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1. Introduction and Preliminaries. One of the inequalities that

exist in the theory of majorant series 𝑀𝑓 p𝑟q “
8
ř

𝑛“0

|𝑎𝑛|𝑟
𝑛, is the classical

Bohr inequality established by Harald Bohr [3] in 1914. The inequality of
Bohr [3] is stated as follows:

Theorem A. If 𝑓p𝑧q “
8
ř

𝑛“0

𝑎𝑛𝑧
𝑛 is analytic in the unit disk D “ t𝑧 P

C : 𝑧 ă 1u and |𝑓p𝑧q| ă 1 for all 𝑧 P D, then
8
ÿ

𝑛“0

|𝑎𝑛||𝑧|
𝑛
“

8
ÿ

𝑛“0

|𝑎𝑛|𝑟
𝑛 6 1 for 𝑟 6

1

3
. (1)

The number 1{3 cannot be improved.

Initially, Bohr [3] obtained this inequality for 𝑟 6
1

6
and was thereafter

independently sharpened by Riesz, Schur, and Wiener for 𝑟 6
1

3
. Thus,

the constant 1{3 is now referred to in the literature as the classical Bohr
radius.

Now, let ℬ denote the class of analytic functions 𝑓 on the unit disk
D “ t𝑧 P C : |𝑧| ă 1u, such that |𝑓p𝑧q| ă 1. Several researchers have stud-
ied Bohr’s inequality for 𝑓p𝑧q P ℬ in various settings and the inequality
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has been extended to some special functions, such as harmonic mapping,
univalent and convex functions, locally univalent harmonic mapping, etc.;
for example, (see [7], [14]). Other extensions and improvements in this
topic include [9], [10], [11], [12], [13], [15], [16]. The following concept of
harmonic mappings in the complex plane was discussed by Duren in [6].

A complex-valued function 𝑓p𝑧q “ 𝑢p𝑥, 𝑦q ` 𝑖𝑣p𝑥, 𝑦q is said to be har-
monic (harmonic mapping) if the real and imaginary parts 𝑢 and 𝑣 satisfy
the Laplace equation △𝑓 “ 0. If 𝑓p0q “ ℎp0q, then 𝑓p𝑧q can be written in
the canonical form

𝑓p𝑧q “ ℎp𝑧q ` 𝑔p𝑧q “
8
ÿ

𝑛“0

𝑎𝑛𝑧
𝑛
`

8
ÿ

𝑛“1

𝑏𝑛𝑧𝑛,

where 𝑔p0q “ 0, ℎp𝑧q is called the analytic part and 𝑔p𝑧q is called the
co-analytic part of 𝑓 . The Jacobian of 𝑓 is given by

𝐽𝑓 p𝑧q “ |ℎ
1
p𝑧q|2 ´ |𝑔1p𝑧q|2. (2)

We say that 𝑓 is sense-preserving if 𝐽𝑓 p𝑧q ą 0. In view of Levi’s
Theorem (see, for example [5], [6], [13]), 𝑓 is locally univalent and sense-
preserving if and only if 𝐽𝑓 p𝑧q ą 0. That is, if |𝑔1p𝑧q| ă |ℎ1p𝑧q|. Kayumov
et al. [14] established the Bohr inequality for sense-preserving harmonic
mappings in some settings; we state several of their results in the following
theorems:

Theorem B. Suppose that 𝑓p𝑧q “ ℎp𝑧q ` 𝑔p𝑧q “
8
ř

𝑛“0

𝑎𝑛𝑧
𝑛`

8
ř

𝑛“1

𝑏𝑛𝑧𝑛 is a

sense-preserving harmonic mapping of the disk D, where ℎ is a bounded
function in D. Then

|𝑎0| `
8
ÿ

𝑛“1

|𝑎𝑛|𝑟
𝑛
`

8
ÿ

𝑛“1

|𝑏𝑛|𝑟
𝑛 6 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 6

1

5
, (3)

and the number 1{5 is sharp. Moreover, if 𝑎0 “ 0 or |𝑎0| in (3) is replaced
by |𝑎0|2, then the constant 1{5 could be replaced by 1{3, which is also
sharp.

Theorem C. Suppose that 𝑓p𝑧q “ ℎp𝑧q ` 𝑔p𝑧q “
8
ř

𝑛“0

𝑎𝑛𝑧
𝑛`

8
ř

𝑛“1

𝑏𝑛𝑧𝑛 is a

sense-preserving harmonic mapping of the disk D, where ℎ is a bounded
function in D. Then

|𝑎0| `
8
ÿ

𝑛“1

|𝑎𝑛|𝑟
𝑛
`

8
ÿ

𝑛“2

|𝑏𝑛|𝑟
𝑛 6 1 for 𝑟 6 0.2942 . . . . (4)
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The number 0.2942 . . . cannot be replaced by a number greater than
𝑅 “ 0.299825 . . . , where 𝑅 is the positive root of the equation

4𝑅

1´𝑅
` 2 lnp1´𝑅q “ 1.

The main purpose of this paper is to obtain some sharp Bohr-type
radii versions of Theorems B and C by replacing |𝑎0| with the Taylor

series coefficient |ℎp𝑧q|, |𝑎1| with |ℎ1p𝑧q|, |𝑎2| with
|ℎ2p𝑧q|

2!
and then |𝑎𝑛|

with order
|ℎp𝑛qp𝑧q|

𝑛!
. For this purpose, we need the following well-known

lemmas.

Lemma 1. [16] If ℎp𝑧q “
8
ř

𝑛“0

𝑎𝑛𝑧
𝑛 is analytic on the unit disk D and

|ℎp𝑧q| 6 1 for all 𝑧 P D. Then

|ℎp𝑧q| 6
𝑟 ` |𝑎0|

1` |𝑎0|𝑟
, 𝑤ℎ𝑒𝑟𝑒 𝑟 “ |𝑧| 𝑎𝑛𝑑 |𝑎0| P r0, 1q. (5)

Lemma 2. [16] If ℎp𝑧q “
8
ř

𝑛“0

𝑎𝑛𝑧
𝑛 is analytic and |ℎp𝑧q| ă 1 all 𝑧 P D,

then for 𝑛 “ 1, 2, . . . , have

|ℎp𝑛qp𝑧q| 6
𝑛! p1´ |ℎp𝑧q|2q

p1´ |𝑧|2q𝑛
p1` |𝑧|q𝑛´1, |𝑧| ă 1. (6)

Lemma 3. [11] Suppose ℎp𝑧q “
8
ř

𝑛“0

𝑎𝑛𝑧
𝑛 with ℎp𝑧q P ℬ. Then

8
ÿ

𝑛“1

|𝑎𝑛|𝑟
𝑛 6 𝑟

1´ |𝑎0|
2

1´ |𝑎0|𝑟
, for 𝑟 6

1

3
. (7)

