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Abstract. The main goal of this article is first to express a cyclic
𝒢-p𝜙 ´ 𝜓q-weak contractive mapping, and second to present the
existence of their best proximity points and fixed points. Several
consequences are as well prepared to show the efficiency of our main
results. One of the most important issues of this work is that it
can also involve all former papers introduced by taking comparable
and 𝜀-close members.
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1. Introduction. The metric fixed point (FP) theory has played a
significant key in nonlinear analysis since 1922, when Banach introduced
his famous contraction principle (see [3], [6], [21]). Note that this theory is
extended in two ways by many researchers, but most use their generaliza-
tions in one direction, which includes applications in mathematics, such
as proving the existence of solution for integral equations, solving opti-
mization problems, analysing iterative methods and algorithms, etc. One
way is to present a new contractive mapping to state and prove some FP
theorems. For instance, one of the most practical contractions, defined by
Dutta and Choudury [8], is p𝜙 ´ 𝜓q-weak contraction. They also derived
an attractive FP theorem as follows:

Theorem 1. [8] If p𝒳 , dq is a complete MS and ℱ : 𝒳 Ñ 𝒳 is a mapping
fulfilling

𝜓
`

dpℱa,ℱbq
˘

6 𝜓
`

dpa, bq
˘

´ 𝜙
`

dpa, bq
˘
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for any a,b P 𝒳 , where 𝜓, 𝜙 : R>0 Ñ R>0 are nondecreasing and continuous
functions and 𝜙p𝑓q “ 0 “ 𝜓p𝑓q iff 𝑓 “ 0 for 𝑓 P R>0, then ℱ possesses a
unique FP.

Note that this contraction involves many other contractions collected
by Rhoades (1977) [21], which is the reason why we take it as the base of
this paper. For example, if we take 𝜓p𝑓q “ 𝑓 and lim

𝑓Ñ8
𝜙p𝑓q “ 8, then we

can obtain the same main results of Rhoades’s paper [22].
Another type of contractive mappings playing an important role in FP

theory, called a cyclic contractive mapping, is due to Kirk et al. [15]. A
mapping ℱ : 𝒜Yℬ Ñ 𝒜Yℬ is named cyclic if ℱp𝒜q Ď ℬ and ℱpℬq Ď 𝒜.
They also established a version of the Banach theorem as follows:

Theorem 2. [15] Assume 𝒜,ℬ ‰ H are closed subsets of a complete
MS p𝒳 , dq and ℱ : 𝒜Y ℬ Ñ 𝒜Y ℬ is a cyclic mapping fulfilling

dpℱa,ℱbq 6 𝛼dpa, bq

for any a P 𝒜 and b P ℬ, where 𝛼 P p0, 1q. Then 𝒜Xℬ ‰ H and ℱ possess
a unique FP in 𝒜X ℬ.

On the other hand, another way to develop FP theory is to define
a new version of a metric space (MS) due to a change in metric or set
conditions. For example, in 2004, Ran and Reurings [20] considered a
partial order (PO) in an MS and discussed the existence of FP(s) for
contractive mappings regarding comparable elements.

Theorem 3. [20] Assume p𝒳 ,ĺq is a PO set, p𝒳 , dq is a complete MS,
and ℱ : 𝒳 Ñ 𝒳 is a nondecreasing mapping fulfilling

dpℱa,ℱbq 6 𝛼dpa, bq

for any a, b P 𝒳 with a ĺ b, where 𝛼 P r0, 1q. Also, assume that one of
the following conditions holds:

• ℱ is continuous;
• when a nondecreasing sequence an converges to a a P 𝒳 , we have
an ĺ a.

If there is a0 P 𝒳 satisfying a0 ĺ ℱa0, then ℱ possesses a FP. Further, if
each two FP(s) are comparable, then the FP is unique.

Note that we say ℱ in Theorem 3 is nondecreasing when a ĺ b implies
ℱa ĺ ℱb for all a,b P 𝒳 . Also, setting 𝒳 “ R, we have the same usual
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order 6 in R and the classic definition of a nondecreasing mapping. It is
claimed that this theorem has many applications. For example, in 2005,
Nieto and Rodrıguez-López [16] used this definition and FP theorem to
solve some ordinary differential equations. Moreover, in 2011, Abkar and
Gabeleh [1] fused Theorems 2 and 3 and gained the following FP result:

Theorem 4. [1, Theorem 3.1, (2011)] Assume that p𝒳 , ĺq is a PO set,
𝒜,ℬ ‰ H are subsets of an MS p𝒳 , dq, 𝒜 is complete and
ℱ : 𝒜Y ℬ Ñ 𝒜Y ℬ is a cyclic mapping fulfilling

dpℱa1,ℱ2aq 6 𝛼dpa1,ℱaq

for each pa, a1q P 𝒜 ˆ 𝒜 with a ĺ a1, where 𝛼 P p0, 1q and ℱ2 is nonde-
creasing on 𝒜. Also, assume that one of the following conditions holds:

• ℱ is continuous;
• when a nondecreasing sequence an converges to a a P 𝒜, we have
an ĺ a.

If there is a0 P 𝒜 satisfying a0 ĺ ℱ2a0, then 𝒜X ℬ ‰ H and ℱ possesses
a FP in 𝒜X ℬ. Further, if an`1 “ ℱpanq, then a2n Ñ 𝑝‹.

In 2012, they also combined Theorems 1–4 regarding 𝜓p𝑓q “ 𝑓 and
presented the following FP theorem:

Theorem 5. [2, Theorems 2.4 and 2.5, (2012)] Assume that p𝒳 , ĺq is
a PO set, 𝒜,ℬ ‰ H are subsets of an MS p𝒳 , dq, 𝒜 is complete, and
ℱ : 𝒜Y ℬ Ñ 𝒜Y ℬ is a cyclic mapping fulfilling

dpℱa1,ℱ2aq 6 dpa1,ℱaq ´ 𝜙
`

dpa1,ℱaq
˘

for each pa, a1q P 𝒜ˆ𝒜 with a ĺ a1, where 𝜙 : R>0 Ñ R>0 is a nondecreas-
ing and continuous function, 𝜙p𝑓q “ 0 “ 𝜓p𝑓q iff 𝑓 “ 0 for 𝑓 P R>0 and
lim
𝑓Ñ8

𝜙p𝑓q “ 8, and ℱ2 is nondecreasing on 𝒜. Also, assume that one of

the following conditions holds:

• ℱ is continuous;
• when a nondecreasing sequence an converges to a a P 𝒜, we have
an ĺ a.

