such that the poly-
nomial ¢(z) = >, ($)A,2” has all zeros in the half-plane Re(z) < 2. To

confirm that the_operator N is a B, operator, N. A. Rather et. al. [23]
first proved the following result:
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Theorem 4. If all zeros of a polynomial P(z) of degree n lie in |z| < k
and if all zeros of the polynomial

o(z) =X + (7}) M2z 4+ (Z) As2®, s < n,

lie in |z| < plz — |, p > 0, then the polynomial

h() = 2P() + M T P() 1, <OSZ')S

(s)

has all its zeros in |z| < kmax(1,u).

n

Taking u = 1, 0 = 5 and £ = 1 in Theorem 4, we observe that the
map N defined in (11) is a B,-operator.

It is pertinent to mention that the operator /N reduces to operator B by
simply choosing A, = 0 for v = 3,4,...,sin (11). Like the operator B, op-
erator N also preserves different types of inequalities involving a complex
polynomial. For instance, the following results obtained by A. Mir [16]
show that the Bernstein inequality in [4] and Erdés-Lax inequality in [12]
do not alter if the classical derivative is replaced by N-operator.

Theorem 5. If P e P, has degree n, then
IN[P(Rz)]lleo < R"IN[2"]| |P] oo, for ze 02 and R > 1. (12)

Equality holds in (12) if P(z) = az™, a # 0.
Theorem 6. If P e P,(Q" udQ), then for R > 1:

IN[P(R2)]]e < %{R”N[Z"] +1M[HP(2)w  for ze QT u Q. (13)

Equality in (13) holds for P(z) = vyz" 4+ 0 with || = |0] # 0.

The following theorem, which generalizes Theorem 2 to the Hardy-
space g-norm, has been recently established by A. Mir et. al [17].

Theorem 7. If P e P,(Q2" udf), then for any complex number o with
la| < 1,0 < p <o, and R > 1, the following holds:

(R — a)Asz + (1 — «
11+ 2]

IN[P(R2)] — aN[P()]], < Polaypay,. (14)
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The result is the best possible and equality holds in (14) for
P(z) =az" +b, |a| = [b] = 1.

Definition 1. (Admissible C,-operator) If P(z) = >, a,2" € P,,

then for any n + 1 dimensional complex vector v = (79,71, . .. ,7n) € C**1
Arestov [2] defined an operator C., acting on P(z) as

C,P(z) = Z Yy, 2.
v=0

The operator C., is said to be admissible if it preserves one of the following
properties:
(i) PeP,(2~ v dQ),
(il) P e P,(Q2F u Q).
In this paper, we establish a refinement of Theorem 7, which simulta-

neously provides the extension of inequality (13) in Hardy space g-norm.
In fact, we prove

Theorem 8. If P e P,(Q" U dN), then for o, € C with |a] < 1 and
f/<1L,R>r>1and0<q< w,

H|N[P(RZ)] —QN[P(TZ)“ + m’BMRn — O”nnHQAs| — ’1 — O‘H)‘OD

[(R™ — ar™) Az + (1 — «)
1T+ 2]l

<
q

Yoloy pyy,. (1)

~X

where m = min |P(z)| and Ay = Z Ay <E)V (n) with A\,,0 < v < s, such
2€0S) o 2 v

that the polynomial ¢(z) = Z (Z) A\2", s < n, has all zeros in the region
v=0

Re(z) < E. The result is sharp and equality holds for P(z) = ¢z" +d with

e = |d] = 1.

Assume that the polynomial ¢(z) has zeros as wy, ws, . .., ws; then

|wiws - - ws| = Jwi[fwsl - - Jws| < wy —n/2]jwy = n/2| - - |ws —n/2| =

=|oe = (5) vt 1 (5) |, (16)
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where o; are elementary symmetric polynomials in the zeros wq, ws, . . ., w;
for each i = 1,2,...,s and o9 = 1. Using Viéte formulae (see Rahman
and Schmeisser [22], p.6) in (16), we get [\g| < |As]. Again R > r > 1 and
|a| < 1; therefore, we have due to Lemma 8 (proved in lemma section):