Lemma 4. [11] Let ℎp𝑧q “
8
ř

𝑛“0

𝑎𝑛𝑧
𝑛 with ℎp𝑧q P ℬ, then

8
ÿ

𝑛“1

|𝑎𝑛|
2𝑟𝑛 6

p1´ |𝑎0|
2q2𝑟

1´ |𝑎0|2𝑟
, for 𝑟 ă 1. (8)
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Lemma 5. [11] Let ℎp𝑧q “
8
ř

𝑛“0

𝑎𝑛𝑧
𝑛 and 𝑔p𝑧q “

8
ř

𝑛“0

𝑏𝑛𝑧
𝑛 with ℎ P ℬ and

|𝑔1p𝑧q| 6 |ℎ1p𝑧q|. Then

8
ÿ

𝑛“0

|𝑏𝑛|
2𝑟𝑛 6

8
ÿ

𝑛“0

|𝑎𝑛|
2𝑟𝑛. (9)

Lemma 6. [4] If 𝑓p𝑧q “ ℎp𝑧q ` 𝑔p𝑧q is a sense-preserving harmonic
mapping with 𝑔1p0q “ 0, then

8
ÿ

𝑛“2

𝑛|𝑏𝑛|𝑟
𝑛 6

8
ÿ

𝑛“2

ˆ

𝑛´ 1

𝑛

˙

|𝑎𝑛´1|𝑟
𝑛, 𝑛 > 2. (10)

2. Main Results.

Theorem 4. Suppose that 𝑓p𝑧q “ ℎp𝑧q ` 𝑔p𝑧q “
8
ř

𝑛“0

𝑎𝑛𝑧
𝑛 `

8
ř

𝑛“1

𝑏𝑛𝑧𝑛 is

a sense-preserving harmonic mapping of the disk D, where |ℎp𝑧q| ă 1 for
𝑧 P D. Then

𝑀ℎ,𝑔p𝑟q “ |ℎp𝑧q| `
8
ÿ

𝑛“1

p|𝑎𝑛| ` |𝑏𝑛|q𝑟
𝑛 6 1 for 𝑟 6 𝑅1 “

2
?

3´ 3

3
, (11)

where 𝑟 “ |𝑧| and the constant 𝑅1 cannot be improved. Moreover,

|ℎp𝑧q|2 `
8
ÿ

𝑛“1

p|𝑎𝑛| ` |𝑏𝑛|q𝑟
𝑛 6 1 for all 𝑟 6 𝑅2 “

?
5´ 2, (12)

and the constant 𝑅2 cannot be improved.

Proof. Let |𝑎0| “ 𝑎. Then, by the classical Cauchy-Schwarz inequality
and Lemmas 4 and 5, we have

8
ÿ

𝑛“1

|𝑏𝑛|𝑟
𝑛 6

g

f

f

e

8
ÿ

𝑛“1

|𝑏𝑛|2𝑟𝑛

g

f

f

e

8
ÿ

𝑛“1

𝑟𝑛 6

g

f

f

e

8
ÿ

𝑛“1

|𝑎𝑛|2𝑟𝑛

g

f

f

e

8
ÿ

𝑛“1

𝑟𝑛 6

6

d

𝑟
p1´ 𝑎2q2

1´ 𝑎2𝑟

c

𝑟

1´ 𝑟
“

𝑟p1´ 𝑎2q
a

p1´ 𝑟qp1´ 𝑎2𝑟q
. (13)
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From (11) and applying (13), Lemma 1 and, Lemma 3, we have

𝑀ℎ,𝑔p𝑟q “ |ℎp𝑧q| `
8
ÿ

𝑛“1

|𝑎𝑛|𝑟
𝑛
`

8
ÿ

𝑛“1

|𝑏𝑛|𝑟
𝑛 6

6
𝑎` 𝑟

1` 𝑎𝑟
` 𝑟

1´ 𝑎2

1´ 𝑎𝑟
`

𝑟p1´ 𝑎2q
a

p1´ 𝑟qp1´ 𝑎2𝑟q
“ 𝑃 p𝑎, 𝑟q,

where
𝑃 p𝑎, 𝑟q “

𝑎` 𝑟

1` 𝑎𝑟
` 𝑟

1´ 𝑎2

1´ 𝑎𝑟
`

𝑟p1´ 𝑎2q
a

p1´ 𝑟qp1´ 𝑎2𝑟q
. (14)

Easy computations show that for each fixed 𝑟 P r0, 2
?
3´3
3
s, 𝑃 p𝑎, 𝑟q is a

strictly increasing function of 𝑎 P r0, 1s. Since |𝑎0| “ 𝑎 ă 1, then for each
fixed 𝑟 P r0, 2

?
3´3
3
s, 𝑃 p𝑎, 𝑟q ă 𝑃 p1, 𝑟q, that is,

𝑃 p𝑎, 𝑟q ă
1` 𝑟

1` 𝑟
` 0` 0 “ 1.

Therefore, for each fixed 𝑟 P r0, 2
?
3´3
3
s, 𝑀ℎ,𝑔 6 𝑃 p𝑎, 𝑟q ă 1. We now need

to show that for each fixed 𝑟 P r0, 2
?
3´3
3
s, 𝑃 p𝑎, 𝑟q is a strictly increasing

function of 𝑎 P r0, 1s.

Now, differentiating 𝑃 p𝑎, 𝑟q w.r.t. 𝑎, we obtain

B𝑃 p𝑎, 𝑟q

B𝑎
“

1´ 𝑟2

p1` 𝑎𝑟q2
` 𝑟

p𝑟 ´ 2𝑎` 𝑎2𝑟q

p1´ 𝑎𝑟q2
`

𝑎𝑟p𝑎2𝑟 ` 𝑟 ´ 2q

p1´ 𝑎2𝑟q
a

p1´ 𝑟qp1´ 𝑎2𝑟q
,

B2𝑃 p𝑎, 𝑟q

B𝑎2
“ ´

2𝑟p1´ 𝑟2q

p1` 𝑎𝑟q3
´

2𝑟p1´ 𝑟2q

p1´ 𝑎𝑟q3
´

𝑟p2´ 𝑟 ` 𝑎2𝑟 ´ 2𝑎2𝑟2q

p1´ 𝑎2𝑟q2
a

p1´ 𝑟qp1´ 𝑎2𝑟q
.

It is easy to see (with simple computations) that
B2𝑃 p𝑎, 𝑟q

B𝑎2
6 0 for

𝑎 P r0, 1q and 𝑟 P p0, 1q. For |𝑎0| “ 𝑎 ă 1, clearly,
B𝑃 p𝑎, 𝑟q

B𝑎
ą
B𝑃 p1, 𝑟q

B𝑎
.