If there is a0 P 𝒜 satisfying a0 ĺ ℱ2a0, then 𝒜X ℬ ‰ H and ℱ possesses
a FP in 𝒜X ℬ. Further, if an`1 “ ℱan, then a2n Ñ 𝑝‹.
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It is clear that if we take 𝜙p𝑓q “ p1 ´ 𝛼q𝑓 , then Theorem 5 coincides
with Theorem 4, which is why the authors claimed that the last theorem
contains many former FP results.

In spite of the fact that the FP theory is an important tool for finding
FP of a mapping ℱ defined on 𝒜 Ď 𝒳 , a non-self mapping ℱ : 𝒜 Ñ ℬ
does not, of course, possess a FP. Therefore, one tries to obtain a member
a that is closest to ℱa. Hence, the best proximity point (BPP) results
became famous in applied mathematics. Assume 𝒜,ℬ ‰ H are two subsets
of an MS p𝒳 , dq, distp𝒜,ℬq “ inftdpa, bq : a P 𝒜, b P ℬu and ℱ : 𝒜 Ñ ℬ
is a mapping. The BPP(s) of ℱ is any point a P 𝒜 in which dpa,ℱaq “
distp𝒜,ℬq. In 2006, Eldred and Veeremani [9] presented the existence
of BPP(s) of cyclic contractive mappings on uniformly convex Banach
spaces. Also, Suzuki et al. [25] explained the existence of such point
of cyclic contractive mappings in an MS by virtue of an unconditionally
Cauchy (UC) property.

Definition 1. [25] Let 𝒜,ℬ ‰ H be two subsets of an MS p𝒳 , dq. The
pair p𝒜,ℬq is said to possess the UC property when for two sequences tanu
and ta1nu in 𝒜 and a sequence tbnu in ℬ, lim

nÑ8
dpan, bnq “ lim

nÑ8
dpa1n,bnq “

distp𝒜,ℬq we have lim
nÑ8

dpa, a1nq “ 0.

Lemma 1. [25] Assume 𝒜,ℬ ‰ H are two subsets of an MS p𝒳 , dq and
p𝒜,ℬq has the UC property. Also, assume that tanu and tbnu are two
sequences in 𝒜 and ℬ, respectively, provided that either

lim
mÑ8

sup
n>m

dpam, bnq “ distp𝒜,ℬq or lim
nÑ8

sup
m>n

dpam, bnq “ distp𝒜,ℬq.

Then tanu is Cauchy.

The theory of BPP of various mappings in different type of MS(s)
has been continued by many researchers (see also [4], [11], [12], [13], [19],
[23], [24] and references therein). On the other hand, if 𝒜 X ℬ “ H in
Theorem 2, then ℱa “ a has no answer. Hence, we may think about an
approximate solution a P 𝒜Yℬ so that the error distpa,ℱaq be minimum.
As ℱ is cyclic on 𝒜Yℬ, we have dpa,ℱaq > distp𝒜,ℬq. Hence, Abkar and
Gabeleh introduced some useful tools for finding BPP of cyclic contractive
and cyclic 𝜙-contractive mapping, respectively.

Theorem 6. [1, Theorem 4.1, (2011)] Assume p𝒳 ,ĺq is a PO set,
𝒜,ℬ ‰ H are two closed subsets of an MS p𝒳 , dq and ℱ : 𝒜Yℬ Ñ 𝒜Yℬ
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is a cyclic mapping fulfilling

dpℱa1,ℱ2aq 6 𝛼dpa1,ℱaq ´ p1´ 𝛼qdistp𝒜,ℬq

for each pa, a1q P 𝒜 ˆ 𝒜 with a ĺ a1, where 𝛼 P p0, 1q and ℱ2 is nonde-
creasing on 𝒜. Also, assume that the following condition holds:

• When a nondecreasing sequence an converges to a a in 𝒜, we have
an ĺ a.

If there is a0 P 𝒜 satisfying a0 ĺ ℱ2a0, an`1 “ ℱan for 𝑛 > 0 and ta2nu
possesses a convergent subsequence in 𝒜, then ℱ has a BPP in 𝒜.

Theorem 7. [2, Theorem 3.4, (2012)] Assume p𝒳 , ĺq is a PO set,
𝒜,ℬ ‰ H are two closed subsets of an MS p𝒳 , dq and ℱ : 𝒜Yℬ Ñ 𝒜Yℬ
is a cyclic mapping fulfilling

dpℱa1,ℱ2aq 6 dpa1,ℱaq ´ 𝜙
`

dpa1,ℱaq
˘

` 𝜙
`

distp𝒜,ℬq
˘

for each pa, a1q P 𝒜 ˆ 𝒜 with a ĺ a1, where 𝜙 : R>0 Ñ R>0 is a strictly
increasing function and ℱ2 is nondecreasing on 𝒜. Also, assume that the
following condition holds:

• When a nondecreasing sequence an converges to a a in 𝒜, we have
an ĺ a.

If there is a0 P 𝒜 satisfying a0 ĺ ℱ2a0, an`1 “ ℱan for 𝑛 > 0 and ta2nu
possesses a convergent subsequence in 𝒜, then ℱ has a BPP in 𝒜.

To complete the discussion about PO sets and FP theory: in 2008,
Jachymski [14] defined a graphical MS and developed several concepts
and FP theorems. After that, many researchers working on both FP
theory and BPP theorems extended Jachymski’s idea in various directions
regarding different spaces and contractions (see [5], [10], [17], [18]). Note
that the results of these references can well expand the results regarding
a PO.

Assume that 𝒢 is a graph. A link is an edge of 𝒢 with distinct ends.
Also, a loop is an edge of 𝒢, with identical ends. Parallel edges of 𝒢 are
two or more links of 𝒢 with same pairs of ends. Suppose that p𝒳 , dq is an
MS and 𝒢 is a directed graph in which Vp𝒢q is the vertex set coinciding
with 𝒳 and Ep𝒢q is the edge set containing all loops. Assume that 𝒢
has no parallel edges. Then p𝒳 , dq is named an MS with graph 𝒢 (or
GMS). What is more, assume 𝒢´1 is a directed graph obtained from 𝒢
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by changing directions of the edges of 𝒢 and 𝒢 is an undirected graph
obtained from 𝒢 by removing the directions of the edges 𝒢. Evidently,
Vp𝒢´1q “ Vp𝒢q “ Vp𝒢q “ 𝒳 , Ep𝒢´1q “ tpa, bq P 𝒳 ˆ 𝒳 : pb, aq P Ep𝒢qu
and Ep𝒢q “ Ep𝒢q Y Ep𝒢´1q. For details in graph theory and discussion
about a graphical MS, FP, and BPP, see [7], [14] and references therein.