R"
|R" — ar”||As| = r"|— — a‘]As] =1 —of|As] = |1 — af| Ao
TTL

This gives

INIP(R2)] = aN[P(r2)]l, < | IN[P(R2)] = aN[P(r2)]|+

L mIBIR" — ar™||As] — [1 = of[Aol)
2

)
q

which shows, after taking (r = 1), that Theorem 8 is a refinement of
Theorem 7. Further, if we take @ = 0 in Theorem 8, we get the following
result:

Corollary 1. If P e P,(Q* U d9), then for f € C with [B| <1, R > 1

and 0 < g < o0:

m|B](|R"[As| = [Aol)
2

HRnASZ + )\0

I
IP(),, (17
.S A, o (17)

INTP(R2)]| +

2€0Q)

where m = min |P(z)| and A; = ZS: A <g)u (Z) with A\,,0 < v < s, such
v=0

that the polynomial ¢(z) = Z (Z) 2", s < n, has all zeros in the region
v=0
Re(z) < % The result is sharp and equality holds for P(z) = c¢z" +d with
e = |d] = 1.
Taking s = 0 in the above Corollary 1, we get the following result.

Corollary 2. If P € P,(Qt v dQ), then for € C with |[5] < 1, R > 1
and 0 < ¢ < 0,

m|B[([R" = 1) _ [R"z+1]
P(Rz)| + | < 7| P(2)],, 18
||P(R2)] < T, P@k 9
where m = még\P(zﬂ The result is sharp and equality holds for
€

P(z) = cz™ +d with |c| = |d| = 1.
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If we let ¢ — o0 in (18), we get a generalization of the result due to
Ankeny and Rivilin [1].

Further if we choose A, = 0 for all v = 3,4,---,s in Theorem 8, we
obtain the following result:

Corollary 3. If P € P,(Q2T u dQ), then for o, 5 € C with |a| < 1 and
B]<1,R>r>1and0<q< w,

||B1p(R2)] - aB[p(ra) + T TN 1L = allo)

2 q
[(R™ — ar™)Az + Ao(1 — )|,
< A2 4200 = 0l
1T+ 2]lq

where A is defined as in (7). The result is the best possible and equality
holds for P(z) = az" + b with |a| = |b|] = 1.
Remark 1. For a =0, Corollary 3 reduces to Theorem 3.

Remark 2. If we make ¢ — oo in (15) and choose argument of 5 suitably,
we obtain the following inequality due to A. Mir [16]:

INTP(R=)] ~ aNTP(r)] | < 5[ (1R~ ar” [ Al 11~ al ol) [P
— (|R" = ar”|A,| — |1 — aH)\o])m],

with equality for P(z) = az™ + b with |a| = |b] = 1.
2. Lemmas. We need the following lemmas to prove our main theo-
rem.

Lemma 1. IfPeP,(Q v dQ), then N[P] e P,(Q2 v dN).

n

This lemma follows by taking ¥ = p = 1 and 0 = § in Theorem 4.

The next lemma is due to Govil et al. [9]:

Lemma 2. IfPeP,(Q v d), then for R > r > 1 we have

R+1
r+1

|P(Rz)| > ( ) |P(rz2)|  for z € Q.

The following lemma is due to A. Mir [16]:

Lemma 3. If P e P,(2" udQ), then for every complex number o with
la| <1 and R > r > 1, we have, for z € 0Q:

IN[P(Rz)] = aN[P(rz)]| < [N[P*(Rz)] = aN[P*(rz)]],
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where P*(z) = z"P(%). The result is sharp and equality holds if
P(z) =z2"+1.

The next lemma is due to Arestov (|2], Theorem 2).

Lemma 4. Let ®(x) = ¢ (logx), where ¢ is a convex non-decreasing
function on R. Then for all P € P,, and each admissible operator C.:

2 2

| eespennas < | ateipe .