Thus
B𝑃 p𝑎, 𝑟q

B𝑎
ą 0 if

B𝑃 p1, 𝑟q

B𝑎
> 0, which is equivalent to

1´ 𝑟2

p1` 𝑟q2
` 𝑟

2𝑟 ´ 2

p1´ 𝑟q2
`
𝑟p2𝑟 ´ 2q

p1´ 𝑟q2
> 0,

and simplifying gives

3𝑟3 ` 9𝑟2 ` 5𝑟 ´ 1 “ 3p1` 𝑟q
´

𝑟 `
3` 2

?
3

3

¯´

𝑟 `
3´ 2

?
3

3

¯

6 0. (15)
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Thus, for 𝑟 P p0, 1q, (15) holds only if 𝑟 6
2
?

3´ 3

3
.

To complete the proof, we need to show the sharpness of the constant

𝑅1 “
2
?

3´ 3

3
. To do this, choose 𝑎 P r0, 1q and consider the function

𝑓p𝑧q “ ℎp𝑧q ` 𝑔p𝑧q, where

ℎp𝑧q “
𝑎´ 𝑧

1´ 𝑎𝑧
“ 𝑎´ p1´ 𝑎2q

8
ÿ

𝑛“1

𝑎𝑛´1𝑧𝑛 “ 𝑎`
8
ÿ

𝑛“1

𝑎𝑛𝑧
𝑛, 𝑧 P D, (16)

and 𝑔p𝑧q “ 𝜆ℎp𝑧q, where |𝜆| “ 1. Here 𝑎𝑛 “ ´p1 ´ 𝑎2q𝑎𝑛´1 and 𝑏𝑛 “ 𝜆𝑎𝑛

for 𝑛 > 1. For this function, we have

|ℎp´𝑟q| `
8
ÿ

𝑛“1

|𝑎𝑛|𝑟
𝑛
`

8
ÿ

𝑛“1

|𝑏𝑛|𝑟
𝑛
“

“
𝑎` 𝑟

1` 𝑎𝑟
` p1´ 𝑎2q

8
ÿ

𝑛“1

𝑎𝑛´1𝑟𝑛 ` p1´ 𝑎2q
8
ÿ

𝑛“1

𝑎𝑛´1𝑟𝑛 “

“
𝑎` 𝑟

1` 𝑎𝑟
`

2p1´ 𝑎2q𝑟

1´ 𝑎𝑟
,

and the last expression is greater than or equal to 1 if and only if

𝑟 >

?
17𝑎2 ` 22𝑎` 9´ 3´ 3𝑎

2𝑎p1` 2𝑎q
.

Since 𝑎 ă 1, 𝑎 could be chosen arbitrarily close to 1´, thus, 𝑟 >
2
?

3´ 3

3
.

This shows that the constant
2
?

3´ 3

3
cannot be improved. Hence, the

proof of the first part of the theorem is complete. For the second part
of Theorem 4, we proceed from (14) by squaring p𝑎` 𝑟q{p1` 𝑎𝑟q and
following the style of proof of the first part of the theorem to obtain the
desired Bohr-type radius. Thus, the proof of Theorem 4 is complete. l

Theorem 5. Let 𝑓p𝑧q “ ℎp𝑧q ` 𝑔p𝑧q “
8
ř

𝑛“0

𝑎𝑛𝑧
𝑛 `

8
ř

𝑛“1

𝑏𝑛𝑧𝑛 be a sense-

preserving harmonic mapping of the disk D, where ℎp𝑧q P ℬ. Then

𝑀 1
ℎ,𝑔p𝑟q “ |ℎp𝑧q| ` 𝑟|ℎ

1
p𝑧q| `

8
ÿ

𝑛“2

|𝑎𝑛|𝑟
𝑛
`

8
ÿ

𝑛“1

|𝑏𝑛|𝑟
𝑛 6 1, 𝑟 “ |𝑧| (17)
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for 𝑟 6 𝑅3 “ 0.16709 . . . , where the constant 𝑅3 is the best possible.
However

|ℎp𝑧q|2 ` 𝑟|ℎ1p𝑧q| `
8
ÿ

𝑛“2

|𝑎𝑛|𝑟
𝑛
`

8
ÿ

𝑛“1

|𝑏𝑛|𝑟
𝑛 6 1 (18)

for all 𝑟 6 𝑅4 “ 0.2555 . . . . The constant 𝑅4 is the best possible.

Proof. Let 𝑧 “ 𝑟𝑒𝑖𝜃 and 𝑛 “ 1 in Lemma 2. We get

|ℎ1p𝑧q| 6
1´ |ℎp𝑧q|2

1´ 𝑟2
. (19)

By Lemma 1 and (19), we have the following:

|ℎp𝑧q| ` 𝑟|ℎ1p𝑧q| 6 |ℎp𝑧q| `
𝑟

1´ 𝑟2
`

1´ |ℎp𝑧q|2
˘

“

“
𝑟

1´ 𝑟2
p1` |ℎp𝑧q|qp1´ |ℎp𝑧q|q ` |ℎp𝑧q| 6

6
𝑟

1´ 𝑟2

´

1` 𝑎` 𝑟1` 𝑎𝑟
¯

p1´ |ℎp𝑧q|q ` |ℎp𝑧q| 6

6
2𝑟

1´ 𝑟2
p1´ |ℎp𝑧q|q ` |ℎp𝑧q| “

“
2𝑟

1´ 𝑟2
`

´

1´
2𝑟

1´ 𝑟2

¯

|ℎp𝑧q| 6

6
𝑎` 𝑟

1` 𝑎𝑟
`

𝑟

1´ 𝑟2

´

1´
´ 𝑎` 𝑟

1` 𝑎𝑟

¯2¯

, (20)

where the last inequality holds for any 𝑟 P r0,
?

2´ 1s, since
2𝑟

1´ 𝑟2
6 1 if

𝑟 P r0,
?

2´ 1s.

From (17), employing (20) and (13), we have

𝑀 1
ℎ,𝑔p𝑟q “ |ℎp𝑧q| ` 𝑟|ℎ

1
p𝑧q| `

8
ÿ

𝑛“2

|𝑎𝑛|𝑟
𝑛
`

8
ÿ

𝑛“1

|𝑏𝑛|𝑟
𝑛 6

6
𝑎` 𝑟

1` 𝑎𝑟
`

𝑟

1´ 𝑟2

´

1´
´ 𝑎` 𝑟

1` 𝑎𝑟

¯2¯

`
𝑎p1´ 𝑎2q𝑟2

1´ 𝑎𝑟
`

𝑟p1´ 𝑎2q
a

p1´ 𝑟qp1´ 𝑎2𝑟q
“

“
𝑟 ` 𝑎

1` 𝑎𝑟
`
𝑟p1´ 𝑎2q

p1` 𝑎𝑟q2
`
𝑎p1´ 𝑎2q𝑟2

1´ 𝑎𝑟
`

𝑟p1´ 𝑎2q
a

p1´ 𝑟qp1´ 𝑎2𝑟q
“

“ 𝑃 p𝑎, 𝑟q, for 0 6 𝑟 6
?