Combining Theorems 1–5 and 6–7 and considering a GMS instead
an MS or an MS with a PO, we prove the existence of FP and BPP
of a class of contractions, called cyclic 𝒢-p𝜙 ´ 𝜓q-weak, which extends
many previous papers (see [1], [2], [8], [22], [25]). Note that the process
used in Theorems 8, 9, and 10 can be served as a survey in the future
works to prove BPP and FP theorems, named graphical version, in a
class bigger than PO sets, comparable elements, and 𝜀-close members.
Some consequences are also derived from the main theorems that can
show the efficiency of obtained theorems. To do this, some of symbols and
definitions needed are given below.

• Assume Ψ is the class of all continuous and nondecreasing functions
𝜓, 𝜙 : R>0 Ñ R>0, where 𝜙 and 𝜓 are positive on p0, ` 8q and
𝜓p0q “ 𝜙p0q “ 0;

• Assume 𝒜,ℬ ‰ H are two subset of a GMS p𝒳 , dq.

distp𝒜,ℬq “ inf
 

dpa, bq : a P 𝒜, b P ℬ
(

.

• Assume that ℱ : 𝒳 Ñ 𝒳 is a mapping. We mean 𝒞ℱ by the set of
all points a P 𝒳 provided that pℱma,ℱnaq is an edge of 𝒢 for each
m, n P NY t0u; that is,

𝒞ℱ “
 

a P 𝒳 : pℱma,ℱnaq P Ep𝒢q m, n “ 0, 1, . . .
(

.

Note that 𝒞ℱ may become an empty set.

It is clear that Definition 1 and Lemma 1 are valid in a GMS. Additionally,
a type of continuity in a GMS named orbitally 𝒢-continuous and a type
of 𝒢 named C-graph will be needed in the next parts.

Definition 2. ( [10], [14]) Let p𝒳 , dq be a GMS. A mapping ℱ : 𝒳 Ñ 𝒳
is known as an orbitally 𝒢-continuous mapping on 𝒳 whenever ℱbnaÑ b
implies ℱpℱbnaq Ñ ℱb for all a, b P 𝒳 and sequences tbnu of natural
numbers, so that pℱbna,ℱbn`1aq P Ep𝒢q for every n P N.

Definition 3. ( [10], [14]) Assume that p𝒳 , dq is a GMS. 𝒢 is named a
C-graph on 𝒳 if the following feature holds:
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• If a P 𝒳 and tanu is a sequence in 𝒳 provided that an Ñ a and
pan`1, anq P Ep𝒢q for each n P N, then there is a subsequence ta2niu
of tanu provided that pa2ni , aq P Ep𝒢q for any i P N.

2. FP results. First, following the idea of Theorems 1-5, we state
the definition of a p𝜙´ 𝜑q-weak contraction in a GMS.

Definition 4. Assume that p𝒳 , dq is a GMS. A mapping ℱ : 𝒳 Ñ 𝒳 is
acknowledged as a 𝒢-p𝜙´ 𝜓q-weak contractive mapping if

p𝒢1q ℱ2 keeps the edges of 𝒢, i.e. pa, bq P Ep𝒢q implies pℱ2a,ℱ2bq P Ep𝒢q
for each a, b P 𝒳 ;

p𝒢2q for any a, b P 𝒳 with pa, bq P Ep𝒢q,

𝜓pdpℱa,ℱ2bqq 6 𝜓pdpa,ℱbqq ´ 𝜙pdpa,ℱbqq (1)

in which 𝜓, 𝜙 P Ψ.

Now, we prove the main result of this part.

Theorem 8. Assume 𝒜,ℬ ‰ H are two subsets of a GMS p𝒳 , dq, 𝒜 is
complete, and ℱ : 𝒜Y ℬ Ñ 𝒜Y ℬ is a cyclic 𝒢-p𝜙´ 𝜓q-weak contractive
mapping on 𝒜. Also, assume that either ℱ is orbitally 𝒢-continuous on
𝒜 or 𝒢 is a C-graph on 𝒜. Then ℱ possesses a FP in 𝒜 X ℬ whenever
there exists a0 P 𝒜 with a0 P 𝒞ℱ .

Proof. As a0 P 𝒞ℱ , we have pa0,ℱ2a0q P Ep𝒢q. On the other hand, since
ℱ is a cyclic 𝒢-p𝜙 ´ 𝜓q-weak contractive mapping on 𝒜, it follows from
p𝒢1q on 𝒜 that pa2n, a2n`2q P Ep𝒢q for n “ 0, 1, . . ., so a2n “ ℱ2na0. Now,
if ℱ2a0 “ a0, we obtain

𝜓
`

dpa0,ℱa0q
˘

“ 𝜓
´

d
`

ℱ2a0,ℱpℱ2a0q
˘

¯

6 𝜓
`

dpℱ2a0,ℱa0q
˘

´ 𝜙
`

dpℱ2a0,ℱa0q
˘

“ 𝜓
`

dpa0,ℱa0q
˘

´ 𝜙
`

dpa0,ℱa0q
˘

,

which induces that 𝜙
`

dpa0,ℱa0q
˘

“ 0, and as 𝜙 P Ψ, dpa0,ℱa0q “ 0.
Hence, a0 “ ℱa0; that is, a0 is a FP of ℱ and the proof ends. Conse-
quently, take ℱ2a0 ‰ a0. Since pa2n, a2n`2q P Ep𝒢q for any n P NYt0u and
by (1) on 𝒜, we get

𝜓
`

dpa2n, a2n`1q
˘

“ 𝜓
`

dpℱa2n,ℱ2a2n´2q
˘

6 𝜓
`

dpa2n, a2n´1q
˘

´ 𝜙
`

dpa2n, a2n´1q
˘
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6 𝜓
`

dpa2n, a2n´1q
˘

“ 𝜓
`

dpℱa2n´2,ℱ2a2n´2q
˘

6 𝜓
`

dpa2n´2, a2n´1q
˘

´ 𝜙
`

dpa2n´2, a2n´1q
˘

,

which yields 𝜓
`

dpa2n, a2n`1q
˘

6 𝜓
`

dpa2n´2, a2n´1q
˘

. Since 𝜓 is a non-
decreasing function, we conclude that tdpa2n´2, a2n´1qu is a decreasing
sequence. Assume that dpa2n´2, a2n´1q Ñ u. Since 𝜙 P Ψ; we have
𝜙pdpa2n´2, a2n´1qq Ñ 𝜙puq “ 0 and so u “ 0. Hence, there is 𝒩1 P N
provided that dpa2n´2, a2n´1q 6 𝜀 for each n > 𝒩1. Now, we claim that
there is 𝒩2 P N, such that dpa2m, a2n`1q ă 𝜀 for all m > n > 𝒩2. To
the contrary, assume that there exists 𝜀0 ą 0 and integers mi ą ni > i
for every i > 1, such that dpa2mi