0 0

where c(v) = max(|yo|, |7n|)-

In particular, Lemma 4 applies with ®(z): z — 27 for every ¢ € (0, o)
and with ®(z): x — logx, so, we have for 0 < g < o0:

J|O P16} < J|P i |qd6 (19)

Lemma 5. If P e P,(Q" u df), then for every o € C with |a| < 1
q>0,R>r>1, and real ¢, 0 < ¢ < 27:

[ Ivteeae — antpeenyiens

+ [N[P*(Re®)]* — aN[P*(reé®)]*|| d0 <

< (R — ar")ASei‘b + Xo(1 —a@)|? J |P(ew)|qd€,

where A, is defined as in Theorem 8, P*(z) = z"P (%), and
N[P*(z)]* := (N[P*(2)])*. The result is sharp and equality holds if
P(z) =2"+1.

Proof. Since P € P,(Q% U 09), therefore, by Lemma 3, we have for every
complex number « with |o| < 1and R>r > 1

IN[P(Rz)] — aN[P(rz)]| < |N[P*(Rz)] — aN|[P*(rz)]|, z€ 02. (20)
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Now,

P*(Rz) — aP*(rz) = R”z"P(é) - ar”z”P(—).

Therefore,

N[P*(Rz) — aP*(rz)] = N[P*(Rz)] — aN[P*(rz)] =
=X\ {R”z"P (1/Rz) —ar"z"P (1/rz) ¢ +

X (%) [(nrra POTRE) — R 2P (1RR) ) -

— a(nr”z”_lm — pnln=2pr (1/r2))]+

G (e

S

o (n—s+ )R"2"*P(1/Rz) — <1>(n “1)n—2)---

coo(n—s+ 1R (1/RE) + - +
+ (=1 ()R PO (1RD) | -
- a{(é)n(n —1)(n—2)---
co(n—s+ 1" P (1/rz) — G)(n— n—2)---
coo(n— s+ 1) P (1 /rE) +

+ -+ (-1)° <z> r”_sz”_%m}] =

S (5 Sev e ) P

k=0

— ar"*p®) (1/7’2)].
This gives

N[P*(R2)]" = aN[P*(r2)]" = (N[P*(R2)] — aN[P"(r2)]) " =

(Y L (R TR

o1
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ar™kp® (2 /r) ]
Further, for z € 02, we have
IN[P*(Rz)] — aN[P*(r2)]| = [N[P*(R2)]* — aN[P*(rz)]];
using this fact in (20), we get for z € 0Q and R > r > 1, that
IN[P(Rz) — aN|[P(rz)]| < |[N[P*(Rz)]* — aN[P*(rz)]*|.
Since P € P,(Q" U 0Q) implies P* € P,(27), therefore, by Lemma 2, we
have for R > r > 1 and z € 0§

P (L) 1) = Pl

This gives, by the application of Rouche’s Theorem, that for every real or
complex number « with |a| < 1, the polynomial P*(Rz) — aP*(rz) has
all zeros in 2. Therefore, using linearity of the operator N, it follows by
Lemma 1 that the polynomial N[P*(Rz)|—aN[P*(rz)] has all zeros in 2~
and, hence, (N[P*(Rz)]—aN[P*(rz)])*= N[P*(Rz)]*—aN[P*(rz)]* # 0
for |z| < 1. Therefore, by the maximum modulus principle, we have for
ze

IN[P(Rz)] — aN[P(rz)]| < |N[P*(Rz)]* — aN[P*(rz)]*|. (21)

Inequality (21) implies for P(z) = a,2" + - - - + ao that operator C, taking
P(2) to

C,P(z) = (N[P(Rz)] — aN[P(rz)]))e” + (N[P*(Rz)]" —aN[P*(rz)]") =

— {7~ ar (Z)\k( ()) (1= a)o banz"+
bt {(Rn_m) (Z o (g)k (z)) +e(1 —04))\0}&0,

is an admissible operator. Therefore, applying inequality (19) of Lemma 4
with ¢(y) = (R™ — ar™)A.e™ + (1 — @)\, we get

J ‘(N[P(Rz)] — aN[P(rz)])e” + N[P*(Rz)]* — aN[P*(rz)]*

0

q

do <
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2m
< (B — ar)Aue® 4+ (1 — a)ho|' J () |7do.
0