2´ 1.
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Differentiating 𝑃 p𝑎, 𝑟q partially 𝑤.𝑟.𝑡. 𝑎, we obtain

B𝑃 p𝑎, 𝑟q

B𝑎
“

1´ 𝑟2

p1` 𝑎𝑟q2
´

2𝑟p𝑎` 𝑟q

p1` 𝑎𝑟q3
`
p1´ 3𝑎2 ` 2𝑎3𝑟q𝑟2

p1´ 𝑎𝑟q2
`

`
𝑎𝑟p𝑎2𝑟 ` 𝑟 ´ 2q

p1´ 𝑎2𝑟q
a

p1´ 𝑟qp1´ 𝑎2𝑟q
. (21)

For 𝑎 P r0, 1q and 𝑟 P p0, 1q, short computations show that
B𝑃 p𝑎, 𝑟q

B𝑎
ą 0

i.e. 𝑃 p𝑎, 𝑟q is an increasing function. Hence,

𝑀 1
ℎ,𝑔 6 𝑃 p𝑎,𝑟q ă 𝑃 p1,𝑟q “

𝑟 ` 1

1` 𝑟
“ 1.

Differentiating 𝑃 p𝑎, 𝑟q again for all 𝑎 P r0, 1q and 𝑟 P p0, 1q, we get
B2𝑃 p𝑎, 𝑟q

B𝑎2
6 0. Thus

B𝑃 p𝑎,𝑟q

B𝑎
ą
B𝑃 p1,𝑟q

B𝑎
. Therefore,

B𝑃 p𝑎, 𝑟q

B𝑎
ą 0 if

B𝑃 p1, 𝑟q

B𝑎
> 0, and this is equivalent to

1´ 𝑟

1` 𝑟
´

2𝑟

p1` 𝑟q2
´

2𝑟2

1´ 𝑟
´

2𝑟

1´ 𝑟
> 0. (22)

Simplifying (22), we obtain 2𝑟4 ` 5𝑟3 ` 5𝑟2 ` 5𝑟 ´ 1 6 0, which holds for
𝑟 P p0, 1q only if 𝑟 6 𝑅3, where 𝑅3 is the minimum positive root of the
equation 2𝑟4 ` 5𝑟3 ` 5𝑟2 ` 5𝑟 ´ 1 “ 0. To show that the number 𝑅3 is
sharp, consider 𝑓p𝑧q “ ℎp𝑧q ` 𝑔p𝑧q as in (16). For the function, we have

|ℎp´𝑟q| ` 𝑟|ℎ1p´𝑟q| `
8
ÿ

𝑛“2

|𝑎𝑛|𝑟
𝑛
`

8
ÿ

𝑛“1

|𝑏𝑛|𝑟
𝑛
“

“
𝑎` 𝑟

1` 𝑎𝑟
`
𝑟p1´ 𝑎2q

p1` 𝑎𝑟q2
`
𝑎p1´ 𝑎2q𝑟2

1´ 𝑎𝑟
`
p1´ 𝑎2q𝑟

1´ 𝑎𝑟
. (23)

Expression (23) is greater than 1 if and only if

p1´ 𝑎qp´1` p3` 2𝑎q𝑟 ` p3` 4𝑎` 2𝑎2q𝑟2 ` 𝑎p6` 6𝑎` 𝑎2q𝑟3`

` 3𝑎2p1` 𝑎q𝑟4q ą 0. (24)

Now, let 𝑄p𝑎, 𝑟q “ ´1`p3`2𝑎q𝑟`p2𝑎`3𝑎2q𝑟2`p2𝑎2`3𝑎3q𝑟3`𝑎3p1`𝑎q𝑟4.

Then
B𝑄

B𝑎
“ 2𝑟`p2`6𝑎q𝑟2`p4𝑎`9𝑎2q𝑟3`p3𝑎2`4𝑎3q𝑟4. Easy computations
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for 𝑟 P r0, 1q reveal that
B𝑄

B𝑎
> 0. Since 𝑎 ă 1, we have 𝑄p𝑎, 𝑟q 6 𝑄p1, 𝑟q,

that is,
𝑄p𝑎, 𝑟q 6 𝑄p1, 𝑟q “ ´1` 5𝑟 ` 5𝑟2 ` 5𝑟3 ` 2𝑟4.

Hence, (23) is less than or equal to 1 for all 𝑎 P r0, 1q only when 𝑟 6 𝑅3,
where 𝑅3 is minimum positive real root of 2𝑟4 ` 5𝑟3 ` 5𝑟2 ` 5𝑟 ´ 1 “ 0.
This proves the sharpness of 𝑅3 and, thus, the proof of the first part of
Theorem 5 is complete. The proof of the second part easily follows the
same style of proof as in the first part. l

Theorem 6. Let 𝑓p𝑧q “ ℎp𝑧q ` 𝑔p𝑧q “
8
ř

𝑛“0

𝑎𝑛𝑧
𝑛 `

8
ř

𝑛“1

𝑏𝑛𝑧𝑛 be a sense-

preserving harmonic mapping of the disk D, where ℎp𝑧q P ℬ. Then

𝑀2
ℎ,𝑔p𝑟q “ |ℎp𝑧q| ` 𝑟|ℎ

1
p𝑧q| `

𝑟2

2!
|ℎ2p𝑧q| `

8
ÿ

𝑛“3

|𝑎𝑛|𝑟
𝑛
`

8
ÿ

𝑛“1

|𝑏𝑛|𝑟
𝑛 6 1 (25)

for 𝑟 6 𝑅5 “ 0.16817 . . . , where 𝑅5 cannot be improved. Moreover,

𝑀ℎ2,𝑔p𝑟q “ |ℎp𝑧q|
2
` 𝑟|ℎ1p𝑧q| `

𝑟2

2!
|ℎ2p𝑧q| `

8
ÿ

𝑛“3

|𝑎𝑛|𝑟
𝑛
`

8
ÿ

𝑛“1

|𝑏𝑛|𝑟
𝑛 6 1 (26)

for 𝑟 6 𝑅6 “ 0.25782 . . . . The constant 𝑅6 is the best possible.

Proof. Let |𝑎0| “ 𝑎. Since ℎp𝑧q P ℬ, then |𝑎𝑛| 6 1´ |𝑎0|
2, 𝑛 > 1. Hence,

8
ÿ

𝑛“3

|𝑎𝑛|𝑟
𝑛 6 p1´ 𝑎2q

8
ÿ

𝑛“3

𝑟𝑛 “
p1´ 𝑎2q𝑟3

1´ 𝑟
. (27)

Let 𝑧 “ 𝑟𝑒𝑖𝜃 and 𝑛 “ 2 in Lemma 2. We get

|ℎ2p𝑧q|

2!
6

1´ |ℎp𝑧q|2

p1´ 𝑟qp1´ 𝑟2q
.