, a2ni`1q > 𝜀0 and dpa2m𝑖´2, a2ni`1q ă 𝜀0.
Thus, we obtain

𝜀0 6 dpa2mi
, a2ni`1q

6 dpa2mi
, a2mi´1q ` dpa2mi´1, a2mi´2q ` dpa2mi´2, a2ni`1q

6 dpa2mi
, a2mi´1q ` dpa2mi´1, a2mi´2q ` 𝜀0.

Assume that iÑ 8. Then dpa2mi
, a2ni`1q Ñ 𝜀0. In addition, from

dpa2mi
, a2ni`1q 6 dpa2mi

, a2mi´1q ` dpa2mi´1, a2niq ` dpa2ni , a2ni`1q,

dpa2mi´1, a2niq 6 dpa2mi´1, a2mi
q ` dpa2mi

, a2ni`1q ` dpa2ni`1, a2niq,

we have dpa2mi´1, a2niq Ñ 𝜀0. Consequently, by (1) and the continuity of
𝜓 and 𝜙, and since a0 P 𝒞ℱ implies that pa2mi´1, a2niq P Ep𝒢q, we obtain

𝜓p𝜀0q “ lim
iÑ8

𝜓
`

dpa2mi
, a2ni`1q

˘

6 lim
iÑ8

𝜓
`

dpa2mi´1, a2niq
˘

´ lim
iÑ8

𝜙
`

dpa2mi´1, a2niq
˘

6 𝜓p𝜖0q ´ 𝜙p𝜖0q,

which conclude that 𝜙p𝜖0q “ 0 and so 𝜀0 “ 0: this is impossible. Setting
𝒩 “ maxt𝒩1,𝒩2u for any m ą n > 𝒩 , we get

dpa2m, a2nq 6 dpa2m, a2n`1q ` dpa2n, a2n`1q ă 2𝜀.

It means that ta2nu is a Cauchy sequence on 𝒜, and by the complete-
ness of 𝒜, a1 P 𝒜 exists so that a2n Ñ a1. Now, we show that a1 is
a FP of the mapping ℱ . To do this, note first that from a0 P 𝒞ℱ , we
have pa2n, a2n`1q P Ep𝒢q for each n P N. If ℱ is orbitally 𝒢-continuous
on 𝒜, then a2n Ñ a1 implies ℱpa2nq Ñ ℱa1, and, as a result, we have
dpa1,ℱa1q “ lim

nÑ8
dpa2n, a2n`1q “ 0. Thus, ℱa1 “ a1. Otherwise, let 𝒢 be
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a C-graph. As a2n Ñ a1, there is a strictly increasing sequence tniu of
positive integers, such that pa2ni , a1q P Ep𝒢q for each i P N. Now, it follows
from (1) that

lim
iÑ8

𝜓
`

dpa2ni`1,ℱa1q
˘

“ lim
iÑ8

𝜓
`

dpℱa1,ℱ2a2ni´1q
˘

6 lim
iÑ8

𝜓
`

dpa1,ℱa2ni´1q
˘

´ lim
iÑ8

𝜙
`

dpa1,ℱa2ni´1q
˘

6 lim
iÑ8

𝜓
`

dpa1, a2niq
˘

´ lim
iÑ8

𝜙
`

dpa1, a2niq
˘

“ 0,

which induces that lim
iÑ8

𝜓
`

dpa2ni`1,ℱa1q
˘

“ 0. Since 𝜓 P Ψ, we get
lim
iÑ8

dpa2ni`1,ℱa1q “ 0, implying dpa1,ℱa1q “ lim
nÑ8

dpa2ni , a2ni`1q “ 0. Thus,
ℱa1 “ a1 and the proof ends. l

3. BPP results. First, following the idea of Theorems 6 and 7, we
state the definition of a cyclic p𝜙´ 𝜑q-weak contraction in a GMS.

Definition 5. Assume p𝒳 , dq is a GMS. A mapping ℱ : 𝒜Yℬ Ñ 𝒜Yℬ
is a cyclic 𝒢-p𝜙´ 𝜓q-contractive mapping when

𝜓
`

dpℱa,ℱ2bq
˘

6 𝜓
`

dpa,ℱbq
˘

´ 𝜙
`

dpa,ℱbq
˘

` 𝜙
`

distp𝒜,ℬq
˘

(2)

for any pa, bq P 𝒜ˆ𝒜 with pa, bq P Ep𝒢q, where 𝜓, 𝜙 P Ψ.

Now, we prove the first fundamental theorem of this part.

Theorem 9. Assume 𝒜,ℬ ‰ H are two closed subsets of a GMS p𝒳 , dq,
ℱ : 𝒜 Y ℬ Ñ 𝒜 Y ℬ is a cyclic 𝒢-p𝜙 ´ 𝜓q-weak contractive mapping on
𝒜, and ℱ2 keeps the edges of 𝒢 on 𝒜. Also, assume that 𝒞ℱ |𝒜 ‰ H

and an`1 “ ℱan. If 𝒢 is C-graph on 𝒜 and ta2nu possesses a convergent
subsequence in 𝒜, then ℱ has a BPP a1 P 𝒜.

Proof. By the assumption, 𝒞ℱ |𝒜 ‰ H. Thus, assume a0 P 𝒞ℱ with
a0 P 𝒜. Then pa0,ℱ2a0q P Ep𝒢q and as ℱ2 keeps the edges of 𝒢 on 𝒜,
we have pa2n, a2n`2q P Ep𝒢q for n “ 0, 1, . . ., in which a2n “ ℱ2na0. Since
pa2n, a2n`2q P Ep𝒢q for any n P NY t0u and by (2) on 𝒜, we have

𝜓
`

dpa2n, a2n`1q
˘

6 𝜓
`

dpℱa2n,ℱ2a2n´2q
˘

(3)
6 𝜓

`

dpa2n, a2n´1q
˘

´ 𝜙
`

dpa2n, a2n´1q
˘

` 𝜙
`

distp𝒜,ℬq
˘

.