Equivalently, since ¢ is arbitrary,

q

do <

J ‘|N[P(Rei9)]—o¢N[P(rew)] "+ |N[P*(Re™)* —aN[P*(re)]*|

27
< |(R™ — ar™Age™ + (1 — a)l? J ]P(ew)]qu,
0

which is the desired inequality. []

Lemma 6. IfPe P,(Q"udQ), then foreveryq>0,R>r>1, |a] <1
and real ¢, 0 < ¢ < 2m, we have:

21 27

[ [Iwtpen - anteeens

+ €| N[P*(Re)] — aN[P*(re?)]| qd9d¢ <

27 27
< f |(R" — ar")Asei‘z’ + Ao(1 — a)\qd¢J ]P(ew)]qu,
0 0

where A, is defined as in Theorem 8.

Proof. Since for 0 < 0 < 27
[N[P*(Re”)]* — aN[P*(re”)]*| = [N[P*(Re")] — aN[P*(re”)]|,
therefore, for ¢ > 0, R >r > 1 and 0 < 6 < 27 fixed, we have

21

H|N[P(Rei9)] — aN[P(re")]|+

q

+ e?|N[P*(Re™)] — aN[P*(re”)]|| d¢ =



54 F. A. Bhat

2

- f ‘|N[P(Re“’)] — aN[P(re®)]|e

q

+ |[N[P*(Re™)] — aN[P*(re)]|| dp =

- T'\N[Pwa@)] — aN[P(re)]|e +

+ |[N[P*(Re™)]* — aN[P*(re)]*| ngb. (22)

Integrating both sides of (22) with respect to € from 0 to 27 and applying
Lemma 5, we get

21 21

J f ‘|N[P(Re“’)] — aN[P(re®)]|+

+ NP (Re)] — aN[P*(re?)] | dods -
= TT‘W[P(RJ@)] — aN[P(re")]|e" +
. + |N[P*(Re)]* — aN[P*(re?)]*| qd¢d9 =
- Tmzv[P(Rem — aN[P(re")]je+
o + |[N[P*(Re™)]* — aN[P*(re)]¥| qd&] do <
< T!(R” —ar") A + Ao(1 — &)\qdd)T!P(e”)\qd@ =
= T|(R” —ar™) A 4+ N\o(1 — a)|?do T|P(ei9)|qd9.

This completes the proof of Lemma 6. []
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Note that none of the inequalities in lemmas 2, 4, and 6 are known to
be sharp.
The next lemma is due to Aziz and Shah [3].

Lemma 7. Let L, M, and N be non-negative real numbers, such that
M + N < L; then for every real number ¢:

(L —N)+e“(M+ N)| <I|L+e’M)|.

Lemma 8. Let a,b be real numbers and o be real or complex, such that
la| <1< a<b;then

la —a| <|b—al.

Proof. If « is real, then the result is trivial. So let a = x + iy, where
x,y € R; then z < |a| <1 < a < b. This gives

a—r<b—2 = (a—2)*<(b—2)> = Ja—a|<|b—al

This proves the lemma. []

3. Proof of Theorem 8. If P(z) has a zero on |z| = 1, then
m = min,eon |P(2)] = 0 and the result follows from Theorem 7. Suppose
that P(z) has no zero on |z| = 1, so that m > 0, and we have

m|Bz" < [P(z)],

on |z| = 1, for every real or complex number § with |3| < 1. Therefore,
by Rouche’s Theorem, the polynomial h(z) = P(z) + fmz" is in P,(Q21).
Applying Lemma 3 to h(z), we get for z € 0€2:

IN[1(Rz)] = aN[h(rz)]| < [N[h*(Rz)] — aN[h*(r2)]],

where h*(z) = 2"h(2). This gives
IN[P(Rz)] — aN[P(rz)] + mp(R" — ar™)N|[2"]| <
< IN[P*(R2)] — aN[P*(rz)] + fmAo(1 — )|, (23)

for z € 0€). Choosing the argument of 3 suitably in the left-hand side
of (23) and noting that N is a linear operator, we get for z € 92
IN[P(R2)] = aN[P(rz)]| + m|B||R" — ar”|[An] <