From (19), we have

|ℎp𝑧q| ` 𝑟|ℎ1p𝑧q| `
1

2!
𝑟2|ℎ2p𝑧q| 6

6 |ℎp𝑧q| `
𝑟

1´ 𝑟2
p1´ |ℎp𝑧q|2q `

𝑟2p1´ |ℎp𝑧q|2q

p1´ 𝑟qp1´ 𝑟2q
“

“
𝑟

p1´ 𝑟qp1´ 𝑟2q
p1` |ℎp𝑧q|qp1´ |ℎp𝑧q|q ` |ℎp𝑧q| 6
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6
𝑟

p1´ 𝑟qp1´ 𝑟2q

´

1`
𝑎` 𝑟

1` 𝑎𝑟

¯

p1´ |ℎp𝑧q|q ` |ℎp𝑧q| 6

6
2𝑟

p1´ 𝑟qp1´ 𝑟2q
p1´ |ℎp𝑧q|q ` |ℎp𝑧q| “

“
2𝑟

p1´ 𝑟qp1´ 𝑟2q
`

´

1´
2𝑟

p1´ 𝑟qp1´ 𝑟2q

¯

|ℎp𝑧q| 6

6
2𝑟

p1´ 𝑟qp1´ 𝑟2q
`

´

1´
2𝑟

p1´ 𝑟qp1´ 𝑟2q

¯ 𝑎` 𝑟

1` 𝑎𝑟
“

“
𝑎` 𝑟

1` 𝑎𝑟
`

𝑟

p1´ 𝑟qp1´ 𝑟2q

´

1´
´ 𝑎` 𝑟

1` 𝑎𝑟

¯2¯

. (28)

Since
2𝑟

p1´ 𝑟qp1´ 𝑟2q
6 1 if 𝑟5 P p0.3, 0.4q, then the last inequality holds

for any 𝑟5 P p0.3, 0.4q, where 𝑟5 is the unique root of 1´ 3𝑟 ´ 𝑟2 ` 𝑟3 “ 0.
Now, from (25) applying (28), (27), and (13), we therefore have

𝑀2
ℎ,𝑔p𝑟q “ |ℎp𝑧q| ` 𝑟|ℎ

1
p𝑧q| `

1

2!
𝑟2|ℎ2p𝑧q| `

8
ÿ

𝑛“3

|𝑎𝑛|𝑟
𝑛
`

8
ÿ

𝑛“1

|𝑏𝑛|𝑟
𝑛 6

6
𝑎` 𝑟

1` 𝑎𝑟
`

𝑟

p1´ 𝑟qp1´ 𝑟2q

´

1´
´ 𝑎` 𝑟

1` 𝑎𝑟

¯2¯

`
p1´ 𝑎2q𝑟3

1´ 𝑟
`

`
𝑟p1´ 𝑎2q

a

p1´ 𝑟qp1´ 𝑎2𝑟q
“

“
𝑟 ` 𝑎

1` 𝑎𝑟
`

p1´ 𝑎2q𝑟

p1´ 𝑟qp1` 𝑎𝑟q2
`
p1´ 𝑎2q𝑟3

1´ 𝑟
`

p1´ 𝑎2q𝑟
a

p1´ 𝑟qp1´ 𝑎2𝑟q
.

That is, 𝑀2
ℎ,𝑔 6 𝑃 p𝑎, 𝑟q, where

𝑃 p𝑎, 𝑟q “
𝑟 ` 𝑎

1` 𝑎𝑟
`

p1´ 𝑎2q𝑟

p1´ 𝑟qp1` 𝑎𝑟q2
`
p1´ 𝑎2q𝑟3

1´ 𝑟
`

p1´ 𝑎2q𝑟
a

p1´ 𝑟qp1´ 𝑎2𝑟q
.

(29)
Then, differentiating 𝑃 p𝑎, 𝑟q 𝑤.𝑟.𝑡. 𝑎, we obtain

B𝑃 p𝑎, 𝑟q

B𝑎
“

1´ 𝑟2

p1` 𝑎𝑟q2
´

2𝑟p𝑎` 𝑟q

p1´ 𝑟qp1` 𝑎𝑟q3
´

2𝑎𝑟3

1´ 𝑟
`

`
𝑎𝑟p𝑎2𝑟 ` 𝑟 ´ 2q

p1´ 𝑎2𝑟q
a

p1´ 𝑟qp1´ 𝑎2𝑟q
.
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With some computations for 𝑎 P r0, 1q and 𝑟 P p0, 1q, it is evident that
B𝑃 p𝑎, 𝑟q

B𝑎
ą 0 and

B2𝑃 p𝑎, 𝑟q

B𝑎2
6 0. Thus, for |𝑎0| “ 𝑎 ă 1, 𝑃 p𝑎, 𝑟q ă 𝑃 p1, 𝑟q,

and
B𝑃 p𝑎, 𝑟q

B𝑎
ą
B𝑃 p1, 𝑟q

B𝑎
, respectively. Therefore,

𝑀2
ℎ,𝑔 6 𝑃 p𝑎,𝑟q ă

𝑟 ` 1

1` 𝑟
` 0 “ 1.

Also,
B𝑃 p𝑎, 𝑟q

B𝑎
ą 0 if

B𝑃 p1𝑟q

B𝑎
> 0. Equivalently, we have

1´ 𝑟

1` 𝑟
´

2𝑟

p1´ 𝑟qp1` 𝑟q2
´

2𝑟3

1´ 𝑟
´

2𝑟

1´ 𝑟
> 0, (30)

which, when simplified, gives

2𝑟5 ` 4𝑟4 ` 3𝑟3 ` 5𝑟2 ` 5𝑟 ´ 1 6 0. (31)

Inequality (28) holds for 𝑟 P p0, 1q only if 𝑟 6 𝑅5, where 𝑅5 is the real root
of 2𝑟5 ` 4𝑟4 ` 3𝑟3 ` 5𝑟2 ` 5𝑟 ´ 1 “ 0. The sharpness of constants 𝑅5 can
be shown by adopting the style of proof of Theorems 4 and 5. Also, the
proof of the second part of Theorem 6 easily follows by replacing

𝑎` 𝑟

1` 𝑎𝑟

in (29) with
´ 𝑎` 𝑟

1` 𝑎𝑟

¯2

and then following the same line of proof. This
completes the proof of Theorem 6. l

Theorem 7. Suppose that 𝑓p𝑧q “ ℎp𝑧q`𝑔p𝑧q “
8
ř

𝑛“0

𝑎𝑛𝑧
𝑛`

8
ř

𝑛“1

𝑏𝑛𝑧𝑛 is an

harmonic mapping of the disk D, such that |𝑔1p𝑧q| 6 |ℎ1p𝑧q| and |ℎp𝑧q| ă 1
for 𝑧 P D. Then

𝑀𝑛
ℎ,𝑔p𝑟q “ |ℎp𝑧q| `

8
ÿ

𝑛“1

|ℎp𝑛qp𝑧q|

𝑛!
𝑟𝑛 `

8
ÿ

𝑛“1

|𝑔p𝑛qp𝑧q|

𝑛!
𝑟𝑛 6 1 (32)

for |𝑧| “ 𝑟 6 𝑅𝑛 “

?
33´ 5

4
. The constant 𝑅𝑛 cannot be improved.