Now, as 𝜙
`

dpa2n, a2n´1q
˘

> 𝜙
`

distp𝒜,ℬq
˘

for each 𝑛 P N, we conclude that

𝜓
`

dpa2n, a2n`1q
˘

6 𝜓
`

dpa2n´2, a2n´1q
˘

.
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Since 𝜓 P Ψ, it is a nondecreasing function, and as a result, we get
tdpa2n´2,a2n´1qu is a decreasing sequence. Assume dpa2n´2, a2n´1q Ñ 𝑝‹.
By (3) and since 𝜙 P 𝜓, we have

lim
nÑ8

𝜙
`

dpa2n, a2n´1q
˘

“ 𝜙p𝑝‹q 6 𝜙
`

distp𝒜,ℬq
˘

,

which concludes dpa2n´2, a2n´1q Ñ distp𝒜,ℬq. Now, assume that ta2niu is
a subsequence of ta2nu converging to a a1 P 𝒜. Then we have

distp𝒜,ℬq 6 dpa1, a2ni´1q 6 dpa1, a2niq ` dpa2ni , a2ni´1q.

Thus, it follows by taking limit that lim
iÑ8

dpa1, a2ni´1q “ distp𝒜,ℬq. Since

ℱ2 keeps the edges of 𝒢 and 𝒢 is a C-graph, pa2ni , a1q P Ep𝒢q for any i P N.
Now, using (2), we obtain

𝜓
`

dpa2ni ,ℱa1q
˘

“ 𝜓
`

dpℱa1,ℱ2a2ni´2q
˘

(4)
6 𝜓

`

dpa1, a2ni´1q
˘

´ 𝜙
`

dpa1, a2ni´1q
˘

` 𝜙
`

distp𝒜,ℬq
˘

6 𝜓
`

dpa1, a2ni´1q
˘

.

As 𝜓 is a nondecreasing function, from (4) we have:

distp𝒜,ℬq 6 dpa2ni ,ℱa1q 6 dpa1, a2ni´1q.

Hence, dpa1,ℱa1q “ lim
iÑ8

dpa2ni ,ℱa1q “ distp𝒜,ℬq, which means that a1 P 𝒜
is a BPP and this completes the proof. l

Now, to show that Theorem 9 can expand all existing theorems in the
graph-type literature, we list two following results by taking special type
of the functions 𝜓 and 𝜙. First, taking 𝜓p𝑓q “ 𝑓 , we have next corollary:

Corollary 1. Assume 𝒜,ℬ ‰ H are two closed subsets of a GMS p𝒳 , dq,
ℱ : 𝒜Y ℬ Ñ 𝒜Y ℬ is a cyclic 𝒢-𝜙-weak contractive mapping, i.e.

dpℱa,ℱ2bq 6 dpa,ℱbq ´ 𝜙
`

dpa,ℱbq
˘

` 𝜙
`

distp𝒜,ℬq
˘

for any pa, bq P 𝒜 ˆ 𝒜 with pa, bq P Ep𝒢q in which 𝜙 P Ψ, and ℱ2 keeps
the edges of 𝒢 on 𝒜. Also, assume that 𝒞ℱ |𝒜 ‰ H and an`1 “ ℱan. If 𝒢
is C-graph on 𝒜 and ta2nu possesses a convergent subsequence in 𝒜, then
ℱ has a BPP a1 P 𝒜.

Second, taking 𝜓p𝑓q “ 𝑓 and 𝜙p𝑓q “ p1´𝛼q𝑓 in Theorem 9 (or setting
just 𝜙p𝑓q “ p1´ 𝛼q𝑓 in Corollary 1), we have next corollary:
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Corollary 2. Assume 𝒜,ℬ ‰ H are two closed subsets of a GMS p𝒳 , dq,
ℱ : 𝒜Y ℬ Ñ 𝒜Y ℬ is a cyclic 𝒢-weak contractive mapping, i.e.,

dpℱa,ℱ2bq 6 𝛼dpa,ℱbq ` p1´ 𝛼qdistp𝒜,ℬq

for every pa, bq P 𝒜 ˆ 𝒜 with pa, bq P Ep𝒢q in which 𝛼 P p0, 1q, and ℱ2

keeps the edges of 𝒢 on 𝒜. Also, assume that 𝒞ℱ |𝒜 ‰ H and an`1 “ ℱan.
If 𝒢 is C-graph on 𝒜 and ta2nu possesses a convergent subsequence in 𝒜,
then ℱ has a BPP a1 P 𝒜.

Several consequences of our first fundamental result can also be ob-
tained for a special type of the graphs. First, take 𝒢 “ 𝒢0 in which 𝒢0 is a
complete graph; that is, 𝒢0 is a graph with Vp𝒢0q “ 𝒳 and Ep𝒢0q “ 𝒳ˆ𝒳 .

Corollary 3. Let 𝒜,ℬ ‰ H be two closed subsets of a GMS p𝒳 , dq and
ℱ : 𝒜Yℬ Ñ 𝒜Yℬ be a cyclic 𝒢0-p𝜙´𝜓q-weak contractive mapping. Also,
assume that an`1 “ ℱan. If ta2nu possesses a convergent subsequence in
𝒜, then ℱ has a BPP a1 P 𝒜.

Next, assume that p𝒳 ,ĺq is a PO set and 𝒢1 is a graph on 𝒳 , where
Vp𝒢1q “ 𝒳 and Ep𝒢1q “ tpa, bq P 𝒳 ˆ𝒳 : a ĺ bu. If 𝒢 “ 𝒢1 in Theorem 9,
then we obtain the second consequence.

Corollary 4. Assume p𝒳 ,ĺq is a PO set, 𝒜,ℬ ‰ H are two closed
subsets of a GMS p𝒳 , dq, ℱ : 𝒜Y ℬ Ñ 𝒜Y ℬ is a cyclic 𝒢1-p𝜙´ 𝜓q-weak
contractive mapping, and ℱ2 is nondecreasing on 𝒜. Also, assume that
𝑥0 P 𝒜 with 𝑥0 ĺ ℱ2𝑥0 exists and an`1 “ ℱan. If 𝒢1 is C-graph on 𝒜 and
ta2nu possesses a convergent subsequence in 𝒜, then ℱ has a BPP a1 P 𝒜.