< IN[P*(R2)] — aN[P*(r2)]| + mlBlI1 — al Aol
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Equivalently, we have for z € 0:

j IR —artliAn] =11~ alab)
< IN[P*(R2)] — aN[P*(r2)]| — TAIUE" = arl[Am] = [1 = allAol)

2
(24)

IN[P(Rz)] — aN[P(rz)]]

Now define non-negative numbers L = |N[P*(Rz)] — aN[P*(rz)]| and

M = |N[P(Rz)]—aN[P(rz)]|. At the end of the statement of Theorem 8,

we have proved that the number N = {'Rn*MnHA’Q”Fu*O"')‘O‘ }m|B| is non-

negative. Hence, from (24) we have M + N < L — N < L. Therefore,
invoking Lemma 7, we get for every real ¢ and z € 0f) that
m|B|(|R" — ar™[|As| — |1 — af|Ao])
N|[P* — aN|P* —
INIP*(R2)] = aN[P*(r2)]| 5 +
+ei¢<|N[P(RZ)] _ aN[P(rz)]| + mWWR —ar H2As,_ |1 — a")\(]’))‘ <

< IN[P*(Rz)] — aN[P*(rz)]| + €|N[P(Rz)] — aN[P(rz)]|.

The inequality above gives for each ¢ > 0 and 0 < 6 < 27
2m 2
J]U(@) + eV (9)]7d0 < J IN[P*(Re™)] — aN[P*(re™)]|+
0 0
+ |N[P(Re™)] — aN[P(re')]|%dg, (25)

where

U(0) = IN[P*(Re")] — aN[P*(re”)]|-
_ m[B[([R" = ar"[[As] = |1 = af|Adl)
5 ,

V(0) = |[N[P(Re®)] — aN[P(re®)]|+
N m|B|(|R" — ar™[|As| — [1 — af[Ao])
5 .

Integrating both sides of inequality (25) with respect to ¢ from 0 to 2,
we get
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21 21 21 21

J f U(6) + €9V (6)|dbdg < f J INLP*(Re?)] — aN[P*(re®)]|+

0 0
+ é?|N[P(Re?)] — aN[P(re))|| d0do.

Applying Lemma 6, we obtain for every real ¢ and 0 < 0 < 2m:

21 21

JJ \U(0) + eV (0)|7d0dp <

0 21 21

< f|(R” —ar™) A + (1 — a)|qd¢f |P(e)]7d6. (26)
0 0

Since for every real ¢ and t > 1, we have |t + €'®| > |1 + €|, which gives
for ¢ > 0 that

2 2
f|t +e?|%dg > J 11+ €e*|9dep. (27)
0 0

Now, if V() # 0, then from (24) we have t = % > 1. This gives, with
the help of (27), that

[+ eviepas = v [ |7+

0

ngzﬁ _

2 2

W[99 el as > v [+ pas. s)

Clearly, inequality (28) is already true when V' (6) = 0. Hence, for every 0
with 0 < 0 < 27, we have:

2
J \U(6) + eV (0)|%d¢ > ||N[P(Re™®)] — aN[P(re®)]|+
0

n m|B|(|R" — ar”|\2/\s| — |1 —af|A

2
)14 .
11+ e*|%dg. (29)
‘ OJ + e



58 F. A. Bhat

Now, integrating both sides of inequality (29) with respect to 6 and
using inequality (26), we get

2
| Ivp(re) = anpirey+
0 2
I m|B|(|R" — ar ||2AS| — |1 —af[Ao]) ‘qdej 1+ €i¢>|qd¢ <
21 0 21

/N

J |(R" — ar”)ASeid) + Ao(1 — a)\%kbj |P(ei9)]qd0,
s 0

for every 8 with |5 < 1,R>r > 1, ¢ > 0, real «, and 0 < 6 < 2x. This,
in particular, gives

L mIBIR" — ar™||As] — [1 = of[Aol)

|INIP(R2)] = aN[P(r2)]|

2 q
[(R" — ar™)Asz + Ao(1 — )|
< Azt 000 oy,
11+ 2],

This completes the proof.

Acknowledgment: The author is highly indebted to the referees for their
valuable suggestions.
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