Proof. From Theorem 7 we have: |𝑔1p𝑧q| 6 |ℎ1p𝑧q|. By letting 𝑧 “ 𝑟𝑒𝑖𝜃 in
Lemma 2, we get

|ℎp𝑛qp𝑧q|

𝑛!
6

1´ |ℎp𝑧q|2

p1` 𝑟qp1´ 𝑟q𝑛
and

|𝑔p𝑛qp𝑧q|

𝑛!
6

1´ |ℎp𝑧q|2

p1` 𝑟qp1´ 𝑟q𝑛
. (33)
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From (32) and by Lemma 1, (33), and (13), we have the following:

𝑀𝑛
ℎ,𝑔p𝑟q “ |ℎp𝑧q| `

8
ř

𝑛“1

|ℎp𝑛qp𝑧q|

𝑛!
𝑟𝑛 `

8
ř

𝑛“1

|𝑔p𝑛qp𝑧q|

𝑛!
𝑟𝑛6

6 |ℎp𝑧q| ` 2
1´ |ℎp𝑧q|2

1` 𝑟

8
ř

𝑛“1

𝑟𝑛

p1´ 𝑟q𝑛
“

“
2𝑟

p1` 𝑟qp1´ 2𝑟q
p1` |ℎp𝑧q|qp1´ |ℎp𝑧q|q ` |ℎp𝑧q| 6

6
2𝑟

p1` 𝑟qp1´ 2𝑟q

ˆ

1`
𝑎` 𝑟

1` 𝑎𝑟

˙

p1´ |ℎp𝑧q|q ` |ℎp𝑧q| 6

6
4𝑟

p1` 𝑟qp1´ 2𝑟q
p1´ |ℎp𝑧q|q ` |ℎp𝑧q| “

“
4𝑟

p1` 𝑟qp1´ 2𝑟q
`

ˆ

1´
4𝑟

p1` 𝑟qp1´ 2𝑟q

˙

|ℎp𝑧q| 6

6
4𝑟

p1` 𝑟qp1´ 2𝑟q
`

ˆ

1´
4𝑟

p1` 𝑟qp1´ 2𝑟q

˙

𝑎` 𝑟

1` 𝑎𝑟
“

“
𝑟 ` 𝑎

1` 𝑎𝑟
`

2𝑟p1´ 𝑟qp1´ 𝑎2q

p1´ 2𝑟qp1` 𝑎𝑟q2
“ 𝑃 p𝑎, 𝑟q,

where the last inequality holds for any 𝑟 P r0,
?

33´ 5

4
s, since

4𝑟

p1` 𝑟qp1´ 2𝑟q
6 1 if 𝑟 P r0,

?
33´ 5

4
s.

First partial differentiation of 𝑃 p𝑎, 𝑟q w.r.t. 𝑎 yields

B𝑃 p𝑎, 𝑟q

B𝑎
“

1´ 𝑟2

p1` 𝑎𝑟q2
´

4𝑟p1´ 𝑟qp𝑎` 𝑟q

p1´ 2𝑟qp1` 𝑎𝑟q3
.

After elementary Computations of 𝑃 p𝑎, 𝑟q for 𝑎 P r0, 1q and 𝑟 P r0, 1q, we
find that 𝑃 p𝑎, 𝑟q>0. Since 𝑎 ă 1, then

𝑀𝑛
ℎ,𝑔 6 𝑃 p𝑎, 𝑟q ă 𝑃 p1, 𝑟q “

𝑟 ` 1

1` 𝑟
“ 1.

After differentiating
B𝑃 p𝑎, 𝑟q

B𝑎
, we find that

B2𝑃 p𝑎, 𝑟q

B𝑎2
6 0 for 𝑎 P r0, 1q

and 𝑟 P p0, 1q. Hence,
B𝑃 p𝑎, 𝑟q

B𝑎
ą
B𝑃 p1, 𝑟q

B𝑎
for 𝑎 ă 1. Now,

B𝑃 p𝑎, 𝑟q

B𝑎
ą 0
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if
B𝑃 p1, 𝑟q

B𝑎
> 0, which can equivalently be written as

1´ 𝑟

1` 𝑟
´

4𝑟p1´ 𝑟q

p1´ 2𝑟qp1` 𝑟q2
> 0. (34)

Simplifying (34), we get 2𝑟2` 5𝑟´ 1 6 0 and this holds for 𝑟 P p0, 1q only

when 𝑟 6 𝑅𝑛 “

?
33´ 5

4
.

To prove the sharpness of the number 𝑅𝑛, consider 𝑓p𝑧q “ ℎp𝑧q `

𝑔p𝑧q as in (16). Then we have that ℎp𝑛qp𝑧q “
´𝑛!p1´ 𝑎2q𝑎𝑛´1

p1´ 𝑎𝑧q𝑛`1
and

𝑔p𝑛qp𝑧q “ 𝜆
´𝑛!p1´ 𝑎2q𝑎𝑛´1

p1´ 𝑎𝑧q𝑛`1
. For this function, we find that

|ℎp𝑟q| `
8
ÿ

𝑛“1

|ℎp𝑛qp𝑟q|

𝑛!
𝑟𝑛 `

8
ÿ

𝑛“1

|𝑔p𝑛qp𝑟q|

𝑛!
𝑟𝑛 “

“
𝑎´ 𝑟

1´ 𝑎𝑟
`

2p1´ 𝑎2q

1´ 𝑎𝑟

8
ÿ

𝑛“1

𝑎𝑛´1𝑟𝑛

p1´ 𝑎𝑟q𝑛
“

𝑎´ 𝑟

1´ 𝑎𝑟
`

2p1´ 𝑎2q𝑟

p1´ 𝑎𝑟qp1´ 2𝑎𝑟q
.

The last expression is larger than or equal to 1 if and only if

𝑟 >

?
1` 16𝑎` 16𝑎2 ´ p1` 4𝑎q

4𝑎
.

Since 𝑎 could be chosen close to 1´, we have 𝑟 >
?