Again, assume that p𝒳 , ĺq is a PO set. 𝒢2 is a graph on 𝒳 , where
Vp𝒢2q “ 𝒳 and Ep𝒢2q “ tpa,bq P 𝒳 ˆ 𝒳 : a ĺ b or b ĺ au; i.e., a and b
are comparable members of 𝒳 . If 𝒢 “ 𝒢2 in Theorem 9, then we obtain
the next consequence.

Corollary 5. Assume p𝒳 , ĺq is a PO set, 𝒜,ℬ ‰ H are two closed sub-
sets of a GMS p𝒳 , dq, and ℱ : 𝒜 Y ℬ Ñ 𝒜 Y ℬ is a cyclic
𝒢2-p𝜙 ´ 𝜓q-weak contractive mapping. Also, assume that if a and b
are comparable for a, b P 𝒜, then ℱ2a and ℱ2b are comparable. More-
over, assume 𝑥0 P 𝒜 exists, such that 𝑥0 and ℱ2𝑥0 are comparable, and
an`1 “ ℱan. If 𝒢2 is C-graph on 𝒜 and ta2nu possesses a convergent
subsequence in 𝒜, then ℱ has a BPP a1 P 𝒜.

Finally, assume that 𝜀 ą 0 is fixed. Remember that a, b P 𝒳 are
named 𝜀-close when dpa, bq ĺ 𝜀. Define the 𝜀-graph 𝒢3 by Vp𝒢3q “ 𝒳
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and Ep𝒢3q “ tpa, bq P 𝒳 ˆ 𝒳 : dpa, bq ĺ 𝜀u. We see that Ep𝒢3q contains
all loops. Now, if 𝒢 “ 𝒢3 in Theorem 9, then the last consequence is
obtained.

Corollary 6. Assume 𝒜,ℬ ‰ H are two closed subsets of a GMS p𝒳 , dq,
ℱ : 𝒜Yℬ Ñ 𝒜Yℬ is a cyclic 𝒢3-p𝜙´𝜓q-weak contractive mapping. Also,
assume that if a and b are 𝜀-close for a, b P 𝒜, then ℱ2a and ℱ2b are
𝜀-close. Moreover, assume that 𝑥0 P 𝒜 exists, such that 𝑥0 and ℱ2𝑥0 are
𝜀-close and an`1 “ ℱan. If 𝒢3 is C-graph on 𝒜 and ta2nu possesses a
convergent subsequence in 𝒜, then ℱ possesses a BPP a1 P 𝒜.

The second fundamental result of this part is the next theorem regard-
ing a graph instead a partial order, extending Theorem 3.5 of Abkar and
Gabeleh [2].

Theorem 10. Assume 𝒜,ℬ ‰ H are subsets of a GMS p𝒳 , dq, 𝒜 is
complete, both p𝒜,ℬq and pℬ,𝒜q have the UC property, ℱ : 𝒜Yℬ Ñ 𝒜Yℬ
is a cyclic 𝒢-p𝜙´𝜓q-weak contractive mapping on both 𝒜 (and ℬ) in which
ℱ and ℱ2 keep the edges of 𝒢 on 𝒜. If either ℱ is orbitally 𝒢-continuous
on 𝒜 or 𝒢 is a C-graph on 𝒜, then ℱ has a BPP 𝑝‹ P 𝒜 whenever a0 P 𝒜
with a0 P 𝒞ℱ .

Proof. Assume that a0 P 𝒞ℱ with a0 P 𝒜. As both ℱ and ℱ2 keep the
edges of 𝒢 on 𝒜 and pa0,ℱ2a0q P Ep𝒢q, we obtain

pa2n, a2n`2q P Ep𝒢q and pa2n`1, a2n`3q P Ep𝒢q for n “ 0, 1, . . . .

Similar to the proof of Theorem 9, we have

dpa2n, a2n`1q Ñ distp𝒜,ℬq and dpa2n`2, a2n`1q Ñ distp𝒜,ℬq.

Now, as p𝒜,ℬq and pℬ,𝒜q have the UC property, we can obtain

dpa2m, a2m`2q Ñ 0 and dpa2m`1, a2m`3q Ñ 0,

respectively. Let 𝜀 ą 0 be arbitrary. We show that there is a n P N that

Dpa2𝑚, a2n`1q ă 𝜀 (5)

for any m ą n > 𝒩 , where Dpg, hq “ dpg, hq ´ distp𝒜,ℬq for each
pg, hq P 𝒜 ˆ ℬ. To the contrary, assume (5) is not valid. Then there
are 𝜀0 ą 0 and mi ą ni > i for each i > 1, so that Dpa2mi

, a2ni`1q > 𝜀0 and
Dpa2mi´2, a2ni`1q ă 𝜀0. Then we have

𝜀0 6 Dpa2mi
, a2ni`1q 6 dpa2mi´2, a2mi

q ` Dpa2mi´2, a2ni`1q 6 dpa2mi´2, a2mi
q ` 𝜀0.
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Now, taking limit as iÑ 8, we obtain

lim
iÑ8

Dpa2mi
, a2ni`1q “ 𝜀0.

Since ℱ and ℱ2 preserves the edges of 𝒢 on 𝒜,

𝜓
`

dpa2mi`2, a2ni`3q
˘

“ 𝜓
´

d
`

ℱa2mi`1,ℱ2a2ni`1
˘

¯

𝜓
`

dpa2mi`1, a2ni`2q
˘

´ 𝜙
`

dpa2mi`1, a2ni`2q
˘

` 𝜙
`

distp𝒜,ℬq
˘

6 𝜓
`

dpa2mi`1, a2ni`2q
˘

“ 𝜓
´

d
`

ℱa2mi
,ℱ2a2ni

˘

¯

6 𝜓
`

dpa2mi
, a2ni`1q

˘

´ 𝜙
`

dpa2mi
, a2ni`1q

˘

` 𝜙
`

distp𝒜,ℬq
˘

6 𝜓
`

dpa2mi
, a2ni`1q

˘

. (6)

As 𝜓 is a nondecreasing function, we have dpa2mi`2, a2ni`3q 6 dpa2mi
, a2ni`1q

and hence,

Dpa2mi
, a2ni`1q 6 dpa2mi

, a2mi`2q ` Dpa2mi`2, a2ni`3q ` dpa2ni`1, a2ni`3q

6 dpa2mi
, a2mi`2q ` Dpa2mi

, a2ni`1q ` dpa2ni`1, a2ni`3q.

Now, taking limit as iÑ 8, we get Dpa2mi`2, a2ni`3q Ñ 𝜀0; that is,

lim
iÑ8

dpa2mi`2, a2ni`3q “ 𝜀0 ` distp𝒜,ℬq.

Using (6) and continuity of functions 𝜓 and 𝜙, we obtain

𝜓
`

𝜀0 ` distp𝒜,ℬq
˘

“ lim
iÑ8

𝜓
`

dpa2mi`2, a2ni`3q
˘

6 lim
iÑ8

𝜓
`

dpa2mi
, a2ni`1q

˘

´ lim
iÑ8

𝜙
`

dpa2mi
, a2ni`1q

˘

` 𝜙
`

distp𝒜,ℬq
˘

“ 𝜓
`

𝜀0 ` distp𝒜,ℬq
˘

´ 𝜙
`

𝜀0 ` distp𝒜,ℬq
˘

` 𝜙
`

distp𝒜,ℬq
˘

,

implying 𝜙
`

𝜀0 ` distp𝒜,ℬq
˘

6 𝜙
`

distp𝒜,ℬq
˘

, which is a contradiction.
Therefore, (5) is valid. Hence, lim

mÑ8
sup
n>m

Dpa2𝑚, a2n`1q “ 0. As p𝒜,ℬq has

the UC property, and by Lemma 1, ta2nu is a Cauchy sequence in 𝒜. As
𝒜 is complete, ta2nu converges to a 𝑝‹ P 𝒜. Now, let us show that 𝑝‹ is
same BPP.

First, as a0 P 𝒞ℱ , we have pa2n, a2n`1q P Ep𝒢q for each n P N. Assume ℱ
is orbitally 𝒢-continuous on 𝒜. Then a2n Ñ 𝑝‹ implies that ℱa2n Ñ ℱ𝑝‹.
Hence,

dp𝑝‹,ℱ𝑝‹q “ lim
𝑛Ñ8

dpa2n, a2n`1q “ distp𝒜,ℬq
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and 𝑝‹ is a BPP. Otherwise, assume 𝒢 is a C-graph. As a2n Ñ 𝑝‹,
there is a strictly increasing sequence tniu of natural numbers so that
pa2ni , 𝑝

‹q P Ep𝒢q for any i P N. Since ℱ satisfies (2), we have

lim
iÑ8

𝜓
`

dpa2ni`1,ℱ𝑝‹q
˘

6 lim
iÑ8

𝜓
`

dpℱ𝑝‹,ℱ2a2ni´1q
˘

6 lim
iÑ8

𝜓
`

dp𝑝‹,ℱa2ni´1q
˘

´ lim
iÑ8

𝜙
`

dpa,ℱa2ni´1q
˘

` 𝜙pdistp𝒜,ℬqq

6 lim
iÑ8

𝜓
`

dp𝑝‹, a2niq
˘

´ lim
iÑ8

𝜙
`

dp𝑝‹, a2niq
˘

` 𝜙pdistp𝒜,ℬqq

“ 𝜓pdistp𝒜,ℬqq,

which induces that

lim
iÑ8

𝜓
`

dpa2ni`1,ℱ𝑝‹q
˘

“ 𝜓pdistp𝒜,ℬqq.

Thus, lim
iÑ8

dpa2ni`1,ℱ𝑝‹q “ distp𝒜,ℬq, which causes

dp𝑝‹,ℱ𝑝‹q “ lim
nÑ8

dpa2ni , a2ni`1q “ distp𝒜,ℬq,

i.e., 𝑝‹ is a BPP and the proof ends. l

Example 1. Take 𝒳 “ R2 and the usual metric

d
`

pa1, b1q, pa2, b2q
˘

“
a

pa1 ´ a2q2 ` pb1 ´ b2q2

for pa1, b1q,pa2, b2q P R2 and set

𝒜 “
 

pa, 1q : a P r0, 1s
(

, ℬ “
 

pb, 0q : b P r0, 1s
(

.

Then distp𝒜,ℬq “ 1. Also, define 𝜙, 𝜓 : R>0 Ñ R>0 by

𝜓p𝜅q “

$

’

&

’

%

𝜅2, 0 6 𝜅 ă
1

2
,

𝜅

2
, 𝜅 >

1

2
,

and 𝜙p𝜅q “

$

’

&

’

%

𝜅2

4
, 0 6 𝜅 ă

1

2
,

𝜅

8
, 𝜅 >

1

2
.

Moreover, define ℱ : 𝒜Y ℬ Ñ 𝒜Y ℬ by

ℱpa, 1q “

$

&

%

p0, 0q, 0 6 a ă 1,

p
2

3
, 0q, a “ 1,
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for pa, 1q P 𝒜 and

ℱpb, 0q “

$

&

%

p0, 1q, 0 6 b ă 1,

p
2

3
, 1q, b “ 1,

for pb, 0q P ℬ. Note that for p1, 1q, p1
2
, 1q P R2, we have

d
`

p1, 1q, p
1

2
, 1q

˘

“
1

2

and, again, by (2), we have

𝜓
´

d
`

ℱp1, 1q,ℱ2
p
1

2
, 1q

˘

¯

“

?
13

6
ą

3
?

2´ 1

8

“ 𝜓
´

d
`

p1, 1q,ℱp1
2
, 1q

˘

¯

´ 𝜙
´

d
`

p1, 1q,ℱp1
2
,1q

˘

¯

` 𝜙
`

distp𝒜,ℬq
˘

.

Consequently, (2) is not true for the mapping ℱ when we take a usual
metric on 𝒜. Now, take a graph 𝒢 by Vp𝒢q “ R2 and

Ep𝒢q “
 `

pa1, a2q, pa1, a2q
˘

: pa1, a2q P R2
(

Y
 `

p0, 1q, p1, 1q
˘

,
`

p1, 1q,p0, 1q
˘

,
`

p0, 0q, p1,0q
˘

,
`

p1, 0q, p0, 0q
˘(

.

Then pR2, dq is a complete GMS endowed by 𝒢. Evidently, ℱ is orbitally
𝒢-continuous. Also, it is clear for a, b P r0, 1s that

𝜓
´

d
`

ℱpa, 1q,ℱ2
pa, 1q

˘

¯

6 𝜓
´

d
`

pa, 1q,ℱpa, 1q
˘

¯

´ 𝜙
´

d
`

pa, 1q,ℱpa, 1q
˘

¯

` 𝜙
`

distp𝒜,ℬq
˘

and

𝜓
´

d
`

ℱpb, 0q,ℱ2
pb, 0q

˘

¯

6 𝜓
´

d
`

pb, 0q,ℱpb, 0q
˘

¯

´ 𝜙
´

d
`

pb, 0q,ℱpb, 0q
˘

¯

` 𝜙
`

distp𝒜,ℬq
˘

.