33´ 5

4
. This shows that

the constant 𝑅𝑛 cannot be improved, and thus, the proof of Theorem 7 is
complete. l

Theorem 8. Let 𝑓p𝑧q “ ℎp𝑧q ` 𝑔p𝑧q “
8
ř

𝑛“0

𝑎𝑛𝑧
𝑛 `

8
ř

𝑛“1

𝑏𝑛𝑧𝑛 be a sense-

preserving harmonic mapping of the disk D, where ℎp𝑧q P ℬ and 𝑔1p0q “ 0.
Then

|ℎp𝑧q| `
8
ÿ

𝑛“1

|𝑎𝑛|𝑟
𝑛
`

8
ÿ

𝑛“2

|𝑏𝑛|𝑟
𝑛 6 1 for 𝑟 6 𝑅7 “ 0.2215 . . . (35)

where 𝑟 “ |𝑧|. The inequality is sharp and the constant 𝑅7 is the minimum
positive root of the equation 3𝑟2 ` 6𝑟 ` 2p1´ 𝑟2q lnp1´ 𝑟q “ 1.
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Remark. The Bohr-type inequalities for Theorems 8 and 9 are sharp for
the function 𝑓p𝑧q “ ℎp𝑧q ` 𝑔p𝑧q, where

ℎp𝑧q “
𝑎´ 𝑧

1´ 𝑎𝑧
𝑎𝑛𝑑 𝑔1p𝑧q “ 𝑧ℎ1p𝑧q, 0 6 𝑎 ă 1. (36)

Proof of Theorem 5. Let |𝑎0| “ 𝑎 and ℎp𝑧q P ℬ. Then we have
|𝑎𝑛| 6 1 ´ |𝑎0|

2 “ 1 ´ 𝑎2, 𝑛 > 1. Hence, from (35), using Lemma 1 and
Lemma 6, we obtain

|ℎp𝑧q| `
8
ÿ

𝑛“1

|𝑎𝑛|𝑟
𝑛
`

8
ÿ

𝑛“2

|𝑏𝑛|𝑟
𝑛 6

6
𝑟 ` 𝑎

1` 𝑎𝑟
` p1´ 𝑎2q

𝑟

1´ 𝑟
`

8
ÿ

𝑛“2

ˆ

𝑛´ 1

𝑛

˙

|𝑎𝑛´1|𝑟
𝑛 6

6
𝑟 ` 𝑎

1` 𝑎𝑟
`
𝑟p1´ 𝑎2q

1´ 𝑟
` p1´ 𝑎2q

ˆ

𝑟 ` p1´ 𝑟q𝑙𝑛p1´ 𝑟q

1´ 𝑟

˙

. (37)

Now, let 𝜙p𝑎, 𝑟q “
𝑟 ` 𝑎

1` 𝑎𝑟
`
𝑟p1´ 𝑎2q

1´ 𝑟
` p1 ´ 𝑎2q

´𝑟 ` p1´ 𝑟q lnp1´ 𝑟q

1´ 𝑟

¯

,

so that |ℎp𝑧q| `
8
ř

𝑛“1

|𝑎𝑛|𝑟
𝑛 `

8
ř

𝑛“2

|𝑏𝑛|𝑟
𝑛 6 𝜙p𝑎, 𝑟q. Differentiating 𝜙p𝑎, 𝑟q

partially w.r.t. 𝑎 twice provides

B𝜙p𝑎, 𝑟q

B𝑎
“

1´ 𝑟2

p1` 𝑎𝑟q2
´

2𝑎𝑟

1´ 𝑟
´

2𝑎p𝑟 ` p1´ 𝑟qq lnp1´ 𝑟qq

1´ 𝑟

and
B2𝜙p𝑎, 𝑟q

B𝑎2
“ ´

2𝑟p1´ 𝑟2q

p1` 𝑎𝑟q3
2𝑟

1´ 𝑟
´

2p𝑟 ` p1´ 𝑟qq lnp1´ 𝑟qq

1´ 𝑟
.

Clearly,
B𝜙p𝑎, 𝑟q

B𝑎
ą 0 for 𝑎 P r0, 1q. Thus,

|ℎp𝑧q| `
8
ÿ

𝑛“1

|𝑎𝑛|𝑟
𝑛
`

8
ÿ

𝑛“2

|𝑏𝑛|𝑟
𝑛 6 𝜙p𝑎,𝑟q ă 𝜙p1, 𝑟q “

𝑟 ` 1

1` 𝑟
“ 1.

Also, it is easily seen that
B2𝜙p𝑎, 𝑟q

B𝑎2
6 0 for 𝑎 P r0, 1q. Hence,

B𝜙p𝑎, 𝑟q

B𝑎
ą
B𝜙p1, 𝑟q

B𝑎
> 0, that is,

1´ 𝑟

p1` 𝑟q
´

2𝑟

1´ 𝑟
´

2p𝑟 ` p1´ 𝑟qq lnp1´ 𝑟qq

1´ 𝑟
> 0. (38)
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Equation (38) holds for 𝑟 6 0.2215 . . . .
To complete the proof, we need to show that the constant 0.2215 . . .

is sharp. To do this, consider (from (36)) the function

ℎp𝑧q “
𝑎´ 𝑧

1´ 𝑎𝑧
“ 𝑎´

1´ 𝑎2

𝑎

8
ÿ

𝑛“1

𝑎𝑛𝑧𝑛.

Since 𝑔1p𝑧q “ 𝑧ℎ1p𝑧q “ ´p1´ 𝑎2q
8
ř

𝑛“2

p𝑛´ 1q𝑎𝑛´2𝑧𝑛´1, then

𝑔p𝑧q “ ´p1´ 𝑎2q
8
ÿ

𝑛“2

𝑛´ 1

𝑛
𝑎𝑛´2𝑧𝑛.

From this, we get |𝑎𝑛| “ p1 ´ 𝑎2q𝑎𝑛´1 and |𝑏𝑛| “ p1 ´ 𝑎2q
𝑛´ 1

𝑛
𝑎𝑛´2.

Therefore,

|ℎp´𝑟q| `
8
ÿ

𝑛“1

|𝑎𝑛|𝑟
𝑛
`

8
ÿ

𝑛“2

|𝑏𝑛|𝑟
𝑛
“

“
𝑎` 𝑟

1` 𝑎𝑟
`

8
ÿ

𝑛“1

p1´ 𝑎2q𝑎𝑛´1𝑟𝑛 `
8
ÿ

𝑛“2

p1´ 𝑎2qp𝑛´ 1q

𝑛
𝑎𝑛´2𝑟𝑛 “

“
𝑎` 𝑟

1` 𝑎𝑟
`
p1´ 𝑎2q𝑟

1´ 𝑎𝑟
`
p1´ 𝑎2q

𝑎2
𝑎𝑟 ` p1´ 𝑎𝑟q lnp1´ 𝑎𝑟q

1´ 𝑎𝑟
. (39)

Expression (39) is greater than or equal to one, if and only if

𝑟p1` 𝑎qp1` 𝑎𝑟q ` p1` 𝑎qp1` 𝑎𝑟q𝑎´2r𝑎𝑟 ` p1´ 𝑎𝑟q lnp1´ 𝑎𝑟qs´

´ p1´ 𝑟qp1´ 𝑎𝑟q > 0. (40)

As 𝑎 ă 1, then, as 𝑎Ñ 1, (40) becomes 3𝑟2`6𝑟`2p1´𝑟2q lnp1´𝑟q´1 > 0,
and this holds if only 𝑟 > 𝑅7 “ 0.2215 . . . , where 𝑅7 is the minimum
positive root of 3𝑅2 ` 6𝑅` 2p1´𝑅2q lnp1´𝑅q “ 1. This shows that the
constant 𝑅7 cannot be improved. Hence, the proof is complete.

Theorem 9. Suppose 𝑓p𝑧q “ ℎp𝑧q`𝑔p𝑧q “
8
ř

𝑛“0

𝑎𝑛𝑧
𝑛`

8
ř

𝑛“1

𝑏𝑛𝑧𝑛 is a sense-

preserving harmonic mapping of the disk D with ℎp𝑧q P ℬ and 𝑔1p0q “ 0.
Then

𝑀pℎ1,𝑔q “ |ℎp𝑧q| ` 𝑟|ℎ1p𝑧q| `
8
ÿ

𝑛“2

|𝑎𝑛|𝑟
𝑛
`

8
ÿ

𝑛“2

|𝑏𝑛|𝑟
𝑛 6 1, 𝑟 “ |𝑧| (41)
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for 𝑟 6 𝑅8 “ 0.25487 . . . . The constant 𝑅8 cannot be improved.

Proof. Adopting the lines of proof of (20), we have

|ℎp𝑧q| ` 𝑟|ℎ1p𝑧q| 6
𝑎` 𝑟

1` 𝑎𝑟
`

𝑟

1´ 𝑟2

´

1´
´ 𝑎` 𝑟

1` 𝑎𝑟

¯2¯

, (42)

which holds for 𝑟 P r0,
?

2 ´ 1s, since
1´ 𝑟2

2𝑟
> 1 if 𝑟 P r0,

?
2 ´ 1s. Since

ℎp𝑧q P ℬ, we have |𝑎𝑛| 6 1 ´ |𝑎0|
2, 𝑛 > 1, therefore, using Lemma 6 for

the second summation and adopting (42) in (41), we have the following:

𝑀pℎ1,𝑔q “ |ℎp𝑧q| ` 𝑟|ℎ1p𝑧q| `
8
ÿ

𝑛“2

|𝑎𝑛|𝑟
𝑛
`

8
ÿ

𝑛“2

|𝑏𝑛|𝑟
𝑛 6

6
𝑎` 𝑟

1` 𝑎𝑟
`

𝑟

1´ 𝑟2

˜

1´

ˆ

𝑎` 𝑟

1` 𝑎𝑟

˙2
¸

`
p1´ 𝑎2q𝑟2

1´ 𝑟
`

` p1´ 𝑎2q

ˆ

𝑟 ` p1´ 𝑟q lnp1´ 𝑟q

1´ 𝑟

˙

“

“
𝑟 ` 𝑎

1` 𝑎𝑟
`
p1´ 𝑎2q𝑟

p1` 𝑎𝑟q2
`
p1´ 𝑎2q𝑟2

1´ 𝑟
`

` p1´ 𝑎2q

ˆ

𝑟 ` p1´ 𝑟q lnp1´ 𝑟q

1´ 𝑟

˙

. (43)

Let 𝜙p𝑎, 𝑟q be the right-hand side of (43). Then its partial derivative w.r.t.
𝑎 becomes

B𝜙p𝑎,𝑟q

B𝑎
“

1´ 𝑟2

p1` 𝑎𝑟q2
´

2𝑟p𝑎` 𝑟q

p1` 𝑎𝑟q3
´

2𝑎𝑟2

1´ 𝑟
´

´
2𝑎p𝑟 ` p1´ 𝑟q lnp1´ 𝑟qq

1´ 𝑟
. (44)

Elementary computations reveal that
B𝜙p𝑎, 𝑟q

B𝑎
ą 0 for 𝑎 P r0, 1q and

𝑟 P p0, 1q. Since 𝑎 ă 1, 𝑀pℎ1, 𝑔q 6 𝜙p𝑎, 𝑟q ă 𝜙p1, 𝑟q “ 1.

Also, for 𝑎 P r0, 1q, we find that
B2𝜙p𝑎, 𝑟q

B𝑎2
6 0. Thus, since 𝑎 ă 1,

B𝜙p𝑎,𝑟q

B𝑎
ą
B𝜙p1,𝑟q

B𝑎
“

1´ 𝑟

1` 𝑟
´

2𝑟

p1` 𝑎𝑟q2
´

2𝑟2

1´ 𝑟
´
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´
2p𝑟 ` p1´ 𝑟q lnp1´ 𝑟qq

1´ 𝑟
> 0. (45)

Inequality (45) holds in 𝑟 P p0,1q only if 𝑟 6 0.25487 . . . . To complete
the proof, we need to show that number 𝑅8 “ 0.25487 . . . is sharp. Now,
consider 𝑓p𝑧q “ ℎp𝑧q ` 𝑔p𝑧q as in (36), and for this function we find that

ℎ1p𝑧q “ ´
1´ 𝑎2

p1´ 𝑎𝑟q2
, |𝑎𝑛| “ p1´ 𝑎

2
q𝑎𝑛´1 and |𝑏𝑛| “ p1´ 𝑎

2
q
𝑛´ 1

𝑛
𝑎𝑛´2.

Therefore,

|ℎp´𝑟q| ` 𝑟|ℎ1p´𝑟q| `
8
ÿ

𝑛“2

|𝑎𝑛|𝑟
𝑛
`

8
ÿ

𝑛“2

|𝑏𝑛|𝑟
𝑛
“

“
𝑎` 𝑟

1` 𝑎𝑟
`
𝑟p1´ 𝑎2q

p1` 𝑎𝑟q2
`
𝑎p1´ 𝑎2q𝑟2

1´ 𝑎𝑟
`

`
p1´ 𝑎2q

𝑎2
𝑎𝑟 ` p1´ 𝑎𝑟q lnp1´ 𝑎𝑟q

1´ 𝑎𝑟
. (46)

The expression in (46) is larger than or equal to one, if and only if

p1` 𝑎q𝑟p1´ 𝑎𝑟q ` 𝑎p1` 𝑎q𝑟2p1` 𝑎𝑟2q ` 𝑎´2p1` 𝑎qp1` 𝑎𝑟q2r𝑎𝑟`

` p1´ 𝑎𝑟q lnp1´ 𝑎𝑟qs ´ p1´ 𝑟qp1´ 𝑎2𝑟2q > 0. (47)

Since 𝑎 ă 1, 𝑎 could be chosen close to 1´; thus, (47) becomes 2𝑟4` 5𝑟3`
5𝑟2 ` 5𝑟 ` 2p1 ´ 𝑟2qp1 ` 𝑟q lnp1 ´ 𝑟q ´ 1 > 0, and this holds for 𝑟 P p0, 1q
if only 𝑟 > 𝑅8 “ 0.25487 . . . , where 𝑅8 is the minimum positive root of
2𝑟4 ` 5𝑟3 ` 5𝑟2 ` 5𝑟 ` 2p1 ´ 𝑟2qp1 ` 𝑟q lnp1 ´ 𝑟q “ 1. Hence, this shows
that the number 𝑅8 cannot be improved. l
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