Moreover,

𝜓
´

d
`

ℱp0, 1q,ℱ2
p1, 1q

˘

¯

6 𝜓
´

d
`

p0, 1q,ℱp1, 1q
˘

¯

´ 𝜙
´

d
`

p0, 1q,ℱp1, 1q
˘

¯

` 𝜙
`

distp𝒜,ℬq
˘
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and

𝜓
´

d
`

ℱp0, 0q,ℱ2
p1, 0q

˘

¯

6 𝜓
´

d
`

p0, 0q,ℱp1, 0q
˘

¯

´ 𝜙
´

d
`

p0, 0q,ℱp1, 0q
˘

¯

` 𝜙
`

distp𝒜,ℬq
˘

.

Thus, (2) is valid for the mapping ℱ on 𝒜 (and ℬ). Therefore, all as-
sumptions of Theorem 10 are fulfilled and ℱ has a BPP, being 𝜗 “ p0, 1q
and 𝛾 “ p0, 0q.

At the end, it is worth recalling that all Corollaries 3–6 also hold for
Theorems 8 and 10 with a similar statement, regarding special types of
graph 𝒢𝑗 with 𝑗 “ 0, 1, 2, 3.

4. Application. Now, we can state several applications on the
integral-type of the cyclic 𝒢-p𝜙´𝜓q-weak contractions. Take 𝜇 the Lebesgue
measure on a Borel 𝜎-algebra of a metric subspace R>0, 𝐿 “ r𝑎1, 𝑎2s a

Borel set, and
𝑎2
ş

𝑎1

𝜑p𝑥q𝑑𝑥 the Lebesgue integral of a function 𝜑 on 𝐿. Ad-

ditionally, assume Γ is a total class of 𝜑 : R>0 Ñ R>0 provided that the
followings holds:

(Γ1) 𝜑 is Lebesgue-integrable on R>0;

(Γ2)
𝜐
ş

0

𝜑p𝑥q𝑑𝑥 ą 0 and it is finite for each 𝜐 ą 0.

Theorem 11. Assume 𝒜,ℬ ‰ H are subsets of a GMS p𝒳 , dq, 𝒜 is
complete, both p𝒜,ℬq and pℬ,𝒜q have the UC property, ℱ : 𝒜Yℬ Ñ 𝒜Yℬ
is a mapping, such that

dpℱa,ℱ2bq
ż

0

𝜒p𝑥q𝑑𝑥 6

dpa,ℱbq
ż

0

𝜒p𝑥q𝑑𝑥´

dpa,ℱbq
ż

0

𝜛p𝑥q𝑑𝑥`

dp𝒜,ℬq
ż

0

𝜛p𝑥q𝑑𝑥 (7)

for all a, b P 𝒜 (and a, b P ℬ) with pa, bq P Ep𝒢q, where 𝜒,𝜛 P Γ, and
ℱ and ℱ2 keep the edges of 𝒢 on 𝒜. If ℱ is an orbitally 𝒢-continuous
mapping on 𝒜 or 𝒢 is a C-graph on 𝒜, then ℱ has a BPP 𝑝‹ P 𝒜 whenever
a0 P 𝒜 with a0 P 𝒞ℱ .

Proof. Setting 𝜓p𝜅q “
𝜅
ş

0

𝜒p𝑥q𝑑𝑥 and 𝜙p𝜅q “
𝜅
ş

0

𝜛p𝑥q𝑑𝑥 in Theorem 10, we

obtain the assertion from Theorem 10. l
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In Theorem 11, assume that 𝒜 “ ℬ “ 𝒳 . Then we reach the following
FP result.

Theorem 12. Assume p𝒳 , dq is a complete GMS and ℱ : 𝒳 Ñ 𝒳 is a
mapping, such that

dpℱa,ℱ2bq
ż

0

𝜒p𝑥q𝑑𝑥 6

dpa,ℱbq
ż

0

𝜒p𝑥q𝑑𝑥´

dpa,ℱbq
ż

0

𝜛p𝑥q𝑑𝑥 (8)

for all a, b P 𝒳 with pa, bq P Ep𝒢q, where 𝜒,𝜛 P Γ and ℱ and ℱ2 keep the
edges of 𝒢 on 𝒳 . If ℱ is an orbitally 𝒢-continuous mapping on 𝒳 or 𝒢 is
a C-graph on 𝒳 , then ℱ has a FP 𝑝‹ P 𝒳 whenever a0 P 𝒳 with a0 P 𝒞ℱ .

Remark 1. Substituting 𝒢 in Theorems 11 and 12 with the special graphs
mentioned in the previous section, we are able to show the validity of the
assertions for these types of the graphs.

Acknowledgment. The authors thank the Editorial Board and the ref-
erees for their valuable comments that helped to improve the text.

References
[1] Abkar A., Gabeleh M. Best proximity points for cyclic mappings in ordered

metric spaces. J. Optim Theory Appl., 2011, vol. 151, pp. 418 – 424.
DOI: https://doi.org/10.1007/s10957-011-9818-2

[2] Abkar A., Gabeleh M. Generalized cyclic contractions in partially ordered
metric spaces. Optim Lett., 2012, vol. 6, pp. 1819 – 1830.
DOI: https://doi.org/10.1007/s11590-011-0379-y

[3] Agarwal R. P., Meehan M., O’Regan D. Fixed Point Theory and Applica-
tions. Cambridge University Press, 2009.
DOI: https://doi.org/10.1017/CBO9780511543005

[4] Akhavan Armaki A., Pashapournia A., Soleimani Rad G. Best proximity
points of graphical p𝜙´ 𝜓q-weak contractive mappings and applications to
graphical integral-type inequalities Journal of Nonlinear and Convex Anal-
ysis., 2024, vol. 25, no. 7, pp. 1777 – 1789.

[5] Aryanpour L., Rahimi H., Soleimani Rad G. Fixed point results for Hardy-
Rogers type contractions with respect to a 𝑐-distance in graphical cone met-
ric spaces. Probl. Anal. Issues Anal., 2020, vol. 9(27), no. 1, pp. 27 – 37.
DOI: https://doi.org/10.15393/j3.art.2020.6850

[6] Banach S. Sur les opérations dans les ensembles abstraits et leur application
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